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Abstract In this paper, we explore the dynamics of epidemic processes on
different types of single-layer network structures, emphasizing the impact of
network structure on the spread of disease. We first propose a single-layer
SIR (susceptible-infected-recovered) network model and investigate the im-
pact of network structure on virus transmission. Numerical simulation re-
sults indicate that in scale-free networks, infections in hub nodes lead to
faster and more widespread spread compared to the absence of such a net-
work. In terms of epidemic control, the importance of disconnecting key
nodes is emphasized. In random networks, transmission is generally faster
and has higher peak infection levels than in scale-free networks. The find-
ings reveal that network topology and initial infection nodes profoundly
influence virus spread patterns, offering critical insights for designing tar-
geted epidemic control strategies that minimize transmission by breaking
key network links.
Keywords: SIR network model, epidemic processes, random network.

1. Introduction

In human society, infectious diseases have always been a major global chal-
lenge. From smallpox and the plague to cholera, these diseases have claimed count-
less lives. According to the World Health Organization, seasonal influenza and
its complications cause massive deaths annually (Tamerius et al., 2011). Econom-
ically, The World Bank similarly estimated that a flu pandemic causing 28 mil-
lion or more excess deaths could result in a loss of as much as 5% of global GDP
(Bloom et al., 2019). Therefore, exploring effective control measures to curb the
spread of infectious diseases is of great theoretical and practical significance for
epidemic management. The concept and term "epidemiology" can be traced back
to Hippocrates. His work "Epidemics" served as a model for many later studies
(Payne, 1893). The formation phase of the epidemiology discipline spanned from
the late 18th century to the early 20th century, with Daniel Bernoulli’s smallpox
model in 1760 (Brauer, 2008). Most disease models classify individuals or hosts
by disease status. Modern mathematical epidemiology began with the biochemist
Kermack and the physician McKendrick’s SIR (Susceptible-Infectious-Recovered)
model (Kermack et al., 1927). Subsequently, many more complex models were cre-
ated to simulate epidemic processes, however most were based on the concepts of
the SIR model.
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Traditional compartmental models assume that individuals interact within fixed
compartments and that viruses spread through contact. In contrast, virus trans-
mission models that consider network topologies more realistically simulate human
interactions in complex social networks, accounting for connections and transmis-
sion paths within different social circles. The traditional epidemic models have been
extended to network topologies (Pastor-Satorras et al., 2001a). Barabási et al. fo-
cused on the generation mechanisms of scale-free networks, providing an important
foundation for understanding virus spread in these networks (Barabási et al., 1999).
Pastor-Satorras et al. explored the dynamic behavior and epidemic states on com-
plex networks, analyzing the impact of different network topologies on these char-
acteristics (Pastor-Satorras et al., 2001b,Pastor-Satorras et al., 2015). Gubar et al.
studied multi-strain epidemic models of heterogeneous populations on large com-
plex networks and proposed optimal control strategies, aiding the formulation of
more effective public health policies and improving early warning and response to
infectious disease outbreaks (Gubar et al., 2017).

Many real-world systems can be modeled as networks, which are sets of inter-
connected nodes. These connections often represent channels for information trans-
mission. A typical example is online social networks, where people pass messages
or share views through their connections. When these links transmit viruses, this
can be modeled as the physical transmission of viruses. However, virus transmis-
sion is a complex process, and people often choose beneficial protection strategies
based on the information spread on the network. Buldyrev et al. explored the vul-
nerability of interconnected networks, particularly when a failure in one network
spreads to another. Although they mainly focused on failure propagation, their
analytical methods are valuable for understanding virus spread in multilayer net-
works (Buldyrev et al., 2010). Saumell-Mendiola et al. studied virus spread in in-
terconnected multilayer networks, proposed an analytical method, and conducted
numerical simulations, demonstrating the impact of multilayer network structure on
transmission dynamics (Saumell-Mendiola et al., 2012). Zhan et al. proposed a non-
linear coupled complex network model based on the SIS model, showing that high
prevalence rates lead to slow information decay, resulting in higher infection levels
(Zhan et al., 2018). Taynitskiy et al. established a modified Susceptible-Warning-
Infectious-Recovered (SWIRS) model, analyzed the optimal control problem with
two control strategies (Taynitskiy et al., 2020). Sahneh et al. extended mean-field
theory to epidemic transmission models in multilayer complex networks, proposed
a simplified generalized epidemic mean-field (GEMF) model, and described the in-
teraction dynamics between network layers through linearized nonlinear differential
equations (Darabi Sahneh et al., 2013). Overall, multilayer network virus transmis-
sion models not only improve the realism and accuracy of modeling information
transmission phenomena but also provide theoretical support for formulating effec-
tive control strategies, promoting research and application development in related
fields.

This paper first introduces the significance of studying epidemic prevention mea-
sures and the evolution of epidemiological models. We then establish a single-layer
SIR network model that considers node degree. Following this, experiments on
breaking links between nodes and hubs reveal that severing critical links has a more
pronounced effect on inhibiting virus transmission. Finally, numerical simulations
on scale-free and random networks validate the accuracy of our model.
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The structure of this paper is as follows: Section 2 introduces the establishment
and comparative analysis of the single-layer network model; Section 3 compares
and illustrates the results of virus propagation on different network structures; And
finally, Section 4 presents conclusions and discussions.

2. Single-Layer SIR Network Model

In this section, we first modify the classic SIR model to establish a virus prop-
agation model within a network composed of N nodes. Compared with the clas-
sic SIR model, we need to consider the degree of the nodes. The set of possible
node states is different for different epidemic spread models. In this paper, with-
out loss of generality, we adopt the interpretation of nodes as single individuals
(Youssef et al., 2011). Let G(V,E) represent an undirected graph or network, where
V = {1, ..., n} and E is a set of links. The matrix A = (aij)n×n represents the ad-
jacency matrix associated with the graph G. We also assume that the population
structure is described by a scale-free network (Gubar et al., 2015). A scale-free net-
work (SF) is a type of network topology where the degree distribution of nodes
follows a power-law distribution.

In a network, nodes represent individuals, while links between nodes represent
the contacts between them. Let Si(t), Ii(t), and Ri(t), denote the probability that
individual i is in Susceptible, Infected, and Recovered states at time t, respectively.
The Susceptible refers to individuals who lack immunity to the pathogen of the
infectious disease and are likely to be infected upon contact. The Infected refers to
individuals who are actively carrying the virus and may transmit it to susceptible
individuals upon contact. The Recovered refers to individuals who have developed
immunity to the virus and do not affect the transmission dynamics when interacting
with others. During the epidemic, each individual i will be in any state with total
probability of 1, i.e. Si(t) + Ii(t) +Ri(t) = 1. This condition persists until the end
of the epidemic, denoted as T .

We represent the evolution of these probabilities as a system of differential equa-
tions:

dSi(t)

dt
= −δSi(t)

n∑
j=1

aijIj(t)

dIi(t)

dt
= δSi(t)

n∑
j=1

aijIj(t)− σIi(t)

dRi(t)

dt
= σIi(t)

(1)

where parameter δ ≥ 0 is the infection rate when a susceptible node contacts an
infected node, and the parameter σ ≥ 0 is the recovery rate. For (i, j) ∈ E, aij = 1,
otherwise it is equal to zero.

With the development of network science, networks in the real world are often
referred to as scale-free networks (Broido et al., 2019). We consider a network gen-
erated by the algorithm designed in (Barabási et al., 1999). The pseudo-code of the
algorithm is shown below.
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Algorithm 1 Barabási-Albert Model Generation
Require: N , m
Ensure: Graph G with N nodes

Initialize the network G with a small number disconnected nodes.
while number of nodes in G < N do

Add a new node i.
for each of the m links to be added do

for each existing node j do
Calculate the probability pi =

kj∑
i ki

.
end for
Connect the new node i to an existing node j with probability pi.

end for
end while
Calculate the connectivity distribution P (k) ≈ k−2.

At the beginning of an epidemic, most nodes in the network belong to the sus-
ceptible subgroup, with only a small fraction of the total population being infected.
The remaining nodes are in the recovered subgroup. Therefore, the initial conditions
of the system satisfy: 0 < Si(0) < 1, 0 < Ii(0) < 1, Ri(0) = 1 − Si(0) − Ii(0). In
addition, the sum of rates of changes in the state probabilities is zero.

Theorem 1. The system (1) gives only positive solutions for positive initial con-
ditions.

Proof. Starting from the differential equation dSi(t)
dt = −δSi(t)

∑n
j=1 aijIj(t), we

obtain the following expression:

dSi(t)

dt
+ δSi(t)

n∑
j=1

aijIi(t) = 0

By separating variables, we obtain:

dSi(t)

Si(t)
= −δ

n∑
j=1

aijIi(t)dt

Solving the above equation we get:

Si(t) = Ce−
∫ T
0
δ
∑n

j=1 aijIi(t) dt

Where C is an arbitrary constant. At time t = 0, we have C = Si(0) > 0, thus
leading to:

Si(t) = Si(0)e
−

∫ T
0
δ
∑n

j=1 aijIi(t) dt

This implies Si(t) > 0 for all t ∈ (0, T ). Similarly, we can demonstrate that Ii(t) ≥
0 and Ri(t) ≥ 0, ensuring the non-negativity of these variables throughout the
analysis.

Contact does not necessarily lead to infection transmission. For each interaction
between an infected individual and a susceptible individual, there is a possibility
of infection transmission. This probability depends on factors such as the closeness
of contact, the infectiousness of the infected member, and the susceptibility of the
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susceptible member. Compared to classical compartmental models, a key modifi-
cation introduced by scale-free networks is the consideration of each individual’s
(or node’s) connectivity, which affects the probability of virus transmission to other
individuals. The figure below illustrates the state transitions of each node in a virus
transmission model that considers network effects.

Fig. 1. Node state transition in scale-free network. Red nodes represent infected
individuals, and black nodes represent susceptible individuals

Generally, the more connections a node has, the higher its probability of be-
coming infected. Furthermore, the probability of a node itself becoming infected
depends on the number of infected individuals it is in contact with. If a node has
many contacts with infected individuals, it is likely to become infected. Each in-
fected individual tries to infect each of its susceptible neighbours at infection rate δ.
Therefore, for each node, its probability of being infected is 1− (1− δ)ki , where the
parameter ki denotes the number of infected neighbor nodes of node i. Additionally,
we assume that once infected, a node recovers at a fixed recovery rate, transition-
ing to the recovered state. Thus, the probability of a node transitioning from the
infected state to the recovered state is σ.

3. Numerical Simulation

After establishing the probabilities governing state transitions for each node, we
first initialize the system. This setup includes constructing the network topology
and assigning an initial state to each node. Once initialized, the system can proceed
with iterative updates to each node’s state over each time moment t.

At each time moment t, we evaluate the status of every node in the network. For
susceptible nodes, we identify any neighboring nodes in an infected state and apply
the predefined transmission probability to assess whether they become infected.
Conversely, if a node is infected, we apply the recovery rate to determine whether
it transitions back to a recovered state. By recording each node’s state at every
time step, we construct an infection curve that reflects the dynamics of disease
spread within the network. The algorithm for implementing these state transitions
is outlined in the pseudocode below.
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Algorithm 2 Node State Transition
Require: Network structure, initial node states, transition probabilities, recovery rates
Ensure: Infection curve

Initialization: Build the network structure and set the initial state of each node.
for each moment t do

for each node i do
if node i is susceptible then

Find infected neighbor nodes of i.
Determine the next state of i using the defined probabilities.

else if node i is infected then
Determine the next state of i using the defined recovery rate.

end if
end for
Count the state of each node in the network to obtain the infection curve.

end for

3.1. Propagation on the Scale-Free Network
Within scale-free networks, "hub", "remote", and "normal" constitute three

distinct node classifications that are commonly utilized to depict the topological
features of nodes within the network context. Specifically, a "hub" refers to a node
possessing an extremely high degree of connectivity and assumes a critical central
role in the network. In contrast, a "remote" node features a remarkably low degree
and generally connects to merely a few other nodes in the network. Meanwhile,
a "normal" node has a moderate level of connectivity and belongs neither to the
category of hub nodes nor that of remote nodes. Based on the degree of each node,
we categorize nodes into three distinct groups:

– A node i is classified as a hub if its degree ki satisfies ki ≥ kp1. Where kp1
represents the p1-th quantile of the degree distribution. In this study, p1 = 0.95,
corresponding to the top 5% of high-connected nodes.

– A node i is classified as a remote if its degree ki satisfies ki ≤ kp2. Where
p2 = 0.05, representing the bottom 5% of low-connected nodes.

– A node i is classified as a normal if its degree ki lies in the range kp2 < ki < kp1.

Regarding the initial values of the system, we assume that at the beginning
of the epidemic, the number of infected individuals is small. This configuration
indicates that the initial state comprises two infected individuals and zero recovered
individuals, with the rest being susceptible. The total population size is set to
N = 5000. We set the infection rate of the virus δ = 0.3 and the recovery rate
σ = 0.1. The following figure compares the results of the virus transmission model
with and without considering a scale-free (SF) network.
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Fig. 2. SIR model with and without Scale-Free networks."Infected-hubs", "Infected-
remote" and "Infected-normal" denotes the simulation result of selecting hub, re-
mote and normal nodes respectively in the scale-free network as the initial infectors.
And "Infected-SIR" denotes that the classical compartmentalized SIR model model
randomly selects nodes for infection without considering the SF network. The inset
shows the detailed results of the peak

To clearly illustrate the importance of network node selection, the table below
presents the numerical results of the simulation.

Table 1. Comparison results of SIR model with and without Scale-Free networks

Different initial states Peak number Time to reach
peak number

With SF Network
Infected-hub 3131 5

Infected-normal 2829 7
Infected-remote 2654 9

Without SF Network Infected-SIR 1563 46

The table shows the peak number of infections and the time required to reach the
peak under different initial conditions. Combining Figure 2 and Table 1, we find that
in the presence of an SF network, when infections are concentrated in the hub nodes
(Infected-hub), the peak number of infections is the highest, at 3131 individuals,
and it occurs the fastest, in just 5 days. When infections are in random nodes
(Infected-normal), the peak number of infections is 2829, requiring 7 days. When
infections are in remote nodes (Infected-remote), the peak number of infections is
2654, requiring 9 days. In the absence of an SF network (Infected-SIR), the peak
number of infections is the lowest, at only 1563, and the time to peak is the longest,
at 46 days. These values indicate that in the presence of an SF network, infections
concentrated in hub nodes result in faster and more widespread infection, whereas
in the absence of an SF network, infection spreads more slowly and peaks at a lower
number.
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To facilitate a more intuitive study of the impact of network structures on virus
transmission models, we set the total number of nodes to 50. The figure below shows
the constructed SF network structure.

Fig. 3. The network structure of scale-free network with 50 nodes

In order to study the impact of network properties on virus propagation. We
classify each node according to its degree and its distance to the hubs and study how
these classifications affect virus transmission. The figure below shows the degree and
distance distribution of the network structure in Figure 3.

Fig. 4. The network structure of Figure 3. The left side shows the node degree
distribution of the network structure and the right side shows the distance of each
node from the hubs

Based on the degree distribution of the network nodes, we divide the nodes into
three categories: 0-6, 6-12, and 12-18(hubs). The distances to the hubs are catego-
rized as 0 (hubs), 1, 2, and 3. For better consideration of the network structure, we
use the speed as an indicator of epidemic process. Here, speed is defined as the ratio
of the peak value of the time to reach the peak, Speed = Peak value

T ime to reach the peak , which
represents the speed to reach the peak. First, we randomly select two nodes in each
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category as the initial infected nodes based on the degree and distance classification
of the SF network. Then, we conduct numerical simulation experiments, setting the
number of experiments to 50. The infection rate and cure rate are set to 0.3 and 0.1,
respectively. We use histograms to present the experimental results. In histograms,
"frequency" represents the number of occurrences of a calculated speed in different
bins under specific conditions.

Fig. 5. Histograms of speed for three degree intervals. df_0_6, df_6_12, df_12_18
denote different intervals of degree classification respectively

In the figure above, as the degree increases, the average speeds for the three
intervals are 3.89, 5.04, and 6.16(hubs), respectively. The results indicate that if
nodes with higher degrees are chosen as the initial infectors, the average spread
of the virus will be faster. Similarly, we set the number of experiments to 50. The
infection rate and cure rate are set to 0.3 and 0.1, respectively. However selecting
initial infected nodes based on their distance to the hubs.

Fig. 6. Histograms of speed for four distances. df_0, df_1, df_2, df_3 denote
different intervals of distance classification respectively
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In the figure above, as the distance from the hubs increases, the average speeds
corresponding to the four distances are 5.83 (hubs), 4.08, 3.87, and 3.07, respectively.
The results show that if a node close to the hub is chosen as the source of infection,
the average spread of the virus will be faster. We further classify the nodes into
important nodes, normal nodes, and remote nodes. The pseudocode below shows
the specific steps for classifying the nodes.

Algorithm 3 Node Classification
Require: Network graph G, Hub nodes
Ensure: Classification of nodes

Get the degree and distance of the network nodes.
for each node i in G do

Calculate the distance of node i to the nearest hub.
end for
for each node i in G do

if distance of i to hub is 1 and degree of i > 1 then
Classify node i as Important.

else if distance of i to hub is larger than 1 and degree of i ̸= 1 then
Classify node i as Normal.

else if degree of i == 1 then
Classify node i as Remote.

end if
end for

The reason for this grouping is that if a node is close to the hubs, it is considered
an important node. These nodes are sorted by their degree, effectively ranking them
by their importance. Cutting off the link between this important node and the hubs
effectively increases the distance to the hubs and reduces the cost of controlling the
epidemic. The figure below shows the network structure after breaking the links
according to the above algorithm.

Fig. 7. Disconnect the SF network node link. Red lines indicate broken links. Ac-
cording to the classification basis above, the left side is for disconnecting normal
nodes and the right side is for disconnecting important nodes

After breaking the links, we set the number of experiments to 50. The infection
rate and cure rate are set to 0.3 and 0.1, respectively. The results are shown below.
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Fig. 8. Histogram of speed distribution after disconnecting links.The left half shows
the histogram of the speed when disconnecting the links of normal nodes and hubs.
The right half shows the histogram of the speed when disconnecting the links of
important nodes and hubs

Corresponding to the figure above, the table below presents the average speed
under various disconnection conditions.

Table 2. Average speed of reaching peak under different disconnection conditions

Average Speed
Degree interval Distance to hubsDisconnect condition

0-6 6-12 12-18 (hubs) 0 (hubs) 1 2 3
none 3.89 5.04 6.16 5.83 4.08 3.87 3.07

important 3.36 3.86 4.99 5.34 3.59 3.72 2.93
normal 3.51 4.84 5.25 5.64 3.88 3.78 3.06

In the table above, "none" represents the original network structure. The data
illustrate the average speed of virus spread under various disconnection conditions
and for different intervals of initially infected individuals. The results indicate that
breaking normal links has a positive impact on virus transmission. In addition,
breaking important links has a greater effect on inhibiting virus transmission com-
pared to breaking normal links. Therefore, when controlling an epidemic, to control
costs, we can choose to break "important" links without isolating all nodes.

3.2. Propagation on the Random Network
To conduct an in-depth and precise investigation into virus transmission char-

acteristics across various network structures and to avoid superficial or generalized
conclusions, we used a random network as a control in our experiments. In this
network, connections between nodes form randomly according to a given probabil-
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ity, without any preference for specific nodes or topological patterns. The connec-
tion probability remains constant, lending randomness and unpredictability to node
connections. By simulating and analyzing the virus transmission process within a
random network and comparing it to other network structures, we can gain a more
comprehensive understanding of how network structure fundamentally influences
virus transmission mechanisms.

Similar to the scale-free (SF) network, we used identical initial conditions. In a
random network, two initial infected nodes were randomly selected, with all other
nodes set as susceptible. For the network configuration, we set the number of nodes
to 50 and the connection probability between nodes to 0.2. The structure of a
random network is illustrated in the figure below.

Fig. 9. T structure of a random network with 50 nodes

To investigate the effects of different parameters on different networks, we di-
vided infection rates and cure rates into five groups. The first group is the reference
group, with infection and cure rates set to 0.3 and 0.1, respectively. In the second
group, we reduced both values to 0.2 and 0.05. The third group only increases the
cure rate to 0.2 while keeping the infection rate constant at 0.3. The fourth group
increases the infection rate to 0.4 while keeping the cure rate unchanged. In the
final group, both infection and cure rates are increased to 0.4 and 0.2, respectively.

In order to study the impact of selecting different initial infection nodes on virus
spread, we categorized each networkвЂ™s nodes based on degree into three types:
Hub (high-degree nodes), Normal (medium-degree nodes), and Remote (low-degree
nodes). In each experiment, the initial infection nodes consist of two randomly
selected nodes from one of these categories.

Remark 1. In each network, node classification is based on a simple degree ranking
to obtain these three types of nodes. If only one high-degree node exists in the
network, which is the Hub, however we need to set two initial infection nodes, we
will select the node with the highest degree in the next category (Normal).

After initializing the values and setting up the network, we adopt propagation
speed as the measurement metric. Here, propagation speed refers to the speed at
which the virus reaches its peak value. The larger the speed value is, the more
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rapidly the virus spreads within the network. The following table shows the average
value obtained from 50 experiments.

Table 3. Average speed of reaching peak value on different networks

Networks Parameter Remote(Average) Normal(Average) Hub(Average)
δ σ speed to peak speed to peak speed to peak

Scale - Free

0.3 0.1 1.67562724 2.143712575 2.74801061
0.2 0.05 1.26873385 1.366790582 1.922580645
0.3 0.2 1.462427746 1.821637427 3.015564202
0.4 0.1 2.421052632 2.80349345 3.478134111
0.4 0.2 2.12849162 2.612582781 3.683127572

Random

0.3 0.1 7.805970149 8.298804781 8.846808511
0.2 0.05 6.105413105 6.534328358 7.476190476
0.3 0.2 6.952755906 7.948051948 8.558685446
0.4 0.1 9.452586207 9.903225806 10.9009901
0.4 0.2 8.745454545 9.647058824 9.862244898

From the table presented above, it can be clearly observed that each set of
parameters exerts a significant influence on both the peak infection level and the
network transmission speed. When the infection and recovery rates are reduced, it is
typically noted that the transmission speed is generally slowed down, and the peak
time is correspondingly delayed. Conversely, when these rates are increased, it leads
to faster transmission speeds and higher peak infection levels. In order to more
effectively illustrate these distinct differences, the figure provided below displays
the transmission speed of the virus across different networks under a variety of
parameter settings. It provides valuable insights for further analysis and research in
the related field, enabling a more detailed exploration of the underlying mechanisms
and potential strategies for disease control and prevention.



256 Li Yike, Elena Gubar

Fig. 10. Average speed of reaching peak value on different networks

The figure above clearly demonstrates significant differences in virus transmis-
sion behaviors between scale-free and random networks. Compared to scale-free
networks, random networks exhibit faster transmission speeds and higher peak in-
fection levels, indicating that network topology plays a crucial role in transmission
dynamics. Hub nodes with the highest connectivity result in faster transmission
speeds compared to remote nodes, which show lower peak levels and slower trans-
mission rates. This suggests that targeting highly connected nodes could be a more
effective strategy in network control measures to reduce transmission potential.

4. Conclusions and Discussion

The research clearly demonstrates that network topology significantly influences
epidemic processes. In scale-free networks, the degree distribution of nodes affects
the spread of infections. Hub nodes play a crucial role, with infections concentrated
in them resulting in faster and more widespread spread. In contrast, random net-
works exhibit different transmission characteristics, generally having faster trans-
mission speeds and higher peak infection levels.

The degree and distance of nodes from hubs are important factors. Nodes with
higher degrees or closer to hubs have a higher probability of transmitting infections
faster. This understanding can be used to develop more effective control strategies,
such as targeting highly connected nodes or those close to hubs.

The single-layer SIR network model provides a useful framework for understand-
ing epidemic spread in networks. The numerical simulations based on this model
offer insights into how different network structures and node characteristics impact
the dynamics of disease spread. Future research could explore more complex net-
work models and consider additional factors such as human behavior and multiple
strains of diseases to further enhance our understanding of epidemic processes in
networks.
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