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Abstract This paper presents an analysis on the optimal management of
interconnected production networks Collaboration represents the best pos-
sibility of achieving a group optimal solution that enhances payoffs of the
companies in a network. Since companies are not identical, some of them
may capture substantially less gain through interconnection than their con-
tributions to other providers. An optimality principle in gain-sharing that
reflects the contributions of the participating companies is needed. This pa-
per developed a novel dynamic fair gain-sharing solution for interconnected
production networks that fulfills the requirements of a sustainable scheme
— individual rationality, group optimality, time consistency and fair-sharing
principle.

Keywords: Network dynamic game, Pareto efficient collaboration, Gain-
sharing principle

1. Introduction

The optimal management of interconnected production networks is represented
by forming a collaborative/cooperative scheme. Such a scheme could increase in-
vestments in the production capital, provide a source for technology spillover, and
produce channels for economic gains. Given that interconnected production net-
works operate over time, a player, network dynamic game is one of the most efficient
instruments to characterize the scenario. Yeung et al. (2021, 2024a), Allen (2023),
Pei et al. (2022, 2024), Tomassini and Pestelacci (2010), Grüner et al. (2013), Men-
ache and Ozdaglar (2011), Miles and Cavaliere (2022) presented network dynamic
games. Petrosyan and Yeung (2021) and Petrosyan et al. (2021) analyzed network
https://doi.org/10.21638/11701/spbu31.2024.18



232 David W.K. Yeung, Leon A. Petrosyan, Yingxuan Zhang

differential games. Mazalov and Chirkova (2019) provided a comprehensive disqui-
sition on the theory and applications of network games. Given the asymmetry of
the companies, some may capture substantially less gain through interconnection
than their contributions to other providers. An optimality principle in gain-sharing
that reflects the contributions of the participating companies has to be designed.

Moreover, a sustainable collaborative scheme has to possess the property of time
consistency. A collaborative solution is time consistent if an extension of the solu-
tion policy to a time with a later starting stage and a state brought about by prior
optimal behaviors would remain optimal (see Yeung and Petrosyan, 2004, 2006,
2016; Yeung et al., 2021, 2023). Since production equipment and infrastructures are
fixed assets that involve long-term investment, the companies would require a sus-
tainable collaborative scheme for their participation. The first fair gain distribution
solutions are presented in Yeung et al. (2024b and 2024c).

This paper developed a dynamic fair gain-sharing solution for interconnected
production network collaboration that fulfills individual rationality, group optimal-
ity, time consistency and fair-sharing principle. The organization of the paper is
as follows. Section 2 presents the formulation of an interconnected production net-
work. Efficient collaboration and gain distribution schemes are discussed in Section
3. A dynamic fair gain-sharing collaboration solution is provided in Section 4. A
time-consistent Payoff Distribution Procedure (PDP) is formulated in Section 5 so
that the fair gain-sharing collaboration solution in Section 4 can be realized. The
conclusion of the paper is given in Section 6.

2. An Interconnected Production Network

An interconnected electricity network is an electrical grid for electricity delivery
from producers to consumers. Electrical grids may vary in size and can cover the
whole nation or the entire continent. It consists of power stations to generate elec-
tricity, electrical substations to step voltage up or down, electric power transmission
to carry power over various distances, and electric power distribution to individual
customers with the required service voltages.

Let N ≡ {1, 2, · · · , n} be the set of companies that are linked in an intercon-
nected network. The planning horizon is T stages. The set of companies connected
to company i is denoted by K(i) = {j : arc(i, j) ∈ L}, for i ∈ N . Note that K(i)
represents the technically possible set of connections available to company i. When
both companies agree to connect with each other, the links will be in effect. If any
one of the companies decides against connecting, the link will be cut off.

We use xi(t) ∈ Xi ⊂ R(mi) to denote the productive capitals of the company i
at stage t. The evolution of the productive capitals of company i is governed by

.

xit+1 = f it (x
i
t, x

K(i)
t , vit), x

i
1 = x

i(0)
1 , (1)

for i ∈ {1, 2, · · · , N}, where xK(i)
t is the set of productive capitals of connected

company j for j ∈ K(i), and vit ∈ Li ⊂ Rwi is company i’s vector of investments in
capitals.

Note that the evolution of company i’s capital is affected by its investment in
its capital vit, and the capitals of connected companies due to technology spillover
and learning effects. For notational convenience, we denote xt = (x1t , x

2
t , · · · , xnt ).

The payoff function of company i is
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for i ∈ N .
In particular,
u
i(i)
t ∈ U i(i) ⊂ Rmi(i) is the vector of inputs in production of outputs that do

not involved with other companies;
u
i(j)
t ∈ U i(j) ⊂ Rmi(j) is company i’s vector of inputs in production of outputs

that involved the connection with company j;
vit ∈ U i ⊂ Rmi is company i’s vector of investment in capitals;
q
i(i)
t (xit, u

i(i)
t ) is the production function of outputs that do not involved with

other companies;
R
i(i)
t [q

i(i)
t (xit, u

i(i)
t ) is the gross revenue from q

i(i)
t (xit, u

i(i)
t );

q
i(j)
t (xjt , x
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t, u

i(j)
t ) is the production function of outputs that involved connection

with company j;
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t ) is company i’s the gross revenue from q
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c
i(i)
t (u

i(i)
t ) is the cost function of company i’s vector of input ui(i)t ;

c
i(j)
t (u

i(j)
t ) is the cost function of company i’s vector of input ui(j)t ;

wit(v
i
t) is the costs of investments in capital of company i;

δt1 is the discount factor from stage 1 to stage t; and
QiT+1(x

i
T+1) is the terminal payoff of company i at stage T + 1.

Moreover, Ri(j)t [q
i(j)
t (xjt , x

i
t, u

i(j)
t )] ≥ 0. Since there may exist a possibility that

a certain company would receive zero gain from connecting with another company
although it may give nontrivial gains to the companies connected to it. Therefore,
some companies may not agree to be connected. Let K̄(i) ⊆ K(i) be the set of
companies that would mutually agree to maintain links with region i. The set K̄(i)
can be empty or equal K(i).

3. Efficient Collaboration and Gain Distribution Schemes

Collaboration in the interconnected network suggests an efficient way of enhanc-
ing the overall profit of all the companies. In addition, the participating companies
have to resolve the issue of the distribution of gains under collaboration. This sec-
tion would first obtain the Pareto optimal outcome and then discuss the issue of
gain distribution.

3.1. Pareto Optimum

To ensure Pareto efficiency, the companies in the network will maximize their
joint profits. Since qi(j)t (xit, x

j
t , u

i(j)
t ) ≥ 0, all connections will be taken into consid-

eration. The companies have to solve the following dynamic optimization problem:
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max
u
l(l)
t ,u

l(ς)
t ,vlt

for ς∈K(l),
l∈N,

t∈{1,2,··· ,T}
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subject to the state dynamics in (1).
The maximized joint profits can be characterized by the following theorem:

Theorem 1. A set of strategies {ul(l)∗t , u
l(ς)∗
t , vl∗t }, for ς ∈ K(l), l ∈ N and t ∈

{1, 2, · · · , T}, constitutes an optimal solution to the optimization problem (1) and
(3) if there exist functions W (t, x) such that the following recursive relations are
satisfied:
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1 , (4)
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for t ∈ {1, 2, · · · , T},
where xt+1 = (x1t+1, x

2
t+1, · · · , xnt+1) with xit+1 = f it (x

i
t, x

K(i)
t , vit) for i ∈ N .

Proof. Equations (4)–(5) satisfy the optimal condition of the technique of dynamic
programming, hence W (t, x) is the maximized joint payoff of the n companies.

Substituting the optimal investment strategies vi∗t , for i ∈ N , we obtain the
dynamics of productive capitals as:

xit+1 = f it (x
i
t, x

K(i)
t , vi∗t ), for i ∈ N. (6)

We use {x∗t ≡ {x1∗t , x2∗t , · · · , xn∗t }, for t ∈ {1, 2, · · · , T}, to denote the solu-
tion to (6), which is the optimal electricity-producing capitals under collaboration.

⊓⊔

3.2. Gain Distribution Schemes

To complete the cooperation process, a gain-sharing optimality principle has to
be designed to distribute the payoffs to the cooperating companies.



Managing Interconnected Production in a Dynamic Network 235

Commonly Used Sharing Principles There are three commonly used gain-
sharing principles in cooperative dynamic game theory. Let ξi(1, x01) denote the
payoff to player i covering stage 1 to stage T under cooperation with the initial
state x01.

(i) Equal Sharing of Cooperative Gains
The first one is the sharing of the excess of cooperative payoff over the sum of

non-cooperative payoffs equally among the participating nations. According to this
optimality principle the imputation to player i is

ξi(1, x01) = V i(1, x01) +
1

n
(W (1, x01)−

n∑
j=1

V j(1, x01)), for i ∈ N. (7)

This sharing principle hardly offer a fair gain-sharing scheme that reflects the
contributions of nations. Such a scheme may not be generally accepted in many
cooperative solution. Imagine the case of a big nation (like the United States) has
to share the cooperative gain equaling with a small nation (like Nauru).

(ii) Sharing Gains Proportional to the Relative Size of Non-cooperative Payoffs
The second one is the sharing of the excess of cooperative payoff over the sum

of non-cooperative payoffs proportional to the non-cooperative payoffs of the par-
ticipating nations. According to this optimality principle the imputation to player
i is

ξi(1, x01) =
V i(1, x01)
n∑
j=1

V j(1, x01)
W (1, x01), for i ∈ N. (8)

Again, this sharing principle cannot offer a fair gain-sharing scheme that reflects
the contributions of nations. The nation which yields a higher non-cooperative payoff
may not be having a contribution to the cooperative gains proportional its relative
size of the non-cooperative payoff.

(iii) Shapley Value
The Shapley Value (1953) is considered to be the most sophisticated solution

of cooperative game theory. It takes into consideration a weighted average of the
addition to the payoff of a coalition if the coalition keeps a certain player. In par-
ticular, the Shapley value extracts the difference between the payoff of any possible
coalitions (of participants) S and the payoff of coalition S\i. The cooperative payoff
received by each participant is obtained from the weighted average of these differ-
ences in payoffs as

φi(v; 1, x01) =
∑
S⊆N

(s− 1)!(n− s)!

n!
[v(S; 1, x01)− v(S\i; 1, x01)], for i ∈ N. (9)

where S ⊂ N is a coalition of players, S\i is the relative complement of i in S,
s is the number of players in coalition S, v(S; 1, x01) is a characteristic function
measuring the payoff of coalition S, and v(S\i; 1, x01) is that which measures the
payoff of coalition S\i.
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The term [v(S; 1, x01) − v(S\i; 1, x01)] gives the additional value to the payoff of
coalition S if player i is kept coalition S. A weight equaling (s−1)!(n−s)!

n! is attached
to the additional value to the payoff of coalition S if player i is kept in coalition S.
As in (8) , the Shapley value to player i is the weighted sum of the additional value
to the payoff of coalition S if player i is kept in coalition S, for all S ⊂ N . As given
in the examples in Section 2, the addition to the payoff of a coalition by including
one more player, the actual contribution of the additional player may not be the
difference of [v(S; 1, x01)−v(S\i; 1, x01)]. The additional value from cooperating with
the new player depends on the actions of the existing players and those of the new
player.

In the case where the number of players is 2, the Shapley value becomes

φi(v; 1, x01) =
∑
S⊆N

(s− 1)!(n− s)!

n!
[v(S; 1, x01)− v(S\i; 1, x01)],

for i, j ∈ {1, 2}, i ̸= j, and n = 2.
Therefore,

φi(v; 1, x01) =
1

2
[v({1, 2}; 1, x01)− v(j; 1, x01)] +

1

2
[v({i}; 1, x01)− v(ϕ; 1, x01)]

=
1

2
[v({1, 2}; 1, x01)− v(i; 1, x01)− v(j; 1, x01)] + v({i}; 1, x01). (10)

Note that the Shapley value shares the excess of cooperative gain over the non-
cooperative payoff equally (half and half) between player 1 and player 2.

Moreover, there is a drawback of using the Shapley value in a large-scale net-
work. In particular, there are 2n coalitions in a cooperative scheme involving n
participants. For a game with 20 players, there would be 220 = 1, 048, 576 possible
coalitions. In a game of 30 players, there would be 230 = 1, 073, 741, 824 (that is
over 1 billion) possible coalitions.

Time Consistency in Gain Sharing In a multi-stage game, a stringent condition
for the sustainability of cooperation is the notion of time consistency. The idea of
time consistency is that the specific agreed-upon optimality principle at the initial
time must be maintained at subsequent times throughout the game horizon along
the optimal state trajectory. Time consistency yields the property that the incentive
of keeping a commitment throughout the committed duration is higher than the
incentive of not keeping the commitment. Time consistency is an important concept
in formulating cooperation decisions. Any time-inconsistent cooperation would likely
not be fully completed. A cooperation scheme that is time-consistent is credible and
can be trusted to be carried out throughout the committed duration. In general,
the terms time consistency and time consistency can be used interchangeably in
dynamic games.

Consider again the three gain-sharing principles mentioned above. To achieve
time consistency, the initial sharing principle ξi(1, x01)= at stage 1 with state x01 has
to be maintained at each stage k ∈ {1, 2, · · · , T} in the cooperation duration along
the cooperative path {x∗k}Tk=1. Let ξi(k, xk) denote the payoff to player i covering
stage k to stage T under cooperation if the state at stage k is xk. To illustrate this,
we consider:
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(i) Time-consistent Equal Sharing of Cooperative Gains
Time-consistent sharing of the excess of cooperative payoff over the sum of non-

cooperative payoffs equally among the participating nations has to fulfill

ξi(k, xk) = V i(k, xk) +
1

n
(W (k, xk)−

n∑
j=1

V j(k, xk)), (11)

along the cooperative state trajectory {x∗k}Tk=1, for i ∈ N at stage k ∈ {1, 2, · · · , T}.
(ii) Time-consistent Gain-sharing Proportional to the Relative Size of Non-

cooperative Payoffs
Time-consistent sharing of the excess of cooperative payoff over the sum of non-

cooperative payoffs proportional to the non-cooperative payoffs of the participating
nations has to fulfill:

ξi(k, xk) =
V i(k, xk)
n∑
j=1

V j(k, x∗k)
W (k, xk), (12)

along the cooperative state trajectory {x∗k}Tk=1, for i ∈ N at stage k ∈ {1, 2, · · · , T}.

(iii) Time-consistent Shapley Value
Time-consistent Shapley Value has to fulfill:

φi(v; k, x) =
∑
S⊆N

(s− 1)!(n− s)!

n!
[v(S; k, x)− v(S\i; k, x)], (13)

along the cooperative state trajectory {x∗k}Tk=1, for i ∈ N at stage k ∈ {1, 2, · · · , T}.

4. A Dynamic Fair Gain-sharing Collaboration Solution

Given the asymmetry of companies in an interconnected network, some compa-
nies may capture relatively less gains through links than their contributions to other
companies. Hence, there are disincentives for some companies to join the collabora-
tion in the network. To resolve the problem, an optimality principle in gain-sharing
the cooperative gains has to reflect the contributions of the participating companies.
To share the cooperative gains from collaboration according to the contributions of
each company, we first calculate the loss of joint payoff when a company exits the
collaborating scheme. Such a loss can be obtained as the difference of the maximized
joint payoff of the collaborating scheme with all participating companies and the
maximized joint payoff without that company. Let company i be the exiting com-
pany, the connection to all other companies will be cut. To obtain the maximized
joint payoff without company i, we have to solve the game
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max
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A feedback Nash equilibrium of the game (1) and (14)–(15) can be characterized
by the following theorem.

Theorem 2. A set of strategies {ūi(i)t , v̄it}, {ū
l(l)N\i
t , ū

l(ς)N\i
t , v̄

(l)N\i
t }, for ς ∈ K(l),

l ∈ N\i; and t ∈ {1, 2, · · · , T}, constitutes an equilibrium solution to the game (1)
and (14)–(15) if there exist functions WN\i(t, x) and V i(t, x) such that the following
recursive relations are satisfied:

WN\i(T + 1, x) =
∑
l∈N\i

QlT+1(x
l
T+1)δ

T+1
1 , (16)

WN\i(t, x) = max
u
l(l)
t ,u

l(ς)
t ,vlt

for ς∈K(l)\i,
l∈N\i

{
∑

l∈N\i

[R
l(l)
t [q

l(l)
t (xlt, u

l(l)
t )]− c

l(l)
t (u

l(l)
t )− wlt(v

l
t)

+
∑

ς∈K(l)\i

(R
l(ς)
t [q

l(ς)
t (xςt , x

l
t, u

l(ς)
t )]− c

l(ς)
t (u

l(ς)
t ))]δt1

+WN\i(t+ 1, x̄t+1)}, (17)

for t ∈ {1, 2, · · · , T},
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i
t) and

xlt+1 = f lt(x
l
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V i(T + 1, x) = QiT+1(x
i
T+1)δ

T+1
1 , (18)

V i(t, x) = max
u
i(i)
t ,u

i(ς)
t ,vit

{[Ri(i)t [q
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for t ∈ {1, 2, · · · , T},
where x̂t+1 = (x1t+1, x

2
t+1, · · · , xnt+1) with xit+1 = f it (x

i
t, v

i
t) and

xlt+1 = f lt(x
l
t, x

K(l)
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t ), for l ∈ N\i.

Proof. Invoking the technique of dynamic programming, WN\i(t, x) is the maxi-
mized joint payoff of all nations except company for given the Nash equilibrium
strategies of company i; and V i(t, x) is the maximized payoff of company i for given
the Nash equilibrium strategies of all other nations. Hence a Nash equilibrium ap-
pears.

W (t, x)−WN\i(t, x), for i ∈ N, (20)
yields the loss of profits when company is not included, and it also reflects company
i’s contribution to the joint profit. The collaborating companies aims to share fairly
the excess of the maximized cooperative payoff net of the sum of the non-cooperative
payoffs, that is:

[W (t, x)−
n∑
j=1

V j(t, x)]. (21)

A fair measure of company i’s contribution to the maximized joint payoff net of
the total non-cooperative payoff is the weight

W (t, x)−WN\i(t, x)
n∑
ς=1

[W (t, x)−WN\ς(k, x, ϑ)]
, (22)

for company i ∈ N .
The weight (22) reflects the proportion of company i’s contribution to the total

cooperative gain net of the total non-cooperative payoffs. Using (21) and (22), we
develop a novel gain-sharing solution for interconnected electricity network collab-
oration that satisfies individual rationality, group optimality, time consistency, and
fair gain-sharing principle.

Formula 4.1. A Dynamic Fair Gain-sharing Collaboration Solution

ψi(k, xk) =

W (k, xk)−WN\i(k, xk)− V i(k, xk)
n∑
ς=1

[W (k, xk)−WN\ς(k, xk)− V ς(k, xk)]
[W (k, xk)−

n∑
j=1

V i(k, xk)] + V i(k, xk),

(23)
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for i ∈ N at stage k ∈ {1, 2, · · · , T} for i ∈ N along the cooperative trajectory
{x∗k}Tk=1.

The Fair-Sharing Value in (18) has the following properties.
(i) It satisfies group optimality in that

n∑
i=1

ψi(k, xk) =W (k, xk) along the cooperative trajectory {x∗k}Tk=1.

(ii) It provides a fair reflection of the contributions of the companies to the
cooperative payoff by sharing the cooperative gain proportional of the relative size
of the nation’s contribution to the cooperative gain, that is

W (k,xk)−WN\i(k,xk)−V i(k,xk)
n∑

ς=1
[W (k,xk)−WN\ς(k,xk)−V ς(k,xk)]

.

(iii) It fulfills time consistency in that ψi(k, xk), for i ∈ N , is maintained at each
stage along the cooperative state trajectory {x∗k}Tk=1.

(iv) It satisfies individual rationality in that ψi(k, xk) ≥ V i(k, xk) along the
cooperative state trajectory {x∗k}Tk=1.

5. Time-consistent Payoff Distribution Procedure

We have to formulate a Payoff Distribution Procedure (PDP) so that the agreed-
upon payoff according to Formula 4.1 can be realized. Following Yeung and Pet-
rosyan (2010 and 2016), we let βik(x

∗
k) denote the payment that company i will

receive at stage t. The payment scheme involving βik(x
∗
k) constitutes a Payoff Dis-

tribution Procedure of the payoff governed by (23) in that the payoff to company i
from stage k to T can be expressed as:

ψi(k, xk) =

T∑
τ=k

βiτ (xk)δ
τ
1 +Qi(xi∗T+1)δ

T+1
1 . (24)

Theorem 3. A payment βik(x
∗
k), for t ∈ {1, 2, · · · , T} equaling

βik(x
∗
k) = (δk1 )

−1[ψi(k, x∗k)− ψi(k + 1, x∗k+1)], for i ∈ N, (25)

given to company i will lead to realization of Formula 4.1.

Using (24) we can obtain

ψi(k + 1, x∗k+1) =

T∑
τ=k+1

βiτ (x
∗
k)δ

k
1 +Qi(xi∗T+1)δ

T+1
1 . (26)

Hence, we can express

ψi(k, x∗k) = βik(x
∗
k)δ

k
1 + ψi(k + 1, xi∗k+1). (27)

Therefore,

βik(x
∗
k) = (δk1 )

−1[ψi(k, x∗k)− ψi(k + 1, x∗k+1)], (28)

The PDP in (25) gives rise to the realization of the sharing of the cooperative
payoff according to the Formula in (23).
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6. Conclusion

For the optimal management of interconnected production, collaboration is the
best solution to enhance economic gains, efficient production. Given the asymme-
try of companies, some may capture substantially less gain through interconnec-
tion than their contributions to other providers. This paper provides dynamic fair
gain-sharing solution for interconnected production networks that fulfills individual
rationality, group optimality, time consistency and fair-sharing principle. Further
theoretical development and real-life applications are expected.
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