Strictly Strong (N-1)-equilibrium in N-person Multicriteria Games

Authors

  • Denis V. Kuzyutin Saint Petersburg State University
  • Mariya V. Nikitina International Banking Institute
  • Yaroslavna B. Pankratova Saint Petersburg State University

Abstract

Using some specific approach to the coalition-consistency analysis in n-person multicriteria games we introduce two refinements of (weak Pareto) equilibria: the strong and strictly strong (n−1)-equilibriums. Axiomatization of the strictly strong (n−1)-equilibria (on closed families of multicriteria games) is provided in terms of consistency, strong one-person rationality, suitable variants of Pareto optimality and converse consistency axiom and others.

Keywords:

multicriteria games, Pareto equilibria, strong equilibrium, consistency, axiomatizations

Downloads

Download data is not yet available.

References

Aumann, R. J. (1959). Acceptable points in general cooperative n-person games. Contributions to the theory of games. Prinston. 4, 287–324.

Bernheim, B., Peleg, B. and Winston, M. (1987). Coalition-proof Nash equilibria I. Concept. Journal of Economics Theory, 42, 1–12.

Borm, P., Van Megen, F. and Tijs, S. (1999). A perfectness concept for multicriteria games. Mathematical Methods of Operation Research, 49, 401–412.

Kaplan, G. (1992). Sophisticated outcomes and coalitional stability. MSc Thesis. Department of Statistics, Tel-Aviv University.

Kuzyutin, D. (1995). On the problem of solutions’ stability in extensive games. Vestnik of St.Petersburg Univ., Ser. 1, Iss. 4, 18–23 (in Russian).

Kuzyutin, D. (2000). Strong (N −1)-equilibrium. Concepts and axiomatic characterization. International Journal of Mathematics, Game Theory and Algebra, Vol. 10, No. 3, 217–226.

Kuzyutin, D. (2012). On the consistency of weak equilibria in multicriteria extensive games. Contributions to game theory and management, Collected papers, Vol. V . Editors L.A. Petrosjan, N. A. Zenkevich. St.Petersburg Univ. Press, 168–177.

Nash, J. F. (1950). Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA, Vol. 36, 48–49.

Norde, H., Potters, J., Reijnierse, H. and Vermeulen, D. (1996). Equilibrium selection and consistency. Games and Economic Behavior, 12, 219–225.

Peleg, B., Potters, J. and Tijs, S. (1996). Minimality of consistent solutions for strategic games, in particular for potential games. Economic Theory, 7, 81–93.

Peleg, B. and Tijs, S. (1996). The consistency principle for games in strategic form. International Journal of Game Theory, 25, 13–34.

Petrosjan, L. and Kuzyutin, D. (2008). Consistent solutions of positional games. St.Petersburg Univ. Press. 330 p. (in Russian)

Petrosjan, L. and Puerto, J. (2002). Folk theorems in multicriteria repeated n–person games. Sociedad de Estatistica e Investigation Operativa Top, Vol. 10, No. 2, 275–287.

Shapley, L. (1959). Equilibrium points in games with vector payoffs. Naval Research Logistics Quarterly, 1, 57–61.

Voorneveld, M., Vermeulen, D. and Borm, P. (1999). Axiomatization of Pareto equilibria in multicriteria games. Games and Economic Behavior, 28, 146–154.

Downloads

Published

2022-08-09

How to Cite

V. Kuzyutin, D., V. Nikitina, . M., & B. Pankratova, Y. (2022). Strictly Strong (N-1)-equilibrium in N-person Multicriteria Games. Contributions to Game Theory and Management, 7. Retrieved from https://gametheory.spbu.ru/article/view/13601

Issue

Section

Articles