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Abstract This article presents an approach to estimate the switching mo-
ment of utility functions in non-cooperative differential games, which serves
as a crucial determinant in strategic decision-making under uncertainty.
Grounded on the previously established models for cooperative scenarios,
this study extends the estimation methodology to non-cooperative scenarios
where individual players pursue independent objectives. By formulating a
minimax problem, we derive optimal estimates for the switching moment,
allowing each player to maximize their individual payoff under conditions
of incomplete information. An example of an investment problem illustrates
the application of the model, highlighting the contrasts in optimal estimate
of switching moment between non-cooperative and cooperative frameworks.
Comparative analysis further demonstrates that there are significant differ-
ences between the non-cooperative and cooperative frameworks in terms of
optimal estimates, strategy stability and adaptability to uncertainty.
Keywords: Non-cooperative differential games, Switching moment estima-
tion, Pontryagin’s Maximum Principle, Comparative analysis

1. Introduction

In the field of contemporary decision science, dynamic game theory has become
the basic theory for analyzing complex decision-making processes (Friedman, 1986;
Basar and Zaccour, 2018), providing a powerful framework for understanding the
strategic interaction among players in a dynamic environment. However, construct-
ing an accurate and practical dynamic game model is full of challenges, espe-
cially when dealing with uncertain factors. Previous studies have explored the
uncertainty in dynamic games from multiple perspectives. For example, previous
studies have taken into account the duration of the game as a random variable
(Petrosjan and Shevkoplyas, 2003; Shevkoplyas, 2014; Gromov and Gromova, 2014;
Gromova et al., 2018), have considered the randomness of terminal time (Wu et al.,
2023; Shevkoplyas and Kostyunin, 2011), and have studied emission pollution with
ecological uncertainty (Masoudi et al., 2016). At the same time, when probability
distribution information is lacking, scholars try to construct models from a deter-
ministic perspective. For instance, introducing the concept of information value of
unknown model parameters (Chebotareva et al., 2021) provides a new method for
evaluating model parameters under incomplete information conditions. And in the
problem of resource extraction, calculating the optimal estimate of initial resource
stock (Tur et al., 2021; Su and Tur, 2022) provides valuable theoretical support for
decision-making in the face of uncertainty in resource stock.

Dynamic systems often experience complex switching phenomena due to exter-
nal environmental fluctuations or internal structural adjustments, and this switch-
ing has important manifestations in multiple fields. For example, in the field of
https://doi.org/10.21638/11701/spbu31.2024.17
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social-ecological systems, regime shifts (Lade et al., 2013) affect the interaction and
decision-making of players and change the game structure and payoff model. In the
field of resource development (de Zeeuw and He, 2017), changes in mining condi-
tions and resource reserve information will trigger structural changes in the system
dynamics and prompt players to adjust their strategies. Factors such as changes
in macroeconomic situations and industry competition patterns lead to changes in
the investment project’s payoff model, which in turn triggers the switching of utility
functions. For instance, (Zaremba, 2022) discusses the cooperative differential game
of utility functions switching. Uncertainty factors are intertwined with the switch-
ing phenomena of dynamic systems in practical application scenarios. For example,
regime shifts have uncertainty (de Zeeuw and He, 2017), and the switching moment
of utility functions has uncertainty (Ye et al., 2024).

It is worth noting that although existing research has involved the estima-
tion of the switching moment of utility functions in cooperative differential games
(Ye et al., 2024), there are significant differences between cooperative and non-
cooperative situations. Therefore, this study will focus on non-cooperative situa-
tions and deeply analyze the estimation problem of the switching moment of utility
functions in non-cooperative differential games. Considering the minimax problem,
we derive the optimal estimated value of the switching moment so that each player
can maximize their respective payoffs under incomplete information. Importantly,
we compare the results of cooperation and non-cooperation situations. The results
show that in non-cooperative scenarios, the results are sensitive to parameters and
may lead to conflicting switching moments and suboptimal results. In the coopera-
tive scenario, the switching moments of players are synchronized and independent
of parameters, reducing the possibility of premature or delayed switching and opti-
mizing the overall performance of the system.

The rest of this article is structured as follows. Section 2 describes the problem
statement in detail and clearly expounds the background and key elements of the
research problem. Section 3 introduces an example model. Section 4 focuses on
considering the estimation of the switching moment and gives the payoffs of the
players. Section 5 obtains the optimal estimation results and gives the corresponding
theorems. Section 6 compares and analyzes the different results of non-cooperation
and cooperation scenarios, fully showing the differences and characteristics in the
two scenarios.

2. Problem Statement

Consider a differential game Γ t1(x0, t0, T ) of n players, which starts at the initial
time t0 from the initial state x0 and evolves over a fixed time interval [t0, T ]. The
set of players is denoted by N = {1, 2, · · · , n}, where |N | = n. Furthermore, there
exists a moment t1 ∈ [t0, T ] at which each players’ instantaneous payoff function
changes. We call this moment the switching moment.

Game dynamics is described by a system of ordinary differential equations

ẋ = g(x, u1, . . . , un), x(t0) = x0, (1)

where x ∈ X ⊂ Rm is the state and ui(t) ∈ Ui for all t ≥ 0 is the control. We
assume that players use open-loop strategies to control the system.

The instantaneous payoff function of i−th player at the moment τ, τ ∈ [t0, t1]
before the switching moment t1 is defined as hi1(x(τ), u(τ)). Similarly, the instanta-
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neous payoff function of i−th player at the moment τ, τ ∈ [t1, T ] after the switching
moment t1 is defined as hi2(x(τ), u(τ)). We assume that the functions hi1(x(τ), u(τ))
and hi2(x(τ), u(τ)) are defined and integrable over the entire considered time inter-
val [t0, T ].

Then the integral payoff of player i, where i = 1, · · · , n is evaluated by the
formula

Ki(x0, t0, T, u) =

∫ t1

t0

hi1(x(τ), u(τ)) dτ +

∫ T

t1

hi2(x(τ), u(τ)) dτ. (2)

3. An Investment Game

Within the framework of the differential game described above, let us examine
a model scenario. Consider n economic agents who invest in a shared stock of
capital. The state variable x(t) represents the amount of capital at time t, while
ui(t) represents the investment strategy of player i at time t, where i ∈ {1, · · · , n}.
Let t0 and T represent the initial time and terminal time, respectively.

The dynamics has the form

ẋ(t) =

n∑
i=1

ui(t), x ∈ R, ui ∈ Ui ⊆ R, x(t0) = x0.

Assume that the instantaneous payoff functions are linear in the state variable
and quadratic in the control and differ only in the parameters values. This type of
payoff function is dictated by the linear dependence of income on the amount of
investment at the current time x(t) with a certain coefficient qi1, qi2. The cost of
acquiring assets grows quadratically with the coefficient ri1, ri2.

hi1(x(t), u(t)) = qi1x(t)− ri1u
2
i (t),

hi2(x(t), u(t)) = qi2x(t)− ri2u
2
i (t).

We consider a situation in which the game is played in a non-cooperative mode.
A situation where each player has information only of the initial state of the system,
control functions of players can be seen as open-loop strategies.

Definition 1. In the game Γ t1(x0, t0, T ), strategy profile u∗(t) = (u∗1(t), · · · , u∗n(t))
is called Nash equilibrium, if

Ki(x0, t0, T, u
∗) ≥ Ki(x0, t0, T, u

∗∥ui),∀ui ∈ Ui, i = 1, · · · , n, (3)

where u∗∥ui = (u∗1, · · · , u∗i−1, ui, u∗i+1, · · · , u∗n).

To find Nash equilibrium strategies for game Γ t1(x0, t0, T ) one has to maximize
the payoff for each player i by the control ui in assumption that another players use
fixed Nash equilibrium strategies.

Ki(x0, t0, T, u) =

∫ t1

t0

hi1(x(t), u(t)) dt+

∫ T

t1

hi2(x(t), u(t)) dt→ max
ui

. (4)

For simplicity, let t0 = 0. The state trajectory corresponding to the Nash equi-
librium strategies is denoted by x∗(t).

To do so we will use Pontryagin’s Maximum Principle to determine the solution
on two time intervals.

(1) First, we consider the problem on time interval t ∈ [0, t1].
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– Each player has a Hamiltonian function of the form:

Hi1 [x(t), ui(t), ψi1(t)] = ψi1(t)

n∑
j=1

uj(t) +
[
qi1x(t)− ri1u

2
i (t)

]
,

where ψi1(t) is the adjoint variable of player i on the time interval [0, t1].
– Differentiating each Hamiltonian with respect to ui and then equating to 0

yields the necessary first order conditions:

∂Hi1

∂ui
= ψi1(t)− 2ri1ui(t) = 0,

u∗i (t) =
ψi1
2ri1

.

The second order conditions hold, because for all i

∂2Hi1

∂u2i
= −2ri1 < 0.

– The equation for the adjoint variable ψi1(t) takes the following form

ψ̇i1 = −∂Hi1

∂x
= −qi1,

we get
ψi1(t) = −qi1t+ Ci1,

where Ci1 is a constant of player i on the time interval [0, t1]. Thus, we can sub-
stitute the obtained form of the adjoint variable ψi1(t) into u∗i (t). The optimal
control finally takes the form

u∗i (t) =
−qi1t+ Ci1

2ri1
.

Using u∗i (t), we can obtain the differential equation for the state variable

ẋ =
∂Hi1

∂ψi1
=

n∑
i=1

ui(t) =

n∑
i=1

−qi1t+ Ci1
2ri1

.

The solution is

x∗(t) = Di1 +

n∑
i=1

(
Ci1t

2ri1
− qi1t

2

4ri1

)
.

(2) Next, we will focus on analyzing the solution on the interval t ∈ [t1, T ].

– The Hamiltonian function for player i for this period is

Hi2 [x(t), ui(t), ψi2(t)] = ψi2(t)

n∑
j=1

uj(t) +
[
qi2x(t)− ri2u

2
i (t)

]
,

where ψi2(t) is the adjoint variable of player i on the time interval [t1, T ].
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– Optimal control

u∗i (t) =
ψi2
2ri2

– Canonical system

ψ̇i2 = −∂Hi2

∂x
= −qi2,

we get
ψi2(t) = −qi2t+ Ci2,

where Ci2 is a constant of player i on the time interval [t1, T ].
The differential equation for the state variable is

ẋ =

n∑
i=1

−qi2t+ Ci2
2ri2

.

Solving the respective canonical system with the conditions ψi2(T ) = 0, ψi2(t1)
= ψi1(t1), we obtain the Nash equilibrium strategy

u∗i (t) =

{
u∗i1(t) =

qi1(t1−t)
2ri1

+ qi2(T−t1)
2ri1

, t ∈ [0, t1],

u∗i2(t) =
qi2(T−t)

2ri2
, t ∈ [t1, T ].

(5)

With the boundary conditions x(0) = x0 and x∗1(t1) = x∗2(t1), we obtain the
optimal trajectory as follows

x∗(t) =


x∗1(t) = x0 + (2t1 − t)t

n∑
i=1

qi1
4ri1

+ (T − t1)t
n∑
i=1

qi2
2ri1

, t ∈ [0, t1]

x∗2(t) = x∗1(t1)− (T − t)2
n∑
i=1

qi2
4ri2

+ (T − t1)
2
n∑
i=1

qi2
4ri2

, t ∈ [t1, T ].
(6)

4. Estimation of Switching Moments

Suppose that players do not have the information about the exact value of the
switching moment t1; however, they have an a priori estimate that t1 ∈ [0, T ].
It is assumed that player i use an estimate t̂i of the switching moment in the
control (5) instead of the exact value t1. For simplicity, we assume that n = 2,
r11 = r12 = r21 = r22 = r, and t̂1 ≤ t̂2. Then their controls have the following form:

ûi(t) =

{
ûi1(t) =

qi1(t̂i−t)
2r + qi2(T−t̂i)

2r , t ∈ [0, t̂i],

ûi2(t) =
qi2(T−t)

2r , t ∈ [t̂i, T ],
(7)

and the trajectory corresponding to these controls is

x̂(t) =


x̂1(t), t ∈ [0, t̂1],

x̂2(t), t ∈ [t̂1, t̂2],

x̂3(t), t ∈ [t̂2, T ].

(8)

where

x̂1(t) = x0 −
t2

4r
(q11 + q21) +

t

2r
(q12 + q22)T +

t

2r
(q11 − q12)t̂1 +

t

2r
(q21 − q22)t̂2,

x̂2(t) = x0 −
t2

4r
(q12 + q21) +

t

2r
(q12 + q22)T +

t

2r
(q21 − q22)t̂2 +

1

4r
(q11 − q12)t̂

2
1,

x̂3(t) = x0 −
t2

4r
(q12 + q22) +

t

2r
(q12 + q22)T +

1

4r
(q11 − q12)t̂

2
1 +

1

4r
(q21 − q22)t̂

2
2.
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Using (7), we can find the values of the players’ payoffs.

– If t1 ∈ [0, t̂1], the payoff of player 1 is

K1(x0, t0, T, û) =

∫ t1

0

[
q11x̂1(t)− rû211(t)

]
dt+

∫ t̂1

t1

[
q12x̂1(t)− rû211(t)

]
dt

+

∫ t̂2

t̂1

[
q12x̂2(t)− rû212(t)

]
dt+

∫ T

t̂2

[
q12x̂3(t)− rû212(t)

]
dt

= (q11 − q12)

(
x0t1 −

t31
12r

q̂1 +
t21
4r
q̂2T +

t21
4r

(q11 − q12)t̂1 +
t21
4r

(q21 − q22)t̂2

)
+ F1(t̂1, t̂2),

where q̂i = q1i + q2i and

F1(t̂1, t̂2) = q12Tx0−
t̂31
12r

(q11−q12)2−
q12t̂

2
2

12r
(q21−q22)(t̂2−3T )+

q12T
3

12r
(q12+2q22).

The payoff of player 2 is

K2(x0, t0, T, û) =

∫ t1

0

[
q21x̂1(t)− rû221(t)

]
dt+

∫ t̂1

t1

[
q22x̂1(t)− rû221(t)

]
dt

+

∫ t̂2

t̂1

[
q22x̂2(t)− rû221(t)

]
dt+

∫ T

t̂2

[
q22x̂3(t)− rû222(t)

]
dt

= (q21 − q22)

(
x0t1 −

t31
12r

q̂1 +
t21
4r
q̂2T +

t21
4r

(q11 − q12)t̂1 +
t21
4r

(q11 − q22)t̂2

)
+ F2(t̂1, t̂2),

where

F2(t̂1, t̂2) = q22Tx0−
t̂32
12r

(q21−q22)2−
q22t̂

2
1

12r
(q11−q12)(t̂1−3T )+

q22T
3

12r
(q22+2q12).

– If t1 ∈ [t̂1, t̂2], the payoff of player 1 is

K1(x0, t0, T, û) =

∫ t̂1

0

[
q11x̂1(t)− rû211(t)

]
dt+

∫ t1

t̂1

[
q11x̂2(t)− rû212(t)

]
dt

+

∫ t̂2

t1

[
q12x̂2(t)− rû212(t)

]
dt+

∫ T

t̂2

[
q12x̂3(t)− rû212(t)

]
dt

= (q11 − q12)

(
x0t1 −

t31
12r

(q12 + q21) +
t21
4r

q̂2T +
t21
4r

(q21 − q22)t̂2 +
t1
4r

(q11 − q12)t̂
2
1

)
+G1(t̂1, t̂2),

where

G1(t̂1, t̂2) = q12Tx0−
t̂31
6r

(q11−q12)2−
q12t̂

2
2

12r
(q21−q22)(t̂2−3T )+

q12T
3

12r
(q12+2q22).
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The payoff of player 2 is

K2(x0, t0, T, û) =

∫ t̂1

0

[
q21x̂1(t)− rû221(t)

]
dt+

∫ t1

t̂1

[
q21x̂2(t)− rû221(t)

]
dt

+

∫ t̂2

t1

[
q22x̂2(t)− rû221(t)

]
dt+

∫ T

t̂2

[
q22x̂3(t)− rû222(t)

]
dt

= (q21 − q22)

(
x0t1 −

t31
12r

(q12 + q21) +
t21
4r

q̂2T +
t21
4r

(q21 − q22)t̂2 +
t1
4r

(q11 − q12)t̂
2
1

)
+G2(t̂1, t̂2),

where

G2(t̂1, t̂2) = q22Tx0−
t̂32
12r

(q21−q22)
2− t̂21

12r
(q11−q12)(q21t̂1−3q22T )+

q22T
3

12r
(q22+2q12).

– If t1 ∈ [t̂2, T ], the payoff of player 1 is

K1(x0, t0, T, û) =

∫ t̂1

0

[
q11x̂1(t)− rû211(t)

]
dt+

∫ t̂2

t̂1

[
q11x̂2(t)− rû212(t)

]
dt

+

∫ t1

t̂2

[
q11x̂3(t)− rû212(t)

]
dt+

∫ T

t1

[
q12x̂3(t)− rû212(t)

]
dt

= (q11 − q12)

(
x0t1 −

t21
12r

q̂2(t1 − 3T ) +
t1
4r

(q11 − q12)t̂
2
1 +

t1
4r

(q21 − q22)t̂
2
2

)
+ P1(t̂1, t̂2),

where

P1(t̂1, t̂2) = q12Tx0−
t̂31
6r

(q11−q12)
2− t̂22

12r
(q21−q22)(q11t̂2−3q12T )+

q12T
3

12r
(q12+2q22).

The payoff of player 2 is

K2(x0, t0, T, û) =

∫ t̂1

0

[
q21x̂1(t)− rû221(t)

]
dt+

∫ t̂2

t̂1

[
q21x̂2(t)− rû221(t)

]
dt

+

∫ t1

t̂2

[
q21x̂3(t)− rû222(t)

]
dt+

∫ T

t1

[
q22x̂3(t)− rû222(t)

]
dt

= (q21 − q22)

(
x0t1 −

t21
12r

q̂2(t1 − 3T ) +
t1
4r

(q11 − q12)t̂
2
1 +

t1
4r

(q21 − q22)t̂
2
2

)
+ P2(t̂1, t̂2),

where

P2(t̂1, t̂2) = q22Tx0−
t̂32
6r

(q21−q22)
2− t̂21

12r
(q11−q12)(q21t̂1−3q22T )+

q22T
3

12r
(q22+2q12).
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Also for the case n = 2 we can calculate the players’ payoffs in the situation (5).
The payoff of player i is

Ki(x0, t0, T, u
∗) =

∫ t1

0

[
qi1x

∗
1(t)− ri1u

∗2
i1 (t)

]
dt+

∫ T

t1

[
qi2x

∗
2(t)− ri2u

∗2
i2 (t)

]
dt

= [(qi1 − qi2)t1 + Tqi2]x0 −
Tqi2t

2
1

4r
(qi2 − qj1) +

qi1q̂2t
2
1

4r
(T − t1)

− qi2t
2
1

4r
(2Tqj2 + qj1t1) +

qi2
12r

(qi2 + 2qj2)(T
3 + 2t31)

+
qi1t

3
1

12r
(qi1 + 2qj1),

where i = 1, 2, j = 1, 2, j ̸= i.

5. Optimal Estimates

Based on the prior estimate t1 ∈ [0, T ], player i may agree upon a guess
t̂i ∈ [0, T ], i ∈ {1, 2}, which minimizes the worst-case possible loss. Therefore, the
following minimax problem needs to be solved by player i:

min
t̂i∈[0,T ]

max
t1∈[0,T ]

(Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û)) , (9)

where t̂i is the guess of the switching moment of player i, and t1 is the actual value.
In [Ye et al., 2024], a similar problem was solved for the cooperative version of

the game. The optimal estimation of the switching moment of the utility function
was found in the following form: t̂∗i = (1 − 2 cos 4π

9 )T. This estimate depends only
on the terminal time T , but does not depend on other parameters of the system.
However, the study of this problem for the non-cooperative scenario has shown that,
in this case, it is not possible to construct such a universal estimate. For different
values of the system parameters it is possible to obtain different values of the optimal
estimation.

The following theorem provides a solution for problem (9) in the symmetric
case when q11 = q21, q12 = q22. It is worth noting that the optimal estimation of
the switching moment of utility function in the non-cooperative case is related to
parameters qi1, qi2.

Theorem 1. If qi1 ∈ [ 43qi2, 3qi2], then the optimal estimate t̂∗i for player i of the
unknown switching moment t1 in symmetric case that solves

min
t̂i∈[0,T ]

max
t1∈[0,T ]

(Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û))

is t̂∗i = T . If qi2 ∈ [2qi1, 3qi1], then t̂∗i = 0.

Proof. In the symmetric case, we have t̂1 = t̂2 = t̂. Let h = qi1 − qi2. Considering
the calculation results of the Section 4., we obtain

Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û) =

{
Di1(t1, t̂), t1 ∈ [0, t̂],

Di2(t1, t̂), t1 ∈ [t̂, T ],
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where

Di1(t1, t̂) =
h

12r
(5h− qi2)t

3
1 +

h

4r

(
qi2T − 2ht̂

)
t21 +

h

12r

(
t̂(h+ qi2)− 3qi2T

)
t̂2,

Di2(t1, t̂) =
h

12r
(3h− qi2)t

3
1 +

qi2hT

4r
t21 −

h2t̂2

2r
t1 +

h

12r

(
t̂(2h+ qi1)− 3qi2h

)
t̂2.

Then the maximization problem in (9) can be rewritten as

max
t1∈[0,T ]

(Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û)) =

max

{
max
t1∈[0,t̂]

Di1(t1, t̂), max
t1∈[t̂,T ]

Di2(t1, t̂)

}
.

Thus, the best estimate of the switching moment in the sense of minimization
of losses is given by

t̂∗ = arg min
t̂∈[0,T ]

(
max

(
max
t1∈[0,t̂]

Di1(t1, t̂), max
t1∈[t̂,T ]

Di2(t1, t̂)

))
.

(1) When t1 ∈ [0, t̂],

∂Di1

∂t1
=

h

4r
(5h− qi2)t

2
1 +

h

2r

(
qi2T − 2ht̂

)
t1.

To determine the sign of ∂Di1

∂t1
, we need to analyze the different cases for the sign

of h.

– First, assume that h < 0.
Note that h

4r (5h − qi2) > 0, h
2r

(
qi2T − 2ht̂

)
< 0 when h < 0. Then equation

∂Di1

∂t1
= 0 has a positive root. Then ∂Di1

∂t1
is either negative on the interval [0, t̂]

or changes sign from negative to positive. It follows that Di1 is either a strictly
decreasing function of t̂, or it first decreases and then increases of t̂ over this
interval. So, the maximum value of Di1(t1, t̂) will be obtanied at the boundary.
We can get

Di1(t̂, t̂)−Di1(0, t̂) =
ht̂2

12r

(
−t̂(h+ qi2) + 3qi2T

)
< 0,

so
arg max

t1∈[0,t̂]
Di1(t1, t̂) = 0,

i.e.

max
t1∈[0,t̂]

Di1(t1, t̂) = Di1(0, t̂) =
ht̂2

12r

(
t̂(h+ qi2)− 3qi2T

)
.

– Now consider the case where h > 0
If qi1 ∈ [ 43qi2, 3qi2], then h

4r (5h − qi2) > 0. In this case the maximum value of
Di1(t1, t̂) in the interval [0, t̂] will be obtanied again at the boundary. We can
get

Di1(t̂, t̂)−Di1(0, t̂) =
ht̂2

12r

(
−t̂(h+ qi2) + 3qi2T

)
>
ht̂2

12r
(−T (h+ qi2) + 3qi2T ) =

ht̂2T

12r
(2qi2 − h).
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If qi1 ∈ [ 43qi2, 3qi2], then 2qi2 − h ≥ 0 and Di1(t̂, t̂) > Di1(0, t̂). So

arg max
t1∈[0,t̂]

Di1(t1, t̂) = t̂,

and
max
t1∈[0,t̂]

Di1(t1, t̂) = Di1(t̂, t̂) = 0.

(2) When t1 ∈ [t̂, T ],

∂Di2

∂t1
=

h

4r
(3h− qi2)t

2
1 +

qi2hT

2r
t1 −

h2t̂2

2r
.

– h < 0
Note that h

4r (3h − qi2) > 0 when h < 0, it follows that Di2 is either a strictly
increasing function of t̂, or it first decreases and then increases of t̂ over the
time interval [t̂, T ]. The maximum value of Di2(t1, t̂) will be obtanied at the
boundary. We can get

Di2(T, t̂)−Di2(t̂, t̂) =
T 3

12r
(3h2 + 2qi2h) +

t̂3

12r
(3h2 + qi2h)−

t̂2T

4r
(2h2 + qi2h).

If qi2 ∈ [2qi1, 3qi1], then 2h2 + qi2h ≥ 0 and

Di2(T, t̂)−Di2(t̂, t̂) ≤
T 3

12r
(3h2 + 2qi2h) +

t̂3

12r
(3h2 + qi2h)−

t̂3

4r
(2h2 + qi2h)

=
1

12r
(3h2 + 2qi2h)(T

3 − t̂3).

Here 3h2 + 2qi2h ≤ 0, if qi2 ∈ [2qi1, 3qi1], then

Di2(T, t̂)−Di2(t̂, t̂) ≤ 0.

It means that
arg max

t1∈[t̂,T ]
Di2(t1, t̂) = t̂,

then
max
t1∈[t̂,T ]

Di2(t1, t̂) = Di2(t̂, t̂) = 0.

– h > 0
If qi1 ∈ [ 43qi2, 3qi2], then h

4r (3h−qi2) ≥ 0. Note that over the time interval [t̂, T ],
Di2 exhibits the same behavior as in the case where h < 0. We can get

Di2(T, t̂)−Di2(t̂, t̂)

=
T 3

12r
(3h2 + 2qi2h) +

t̂3

12r
(3h2 + qi2h)−

t̂2T

4r
(2h2 + qi2h)

>
T 3

12r
(2h2 + qi2h) +

t̂3

12r
(2h2 + qi2h)−

t̂2T

4r
(2h2 + qi2h) +

t̂3

12r
(2h2 + qi2h)

=
1

12r
(2h2 + qi2h)(T − t̂)2(T + 2t̂) > 0,

so
arg max

t1∈[t̂,T ]
Di2(t1, t̂) = T,
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i.e.

max
t1∈[t̂,T ]

Di2(t1, t̂) = Di2(T, t̂)

=
T 3

12r
(3h2 + 2qi2h) +

t̂3

12r
(3h2 + qi2h)−

t̂2T

4r
(2h2 + qi2h).

Then the problem (9) is transformed into the following:

– If qi2 ∈ [2qi1, 3qi1], then

min
t̂i∈[0,T ]

max

{
max

t1∈[0,t̂]
Di1(t1, t̂), max

t1∈[t̂,T ]
Di2(t1, t̂)

}
= min

t̂i∈[0,T ]
max

{
Di1(0, t̂), Di2(t̂, t̂)

}
= min

t̂i∈[0,T ]
max

{
ht̂2

12r

(
t̂(h+ qi2)− 3qi2T

)
, 0

}
The solution is t̂i

∗
= 0,

min
t̂i∈[0,T ]

max
t1∈[0,T ]

(Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û)) = 0.

– If qi1 ∈ [ 43qi2, 3qi2], then

min
t̂i∈[0,T ]

max

{
max

t1∈[0,t̂]
Di1(t1, t̂), max

t1∈[t̂,T ]
Di2(t1, t̂)

}
= min

t̂i∈[0,T ]
max

{
Di1(t̂, t̂), Di2(T, t̂)

}
= min

t̂i∈[0,T ]
max

{
0,

T 3

12r
(3h2 + 2qi2h) +

t̂3

12r
(3h2 + qi2h)−

t̂2T

4r
(2h2 + qi2h)

}
The solution is t̂i

∗
= T ,

min
t̂i∈[0,T ]

max
t1∈[0,T ]

(Ki(x0, t0, T, u
∗)−Ki(x0, t0, T, û)) = 0.

This outcome concludes the proof.

6. Comparative Analysis

In the non-cooperative framework, each player independently aims to maximize
their own payoff by estimating the switching moment t̂∗i . The analysis presented in
Section 5. shows that even for the symmetric case, the optimal estimation t̂∗i turns
out to be very sensitive to the model parameters. In the non-cooperative frame-
work, each player independently aims to maximize their own payoff by estimating
the switching moment t̂∗i . This sensitivity reflects the lack of coordination between
players, as each player’s estimation relies solely on self-interested calculations, which
can lead to conflicting switching moments and suboptimal overall outcomes.

In contrast, the cooperative scenario allows players to align their strategies to
achieve a collective goal, as investigated in [Ye et al., 2024]. In the cooperative case,
the estimation has a universal form, which does not depend on the system coeffi-
cients. The cooperative strategy provides a stable solution that reduces the like-
lihood of premature or delayed switching, thereby optimizing the system’s overall
performance.
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7. Conclusion

The obtained result highlights the potential advantages of a cooperative ap-
proach in estimating optimal switching moments. Cooperation enables players to
achieve a stable and synchronized switching strategy, minimizing conflicts and en-
hancing utility. These findings suggest that, in dynamic systems requiring coordi-
nated decisions, a cooperative framework can provide superior outcomes compared
to non-cooperative strategies, thus supporting policy-making and strategic decision-
making efforts in interdependent environments.
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