Optimal Control in the Network Model of Bi-virus Propagation

Authors

  • Liu Xiuxiu Saint Petersburg State University
  • Elena Gubar Saint Petersburg State University

DOI:

https://doi.org/10.21638/11701/spbu31.2022.20

Abstract

This thesis is devoted to the spread of virus in human society. First, we modified the original basic epidemiological model, and divide the system into M different types. The optimal control problem is formulated for the changes of compartments in different states. The total cost is then minimized, the Pontryagin maximum principle is used to solve this nonlinear optimal control problem. Next, we prove that the optimal policy has the simple structure. Finally, we fit the propagation process of this model using Matlab. Consider the situation where there are only two types of virus in the system, and compare the two types of virus appear at the same time and at different times.

Keywords:

optimal control, virus propagation, epidemic model

Downloads

Download data is not yet available.
 

References

Bichara, D., Iggidr, A. and Sallet, G. (2014). Global analysis of multi-strains SIS, SIR and MSIR epidemic models. J. Appl. Math.Comput., 44, 273–292. https://doi.org/10.1007/s12190-013-0693-x

Chiang, Alpha C. (1992). Elements of Dynamic Optimization. New York: McGraw-Hill

Eshghi, S., Khouzani, M. H. R., Sarkar, S. and Venkatesh, S. S. (2016). Optimal Patching in Clustered Malware Epidemics. In: IEEE/ACM Transactions on Networking, 24(1), pp. 283–298. https://doi.org/10.1109/TNET.2014.2364034

Grass, D., Caulkins, J., Feichtinger, G., Tragler, G. and Behrens, D. (2008). Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror. https://doi.org/10.1007/978-3-540-77647-5

Gubar, E., Kumacheva, S., Zhitkova, E. and Porokhnyavaya, O. (2016). Impact of Propagation Information in the Model of Tax Audit. In: Petrosyan, L., Mazalov, V. (eds.). Recent Advances in Game Theory and Applications. Static & Dynamic Game Theory: Foundations & Applications. Birkhuser, Cham. https://doi.org/10.1007/978-3-319-43838-2-5

Gubar, E., Policardo, L., Carrera, E. and Taynitskiy, V. (2021). Optimal Lockdown Policies driven by Socioeconomic Costs. Papers 2105.08349, arXiv.org

Gubar, E. and Zhu, Q. (2013). Optimal control of influenza epidemic model with virus mutations. 2013 European Control Conference (ECC), pp. 3125–3130. https://doi.org/10.23919/ECC.2013.6669732

Khouzani, M. H. R., Sarkar, S. and Altman, E. (2011). Optimal control of epidemic evolution. 2011 Proceedings IEEE INFOCOM, 2011, pp. 1683–1691. https://doi.org/10.1109/INFCOM.2011.5934963

Khouzani, M. H. R., Sarkar, S. and Altman, E. (2012). Maximum Damage Malware Attack in Mobile Wireless Networks. In: IEEE/ACM Transactions on Networking, 20(5), 1347–1360. https://doi.org/10.1109/TNET.2012.2183642

Li, Y., Hui, P., Jin, D., Su, L. and Zeng, L. (2011). An optimal distributed malware defense system for mobile networks with heterogeneous devices. 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 314–322. https://doi.org/10.1109/SAHCN.2011.5984913

Mathieu, E., Ritchie, H., Rods-Guirao, L., Appel, C. Giattino, C., Hasell, J., Macdonald, B., Dattani, S., Beltekian, D., Ortiz-Ospina, E. and Roser, M. (2020). Coronavirus Pandemic (COVID-19). Available at https://ourworldindata.org/coronavirus (accessed 01.11.2022)

Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925. https://doi.org/10.1103/RevModPhys.87.925

Shakkottai, S. and Srikant, R. (2008). Peer to Peer Networks for Defense Against Internet Worms. IEEE Journal on Selected Areas in Communications, 25(9), 1745-1752. https://doi.org/10.1109/JSAC.2007.071212

Taynitskiy, V., Gubar, E., and Zhu, Q. (2019). Optimal Impulse Control of SIR Epidemics Over Scale-Free Networks. In: Song, J., Li, H., Coupechoux, M. (eds.). Game Theory for Networking Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-93058-9-8

Downloads

Published

2023-01-27

How to Cite

Xiuxiu , L., & Gubar, E. (2023). Optimal Control in the Network Model of Bi-virus Propagation. Contributions to Game Theory and Management, 15, 265–286. https://doi.org/10.21638/11701/spbu31.2022.20

Issue

Section

Articles