Vector Epidemic Model of Malaria with Nonconstant-Size Population
DOI:
https://doi.org/10.21638/11701/spbu31.2022.15Abstract
Keywords:
malaria, mathematical modeling of epidemics, mosquito population, subpopulations, reproductive number, endemic equilibrium
Downloads
Download data is not yet available.
References
Baygents, G. and Bani-Yaghoub, M. (2017). A mathematical model to analyze spread of hemorrhagic disease in white-tailed deer population. Journal of Applied Mathematics and Physics, 5, 2262–2282
Cai, L., Tuncer, N. and Martcheva, M. (2017). How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria. Mathematical Methods in the Applied Sciences, 40(18), 6424–6450
Diekmann, O., Heesterbeek, A. P. and Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. J. R. Soc.Interface, 7, 873–885
Ghosha, M., Lasharib, A. A. and Li, X.-Z. (2013). Biological control of malaria: A mathematical model. Applied mathematics and computation, 219(15), 7923–7939
Gurarie, D., Karl, S., Zimmerman, P. A., King, C. H., St. Pierre, T. G. and Davis, T. M. E. (2012). Dynamical mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE, 7(3): e34040
Jones, J. H. (2007). Notes on R0. Department of Anthropological Sciences. Stanford, CA, USA, https://web.stanford.edu/jhj1/teachingdocs/Jones-on-R0.pdf (accessed 01.11.2022)
Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115, 700–721
Maliki, O., Romanus, N. and Onyemegbulem, B. (2018). A mathematical modelling of the effect of treatment in the control of malaria in a population with infected immigrants. Applied Mathematics, 9, 1238–1257
Macdonald, G. (1957). The epidemiology and control of malaria. London, New York: Oxford University Press
Mandal, S., Sarkar, R. R. and Sinha, S. (2011). Mathematical models of malaria - a review. Malaria Journal, 10, art. no. 202
Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H. and McMichael, A. J. (1995). Potential Impact of Global Climate Change on Malaria Risk. Environ Health Perspect, 103(5), 458–464
Ndiaye, S. M. and Parilina, E. M. (2022). An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination. Vestnik of Saint Petersburg University. Applied Mathematics.Computer Science. Control Processes, 18(2), 263–277 (in Russian)
Ross, R. (1916). An application of the theory of probabilities to the study of a priori pathometry. - Part I. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 92(638), 204–230
Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infect. Dis. Model., 2(3), 288–303
Wei, J., Lashari, A. A., Aly, S., Hattaf, K., Zaman, G., Jung, I. H. and Li, X.-Z. (2012). Presentation of Malaria Epidemics Using Multiple Optimal Controls. Journal of Applied Mathematics, art. no. 946504
Zhang, T., Ibrahim, M. M., Kamran, M. A., Naeem, M., Malik, M., Kim, S. and Jung, I. H. (2020). Impact of Awareness to Control Malaria Disease: A Mathematical Modeling Approach. Complexity, art. no. 8657410
Downloads
Published
2023-01-27
How to Cite
Ndiaye, S. M. (2023). Vector Epidemic Model of Malaria with Nonconstant-Size Population. Contributions to Game Theory and Management, 15, 200–217. https://doi.org/10.21638/11701/spbu31.2022.15
Issue
Section
Articles
License
Articles of "Contributions to Game Theory and Management" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.