
Contributions to Game Theory and Management, XVII, 209–218

On Generalized Solutions for Two Hamilton-Jacobi
Equations with State Constraints

Lyubov G. Shagalova

N.N. Krasovskii Institute of Mathematics and Mechanics
of the Ural Branch of the Russian Academy of Sciences,
16, ul. S. Kovalevskaya, Yekaterinburg, 620108, Russia

E-mail: shag@imm.uran.ru

Abstract Two Cauchy problems for Hamilton-Jacobi equation of the evo-
lutionary type with state constraints are considered on a bounded time in-
terval. The state space is one-dimensional. Hamiltonians of the considered
problems depend on the state and momentum variables, and the dependence
on the momentum variable is exponential. In the first problem, the Hamil-
tonian is convex in the momentum variable, and in the second problem, the
Hamiltonian is concave in this variable. For the first problem, it is proved
that a unique continuous viscosity solution exists, and a scheme is proposed
for constructing this solution. The proposed scheme is based on the method
of generalized characteristics. For the second problem, it is shown that a con-
tinuous viscosity solution does not exist, and to define a generalized solution
it is necessary to specify some additional conditions.

Keywords: Hamilton-Jacobi equation, viscosity solution, non-coercive Hamil-
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1. Introduction

Classical solutions of the Hamilton-Jacobi equations exist in very rare cases,
therefore, in the theory of these equations, various generalized solutions were consid-
ered. In particular, we can mention the pioneering paper (Kruzhkov, 1966) devoted
to generalized solutions of first-order nonlinear equations, as well as the monographs
(Subbotin, 1991, 1995) in which the minimax solution was introduced, closely re-
lated to differential games.

The viscosity solution (Crandall and Lions, 1983) have proven to be extremely
useful concept, so within the framework of this concept, many mathematicians have
considered various types of initial and boundary value problems, including problems
with state constraints (Capuzzo-Dolcetta and Lions, 1990). Theorems of existence
and uniqueness of viscosity solutions were proved for these problems, properties of
solutions were studied and methods for constructing them were developed.

Despite the wide range of studied problems, equations with exponential depen-
dence of the Hamiltonian on the momentum variable are not typical for the theory.
There are no general methods for solving such equations, and the known existence
and uniqueness theorems are generally not applicable. At the same time, such equa-
tions arise in applied research, in particular, in molecular genetics when studying
the Crow-Kimura model of molecular evolution (Saakian et al., 2008), so there is a
need to study them.

In this paper, we consider the Cauchy problem for the Hamilton-Jacobi equation
of evolutionary type with state constraints. The Hamiltonian depends on the state
https://doi.org/10.21638/11701/spbu31.2024.16
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and momentum variables. The state variable is one-dimensional, and the dependence
on the momentum variable is exponential. We consider two problems in which the
state constraints are straight lines determined by zeros of the monotone functional
coefficients before the exponential terms. In the first problem, the Hamiltonian is
convex in the momentum variable, and in the second problem, it is concave in this
variable. Both problems are considered in a time-bounded domain, inside which the
Hamiltonians satisfy the coercivity condition, but on the boundary of the domain,
this condition is violated.

It is shown that for the first problem there is a unique continuous viscosity
solution, while for the second problem such a solution does not exist. The research
is based on the analysis of the behavior of solutions of the characteristic systems
of the equations under consideration, on solving variational problems of the Bolza
type, and on the application of the method of generalized characteristics.

2. Problems under Study

In this paper, we consider two Cauchy problems for the Hamilton-Jacobi equa-
tion with state constraints of the following form

∂u

∂t
+H

(
x,
∂u

∂x

)
= 0, t ∈ (0, T ), x ∈ [x∗, x

∗], (1)

u(0, x) = u0(x), x ∈ [x∗, x
∗]. (2)

Here T is a fixed time moment, T > 0, and u0(·) is a given continuously differentiable
function.

It is assumed that continuously differentiable functions h(·) : IR → IR, f(·) :
IR → IR and g(·) : IR → IR are given such that f(·) is strictly monotonically in-
creasing and g(·) is strictly monotonically decreasing. Also, we additionally assume
that there exist points x∗ and x∗ such that f(x∗) = 0, g(x∗) = 0, and the inequal-
ity x∗ < x∗ holds. Thus, the segment defining state constraints in the considered
problems of the form (1), (2) is determined by zeros of functions f(·) and g(·).

Further we will consider problem (1),(2) for two special cases. And our main
goal is to investigate the issues of existence and uniqueness of the viscosity solution
in these cases. We will call the cases under consideration problems A and B. Let us
clarify these problems below, in the following two subsections.

2.1. Problem A
Consider problem (1), (2) in the case when the Hamiltonian has the form

H(x, p) = h(x) + f(x)ep + g(x)e−p. (3)

Since on the interval [x∗, x
∗] functions f(·) and g(·) are non-negative, Hamilto-

nian (3) is convex in the momentum variable p.

2.2. Problem B
Here the problem (1), (2) is considered for a Hamiltonian of the form

H(x, p) = h(x)− f(x)ep − g(x)e−p. (4)

Hamiltonian (4) is concave in the variable p.
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3. Continuous Viscosity Solution in a Problem with State Constraints

The viscosity solution can be defined in several ways that are different in form
but essentially equivalent. Let us present here one of the equivalent definitions of
a continuous viscosity solution for problem (1),(2) adapted for the case of a one-
dimensional state variable which is relevant in this paper.

At first, we give the definitions of the sub- and superdifferential of a function,
which in nonsmooth analysis generalize the concepts of derivative and gradient.

Let the set W ⊂ IR2 be given. Denote by symbol C(W ) the class of functions
that are continuous on the set W .

Definition 1. Let u(·) ∈ C(W ) and (t, x) ∈W . The subdifferential of function u(·)
at the point (t, x) is the set

D−u(t, x) =

=

(a, s) ∈ IR2

∣∣∣∣∣∣∣∣∣ lim inf
(τ,y)→(t,x)

(τ,y)∈W

u(τ, y)− u(t, x)− a(τ − t)− s(y − x)

|τ − t|+ |y − x|
≥ 0

 .
(5)

The superdifferential of function u(·) at point (t, x) is the set

D+u(t, x) =

(a, s) ∈ IR2

∣∣∣∣∣∣∣∣∣∣
lim sup

(τ,y)→(t,x)

(τ,y)∈W

u(τ, y)− u(t, x)− a(τ − t)− s(y − x)

|τ − t|+ |y − x|
≤ 0

 .

Remark 1. At boundary points of closed set W , the subdifferential D−u(t, x), if
it is nonempty, is an unbounded set. Indeed, let (t∗, y∗) ∈ ∂W ,(a, s) ∈ D−u(t∗, y∗),
and vector (n1, n2) is the outward normal to the set clW at point (t∗, y∗). Then, as
is easy to see from the definition of the subdifferential (formula (5)), for any positive
number k we have

(a+ kn1, s+ kn2) ∈ D−u(t∗, y∗).

Below we use notations ΠT = (0, T )× (x∗, x
∗) and ΠT = (0, T )× [x∗, x

∗].

Definition 2. A function u ∈ C(ΠT ) is called a viscosity solution to problem
(1),(2), if it satisfies the initial condition (2) and the differential inequalities

a+H(x, s) ≤ 0, ∀ (t, x) ∈ ΠT , ∀ (a, s) ∈ D+u(t, x), (6)

a+H(x, s) ≥ 0, ∀ (t, x) ∈ ΠT , ∀ (a, s) ∈ D−u(t, x). (7)

Remark 2. At the boundary of state constraints, at points lying on lines x = x∗
and x = x∗, only inequality (7) for the subdifferential must be satisfied. This is ex-
plained by the fact that under sufficiently general conditions imposed on the Hamil-
tonian and the initial function, the set of conditions (6),(7) ensures the uniqueness
of the viscosity solution of problem (1),(2).
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Let us note also that the conditions under which the known existence theorems
for viscosity solutions are proved are not satisfied for Hamiltonians of the form (3)
and (4) defining the problems A and B considered here. In particular, the coercivity
condition is not satisfied for these Hamiltonians. In the case of a Hamiltonian that
is convex in p, the coercivity condition has the form

H(x, p)

|p|
→ +∞ for |p| → ∞, (8)

and in the case when the Hamiltonian is concave in p, the coercivity condition is
written as follows:

H(x, p)

|p|
→ −∞ for |p| → ∞. (9)

In formulas (8) and (9) |p| denotes the modulus of p.
It is easy to verify that for the Hamiltonians (3) and (4) the corresponding

coercivity conditions (8) and (9) are violated on lines x = x∗ and x = x∗.
Below it will be proved that there exists a unique viscosity solution in problem

A, while in problem B a viscosity solution does not exist.

4. Existence and Uniqueness of the Viscosity Solution in Problem A

Consider Problem A. For ε > 0 such that x∗+ ε < x∗− ε, we define the domain

Π
ε

T = {(t, x)|0 ≤ t < T, x∗ + ε ≤ x ≤ x∗ − ε}.

Obviously, Π
ε

T ⊂ ΠT , and in the domain Π
ε

T the Hamiltonian (3) satisfies the
coercivity condition (8).

From the results of section (5) in Theorem X.I printed on page 678 in pa-
per (Capuzzo-Dolcetta and Lions, 1990) we obtain that in the domain Π

ε

T there
exists a unique viscosity solution uε(·) of equation (1) with a Hamiltonian of the
form (3) satisfying the initial condition (2). This solution can be written using the
representative formula

uε(t, x) = inf

u0(ξ(0)) +
t∫

0

H∗
(
ξ(s), ξ̇(s)

)
ds

∣∣∣∣∣∣
ξ(0) = y, ξ(t) = x, y ∈ [x∗ + ε;x∗ − ε]

 .

(10)

Here H∗ is the function conjugate to the Hamiltonian, defined as follows

H∗(x, q) = sup
p∈IR

{pq −H(x, p)} . (11)

Functions ξ by which the infimum in (10) is sought, belong to the class C2(0, T ; [x∗+
ε;x∗−ε]) of twice continuously differentiable functions defined on the interval [0, T ]
and taking values from the segment [x∗ + ε;x∗ − ε].

In the domain ΠT we consider the following function

u(t, x) = min

u0(ξ(0)) +
t∫

0

H∗
(
ξ(s), ξ̇(s)

)
ds

∣∣∣∣∣∣
ξ(0) = y, ξ(t) = x, y ∈ [x∗;x

∗]} .

(12)
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Minimum in (12) is sought in the class C1(0, T ; [x∗;x
∗]) of continuously differen-

tiable functions defined on the interval [0, T ] and taking values from the segment
[x∗;x

∗].
The characteristic system [see, for example, (Courant and Hilbert, 1962) and

(Subbotina, 2004)] for problem A has the form

ẋ = Hp(x, p) = f(x)ep − g(x)e−p,

ṗ = −Hx(x, p) = −h′(x)− f ′(x)ep − g′(x)e−p, (13)

ż = pHp(x, p)−H(x, p) = p(f(x)ep − g(x)e−p)− f(x)ep − g(x)e−p − h(x)

Here Hx(x, p) = ∂H(x, p)/∂x, Hp(x, p) = ∂H(x, p)/∂p, and the symbol f ′(x)
denotes the derivative of function f(x).

The system (13) is considered with initial conditions

x(0, y) = y, p(0, y) = u′0(y), z(0, y) = u0(y), y ∈ [x∗;x
∗]. (14)

Solutions of the system (13), (14) are called characteristics. The components x(·, y),
p(·, y) and z(·, y) of the solution are called state, momentum and value characteris-
tics, respectively.

Writing out the necessary conditions for an extremum, we obtain that extremals
of the variational problem (12) are the state characteristics. From the first equation
of system (13) and conditions imposed on functions f(·) and g(·), we find that all
extremals arriving at point (t, x) ∈ ΠT lie inside the region ΠT , i.e., belong to the
class C1(0, T ; (x∗;x

∗)).
From the coercivity of the Hamiltonian defined by the formula H (3) in region

ΠT it follows that the second partial derivative H∗qq of the conjugate function H∗

(11) on variable q is non-negative in this region.
Indeed, let us calculate

H∗(x, q) = −h(x) + q ln

(
q +

√
q2 + 4f(x)g(x)

2f(x)

)
−
√
q2 + 4f(x)g(x),

H∗qq(x, q) =
1√

q2 + 4f(x)g(x)
> 0, x ∈ (x∗, x

∗), q ∈ IR. (15)

Since the state space is one-dimensional, using results of (Clarke, 1983) and
(Soga, 2023), one can show from (15) that minimum in (12) is attained.

According to results of papers (Mirică, 1987; Subbotina, 2004) devoted to the
method of generalized characteristics, the value (10) of the viscosity solution at
point (t, x) ∈ ΠT is equal to

u(t, x) = min

u0(y) +
+

t∫
0

(p(τ)Hp(x(τ), p(τ))−H(x(τ), p(τ))) dτ

∣∣∣∣∣∣x(t, y) = x

 ,

(16)

where x(t) = x(t, y) and p(t) = p(t, y) are, respectively, the state and momentum
components of the solution of the characteristic system (13), (14), determined by
the parameter y ∈ (x∗, x

∗).
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Consider the equation for the momentum component of the characteristic in the
system (13). Since the functions h, f , and g defined on the bounded segment [x∗, x∗],
are continuously differentiable, and f and g, in addition, are strictly increasing and
strictly decreasing functions, respectively, we can obtain the following estimate

−Aep −B < ṗ < Ae−p +B,

where A > 0, B ≥ 0. Using this estimate, one can show that there exist numbers
K > 0, C1, and C2 such that

−Kt+ C1 < p(t) < Kt+ C2. (17)

It follows from the estimate (17) that in the region ΠT momentum components
p(t) take finite values, therefore the corresponding state components x(t) of the
characteristic system (13) can be extended either to moment t = T or to the upper
(x = x∗) or lower (x = x∗) boundary of the region ΠT . Therefore, the function
given by formula (16) can be continuously extended to the region ΠT closed in x.

It is obvious that the extension u(t, x) constructed in this way satisfies the initial
condition (2). Using a scheme similar to that used to prove the superdifferentiability
of the generalized solution in (Subbotina and Shagalova, 2011), one can prove that
function u(t, x) is subdifferentiable in the domain ΠT , that is,

∀(t, x) ∈ ΠT D−(t, x) ̸= ∅.

Note that if function u is differentiable at point (t, x), then

D−(t, x) = D+(t, x) =

{(
∂u(t, x)

∂t
,
∂u(t, x)

∂x

)}
.

It follows from (16) that function u(t, x) satisfies differential inequalities (6),
(7) in the domain ΠT . Thus, to show that this function is a viscosity solution of
problem A, it is necessary to check the fulfillment of inequality (7) at the points of
the set ΠT belonging to lines x = x∗ and x = x∗.

Let Dif(u) denote the set of points at which function u(·) is differentiable. By
co W we denote the convex hull of set W . Define the set

∂u(t, x) = co
{
(a, s)

∣∣∣ a = lim
i→∞

∂u(ti,xi)
∂t , s = lim

i→∞
∂u(ti,xi)

∂x ;

(ti, xi) → (t, x) as i→ ∞, (ti, xi) ∈ Dif(u)
}

.

For 0 < t < T the inclusions are valid

D−(t, x∗) ⊂ {(a, s− k)|(a, s) ∈ ∂u(t, x∗), k > 0} ,
D−(t, x∗) ⊂ {(a, s+ k)|(a, s) ∈ ∂u(t, x∗), k > 0} .

Thus, by virtue of (3), to verify that inequality (7) is satisfied on the upper
boundary of the domain ΠT , it is enough to show that if

a+ h(x∗) + f(x∗)ep ≥ 0,

then for all s > 0 the following holds:

a+ h(x∗) + f(x∗)ep+s ≥ 0. (18)
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Since f(x∗) > 0, the inequality (18) is valid. Thus, on the upper boundary
x = x∗ the differential inequality (7) holds for the subdifferential of function u(·).

To verify inequality (7) on line x = x∗, the lower boundary of the set ΠT , it
suffices to show that if

a+ h(x∗) + g(x∗)e
−p ≥ 0,

then for all s > 0, we have

a+ h(x∗) + g(x∗)e
−(p−s) = a+ h(x∗) + g(x∗)e

−p+s ≥ 0. (19)

Inequality (19) is valid since g(x∗) > 0. Thus, at the points of lower boundary
x = x∗ the differential inequality (7) holds, and this completes the proof that
function u(·) constructed in the domain ΠT satisfies definition 2, so this function
is a viscosity solution.

Since the Hamiltonian (3) and the function u0(·) are continuously differentiable,
it follows from results of (Capuzzo-Dolcetta and Lions, 1990) that the viscosity so-
lution in the closed bounded domain ΠT is unique.

So, the following statement is valid.

Theorem 1. The viscosity solution of problem A exists and is unique. This solution
can be constructed using characteristics according to the representative formula (16)
where parameter y ∈ [x∗, x

∗].

Proof. The statement of the theorem follows from the above constructions. ⊓⊔

Note that an essential point in the proof of theorem 1 is the analysis of the
behavior of solutions of the characteristic system (13), (14). The viscosity solution
is constructed from the characteristics, and these constructions can be carried out,
since all state characteristics can be extended to moment T or to the boundary of
the considered set.

5. On the Solution of Problem B

5.1. Behavior of characteristics. Examples
In Problem B, the Hamiltonian is given by the expression (4), so the correspond-

ing characteristic system has the form

ẋ = Hp(x, p) = −f(x)ep + g(x)e−p,

ṗ = −Hx(x, p) = −h′(x) + f ′(x)ep + g′(x)e−p, (20)

ż = pHp(x, p)−H(x, p) = p(−f(x)ep + g(x)e−p) + f(x)ep + g(x)e−p − h(x)

Analyzing the behavior of the system (20), one can find that non-extensibility of
characteristics is possible here, when the corresponding state components increase
or decrease infinitely, tending to the corresponding values +∞ or −∞. In addition,
situations are possible when in the region ΠT there are points through which no
state characteristic passes. Examples of such situations and a detailed analysis of
the behavior of solutions of the characteristic system for a Hamiltonian of the form

H(x, p) = h(x)− 1 + x

2
e2p − 1− x

2
e−2p
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are given in (Subbotina and Shagalova, 2011), (Shagalova, 2024).
Fig. 1 and Fig. 2 show the behavior of state characteristics for problem A and

problem B, respectively, in the case when h(x) = 0.2x2, f(x) = 1+x, g(x) = 1−x,
u0(x) = 0.1 cos 10x.
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0.8

1

t

x

Fig. 1. Example of behavior of state characteristics in problem A

5.2. Non-Existence of a Continuous Viscosity Solution in the General
Case

Let us show that if at some point of the set ΠT lying on one of the lines x =
x∗ and x = x∗ the subdifferential of function u is nonempty, then this function
cannot be a viscosity solution of problem B. Let, for definiteness, there exists t∗ ∈
(0, T ) such that (a, s) ∈ D−u(t∗, x

∗). From the definition 1 of the subdifferential
(formula (5)) it follows that then for any k > 0 the following holds: (a, s + k) ∈
D−u(t∗, x

∗). In this case, inequality (7), which the viscosity solution must satisfy,
takes the form

a+ h(x∗)− f(x∗)es+k ≥ 0 ∀k > 0. (21)

Since f(x∗) > 0, inequality (21) does not hold.
Thus, for problem B in the general case it is impossible to construct a continuous

viscosity solution. To correctly define a continuous generalized solution to problem
B, additional conditions must be used. Examples of constructing such generalized
solutions are presented in (Subbotina and Shagalova, 2011), (Shagalova, 2024).

6. Conclusion

Two Hamilton-Jacobi equations with an exponential dependence of the Hamil-
tonians on the momentum, which is not typical for the theory, are considered. The
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Fig. 2. Example of behavior of state characteristics in problem B

Hamiltonians in both equations are defined using the same coefficient functions and
differ only in the signs in front of these coefficients. In Problem A, the signs are
positive, and the Hamiltonian is convex on the momentum variable. In Problem B,
the signs are negative, and the Hamiltonian is concave on the momentum.

The characteristics in Problem A can be extended to the boundary of the set
under consideration, and all their components take finite values. This allows us to
determine a viscosity solution, which is unique.

In Problem B, the characteristics can be non-extendable and take infinite values,
so in the general case it is impossible to construct a continuous viscosity solution.
Additional conditions are required to determine a continuous generalized solution
to Problem B.
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