On Control Reconstructions to Management Problems

Authors

  • Nina N. Subbotina Krasovskii Institute of Mathematics and Mechanics UrB RAS; Ural Federal University

DOI:

https://doi.org/10.21638/11701/spbu31.2020.22

Abstract

We present and discuss a new approach to solutions of control reconstruction problems in real time. The suggested solution based on necessary optimality conditions for auxiliary calculus of variation problems with concave-convex discrepancy functional.

Keywords:

optimal control, nonlinear systems, control reconstruction, calculus of variation, concave-convex discrepancy

Downloads

Download data is not yet available.
 

References

Bellman, R. (1957). Dynamic Programming. Princeton University Press: Princeton, NJ

D'Autilia, M. C., Sgura, I., and B. Bozzini (2017). Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach. Inverse Problems, 33(6), 124009, IOP Publishing Ltd.: NY

Krasovskii, N. N. (1968). The Theory of Motion Control. Nauka: Moscow (in Russian)

Krasovskii, N. N. and A. I. Subbotin (1988). Game-Theoretical Control Problems. Springer-Verlag: NY. Krupennikov, 2018

Krupennikov, E. A. (2018). On Control Reconstruction Problems for Dynamic Systems Linear in Controls. In: Frontiers of Dynamic Games. Game Theory and Management (Petrosyan, L. A., Mazalov, V. V. and N. A. Zenkevich. eds.), pp. 89–120. Birkhuser: Boston

Kryazhimskii, A. V. and Yu. S. Osipov (1984). Modelling of a control in a dynamic system. Eng. Cybern., 21(2), 38–47

Leitmann, G. (1962). In: Optimization techniques: with applications to aerospace systems (Leitmann, G. ed.), Vol. 5. Academic Press: NY

Letov. A. M. (1969). Dynamics of Flight and Control Nauka: Moscow (in Russian)

Liu, Y. C., Chen, Y. W., Wang, Y. T. and Chang, J. R. (2018). A high-order Lie groups scheme for solving the recovery of external force in nonlinear system. Inverse Problems in Science and Engineering, 26(12), 1749–1783, DOI: 10.1080/17415977.2018.1433669

Michel, A. (1977). Deterministic and stochastic optimal control. IEEE Trans. Automat. Contr., 22(6), 997–998

Osipov, Y. S. and A. V. Kryazhimskii (1995). Inverse Problems for Ordinary Differential Equations: Dynamical Solutions Gordon and Breach: Amsterdam

Osipov, Yu. S., Kryazhimskii, A. V. and V. I. Maksimov (2011). Some Algorithms for the Dynamic Reconstruction of Inputs. Proc. Steklov Inst. Math. 275(Suppl.1), 86–120

Pontryagin, L. S. Boltyansky, V. G. Gamkrelidze, R. V. and E. F. Mishchenko (1961). The Mathematical Theory of Optimal Processes. Nauka: Moscow (in Russian)

Petrosjan, L. A. and N. A. Zenkevich (1996). Game Theory. World Scientific Publisher: NY

Sabatier, P. C. (2000). Past and future of inverse problems. J. Math. Phys., 41, 4082, DOI:10.1063/1.533336

Subbotina, N. N. (2019). On solutions of navigation inverse problems in real time. AIP Conference Proceedings, 020019, DOI (CrossRef): 10.1063/1.5135679. AIP Publishing: NY

Subbotina, N. N. and E. A. Krupennikov (2017). The method of characteristics in an identification problem. Proc, Steklov Inst. Math., 299(Suppl. 1), 205–216

Subbotina, N. N. and E. A. Krupennikov (2018). A Solution to Inverse Problems For Dynamic Control Systems. AIP J. Proceed., 1997(1), 020006

Subbotina, N. N. and T. B. Tokmantsev (2013). The Method of Characteristics in Inverse Problems of Dynamics. Universal J. Contr. Autom., 1(3), 79–85

Subbotina, N. N., Tokmantsev, T. B. and E. A. Krupennikov, (2015). On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method. Proc. Steklov Inst. Math., 291, 253–262

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Sov. Math., Dok., 4, 1624–1627

Downloads

Published

2022-02-03

How to Cite

Subbotina, N. N. (2022). On Control Reconstructions to Management Problems. Contributions to Game Theory and Management, 13. https://doi.org/10.21638/11701/spbu31.2020.22

Issue

Section

Articles