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Abstract In the paper, a cooperative differential network game is consid-
ered. We suppose that players simultaneously and independently choose the
neighbor with whom they intend to interact during the game. Each player
can choose neighbors from a fixed subset of players. Such subsets can be
different for different players, and for each player, the number of its possible
neighbors is limited. The players create the network to miximize the joint
payoff. But network which is optimal at the initial time instant may cease
to be so afterwords.
As solution the Shapley value is proposed. The results are illustrated on an
example.
Keywords: cooperative communication structures, dynamic network game,
the Shapley value.

1. Introduction

In the paper, a cooperative differential n-person network game is considered.
In (Cao et al., 1963, Gao and Pankratova, 2017, Meza and Lopez-Barrientos, 2016,
Petrosyan, 2010, Yeung and Petrosyan, 2018, Petrosyan and Yeung, 2020) different
approaches for the definition of the characteristic function in differential network
games are presented. In some of them, a special type of characteristic function is
introduced, which not only simplifies the finding of a cooperative solution for differ-
ential network games, but also provides solutions with such an important property
as time consistency (Petrosyan and Zaccour, 2003, Yeung, 2010). This paper is a
continuation of (Tur and Petrosyan, 2020, Petrosyan et al., 2021, Petrosyan et al.,
2024).

We assume that starting from t0 at specified time instants players adjust (have
the possibility to change) the network by making simultaneous neighbour selections
at time instants tk, k = 1, . . . , n (just as it happened at the beginning of the game),
and then act cooperatively in accordance with the trajectory maximizing the total
payoff in the network selected at the begining of the game (time instant t0).

2. Differential Network Games

Consider a class of n-person differential games on the network with game horizon
[t0, T ].

– N = {1, 2, · · · , n} is the set of players (nodes) in the network.
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– Denote the set of all arcs in network N by P . P = {arc (i, j) : i, j ∈ N, i ̸= j}.
– The set of players connected to player i is K(i) = {j : arc(i, j) ∈ P}, for i ∈ N .

Let xi(τ) ∈ Rm be the state variable of player i ∈ N at time τ , and ui(τ) ∈
U i ⊂ Rk control variable of player i ∈ N , Ui is a compact set.

At t0 players simultaneously and independently choose neighbors with whom
they intend to interact during the game. Player i can choose neighbors from a fixed
subset of players Ni ⊂ N\{i}, where N is the set of all players. The sets Ni can
be different for different players, and for each player i, the number of its possible
neighbors is limited by the number ni. Communication is established (that is, the
link is created in the network) between players i and j if i ∈ Nj , j ∈ Ni.

The state dynamics of the game is

ẋi(τ) = f i(xi(τ), ui(τ)), xi(t0) = xi0, for τ ∈ [t0, T ] and i ∈ N. (1)

Functions f i(xi, ui) are continuously differentiable in xi and ui and satisfy the
conditions of existence, uniqueness and continuability of the solution on the inter-
val (t0, T ) for all admissible piecewise continuous controls with a finite number of
discontinuity points. For notational convenience, we use x(t) to denote the vector
(x1(t), x2(t), · · · , xn(t)).

We consider a special case, when the payoff of player i depends upon his state
variable and the state variables of players from the set K(i). Thus, if the connections
remain valued, the payoff of player i is given as

Hi

(
x01, . . . , x

0
n, u

1, . . . , un
)
=

∑
j∈K(i)

∫ T

t0

hji
(
xi (τ) , xj (τ)

)
dτ , i ∈ N (2)

provided that the players do not interrupt communication. In case, the player
i interrupts the communication with player j at some time instant t functions
hji (x

i(τ), xj(τ)) and hij(xj(τ), xi(τ)) will be set 0 for all τ ≥ t, t ∈ [t0, T ]. Function
hji
(
xi (τ) , xj (τ)

)
is the instantaneous gain that player i can obtain through network

links with player j∈K(i) (note that (i, i) /∈P ), and non-negative for j∈K(i).

3. Cooperative Differential Game

In what follows we consider the cooperative version of the game. In [1-3], it is
assumed, that at any time instant, players can break connection between themselves
and other players. Taking into account the non-negativity of players’ payoffs, this
assumption greatly simplified the construction of the characteristic function of the
game and, as a result, the calculation of optimality principles from cooperative game
theory based on it.

Define the value of the characteristic function for coalition N in the network G.

VG (x0, T − t0;N) = max
ui,i∈N

∑
i∈N

∑
j∈K(i)

∫ T

t0

hji
(
xi (τ) , xj (τ)

)
dτ

=
∑
i∈N

∑
j∈K(i)

∫ T

t0

hji
(
x̄i (τ) , x̄j (τ)

)
dτ
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where maximum is taken over the set of all admissible controls.
Denote by V (x0, T − t0;N) = max

G
VG(x0, T − t0;N) = VḠ(x0, T − t0;N).

Define values of the characteristic function for coalitions S ⊂ N as

V (x0, T − t0;S) =
∑
i∈S

∑
j∈S∩K(i)

∫ T

t0

hji
(
x̄i (τ) , x̄j (τ)

)
dτ, S ⊂ N.

Note that the value of VG(x0, T−t0;N) depends on the network that was formed
at the initial time instant t0 as a result of the simultaneous selection of neighbors
by players. We assumed that players choose such a network Ḡ, which gives the
maximum total payoff of players from the set N , i.e. VḠ(x0, T − t0;N). We will call
such network Ḡ a cooperative network or a cooperative interaction network.

Note that during evolution of the game along the cooperative trajectory (x̄i(τ))
there is the following non-trivial property, which, it seems to us, has not been
noticed by anyone before, that at some intermediate time instant on the cooperative
trajectory, the cooperative network may cease to be such, since the maximum total
payoff of players in the subgame from the initial states on the cooperative trajectory
can be achieved on another network. We shall show that on the example.

For convenience, introduce the following notation

γij(t) = γij(x̄(t), T − t) =

∫ T

t

hji (x̄
i(τ), x̄j(τ))dτ, (3)

Example 1. Consider a network of six players (A, B, C, D, E, F ). Assume that all
players can create no more than three connections.

Suppose that

γ(x0, T − t0) = {γij}i,j=1,...6 =


0 7 4 8 4 2
6 0 7 10 3 1
3 6 0 6 8 4
7 9 7 0 5 6
5 3 7 4 0 3
3 5 2 4 2 0


where γ is a matrix of payoffs that players can get during the time T − t0 by
cooperation.

Define the maximazing network (Fig.1) at time instant t0, or in other words,
define a network that maximizes the sum of players’ payoffs at the initial time t0,
provided that players cannot create more than three connections. The maximum
total payoff is 105.

Suppose that, in this case, along the cooperative trajectory, players’ payoffs
change as follows (γ(x0, T − t0) is determined by formula (3)).

γ(x0, T − t0) = γ(x0, t
′ − t0) + γ(x̄(t′), T − t′) =


0 7 4 8 4 2
6 0 7 10 3 1
3 6 0 6 8 4
7 9 7 0 5 6
5 3 7 4 0 3
3 5 2 4 2 0

 =


0 3 1 8 2 0
2 0 5 0 0 1
0 4 0 6 7 2
7 8 0 0 5 6
3 0 6 4 0 1
3 2 1 4 1 0

+


0 4 3 0 2 2
4 0 2 10 3 0
3 2 0 0 1 2
0 1 7 0 0 0
2 3 1 0 0 2
1 3 1 0 1 0
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Fig. 1. The maximum network at time instant t0 under condition that players
cannot create more than three connections

Define a network at time instant t′, or in other words, define a network that
maximizes the sum of total payoff of players at time instant t′, provided that players
cannot create more than three connections. We see that at time instant t′ on time
interval [t′, T ] the initial network has ceased to be optimal, i.e. there is another
network that gives the maximum total payoff of players on remaining time interval
[t′, T ].

The maximazing network in the subgame, starting at t′, has the following struc-
ture (Fig. 2).

Fig. 2. The network at time instant t′ provided that players cannot create more
than three connections

The maximum total payoff of players in subgame defined in time interval [t′, T ]
is 48.
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As we have already seen, even in simple cases, a permanent network (which
does not change throughout the game) does not provide maximum total payoff to
players, i.e. it cannot be considered as the basis of cooperation on the entire time
interval [t0, T ] of the game.

In this paper, we assume that at specified time instants t1, t2, . . . , tr, players ad-
just (have the possibility to change) the network by making simultaneous neighbour
selections (just as it happened at the beginning of the game), and then on the sub-
sequent time interval act cooperatively in the corresponding subgame in accordance
with the trajectory maximizing the total payoff in the network Ḡ selected in time
instant t0 on the time interval [tk, T ] until the moment of the next correction tk+1.

Denote the trajectory adjusted at time instants t1, t2, . . . , tr by ¯̄x(t). In this set-
ting, we propose as cooperative solution the so-called locally cooperative trajectory.
Namely, the time interval [t0, T ] is divided into sub-intervals [t0, t1), [t1, t2), . . .,
(tr−1, T ], and the following local cooperative behavior is proposed:

– at time instant t0, the network that maximizes the total payoff on the interval [t0, T ] is
selected, and the game evaluates on the time interval [t0, t1) along the corresponding
maximizing (cooperative) trajectory without changing the network.

– at time instant t1, the choice is made to find a network that maximizes the total
payoff of players on the interval (t1, T ] (this network may differ or coincide with the
previous network) and move on the time interval [t1, t2) along the previous maximizing
(cooperative) trajectory or if the new network coincides with the previous one moves
without changing the network.

– next, at the time instant tk, the network is selected that maximizes the total payoff
for the remaining period of time (tk, T ], and so continues to act similarly until the
time instant tr−1.

As a result, we get the sequence of networks

Gt0 , Gt2 , . . . , Gtr−1

and the trajectory

¯̄x(t) = x̄(t), t ∈ [tk, tk+1), k ∈ 0, 1, . . . , r − 1,

consisting of pieces of cooperative trajectory defined in the game on the time interval
[t0, T ]. We shall denote this trajectory the conditional cooperative trajectory.

Introduce an analogue of the characteristic function on the time interval [t0, T ]
corresponding to the conditional cooperative trajectory ¯̄x(t) .

V̄ (x0, T − t0;S) =

r−1∑
k=0

∑
i∈S

∑
j∈S∩K

Gtk (i)

∫ tk+1

tk

hji
(
¯̄xi (τk) , ¯̄x

j (τk)
)
dτk, (4)

for all S ⊂ N , and KGtk (i) is set of players connected to player i in the network
Gtk

Proposition 1. The function V̄ (x0, T − t0;S) defined by (4) is superadditive.
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4. The Shapley Value

Calculate the Shapley value for the introduced above analogue of the character-
istic function (Shapley, 1953, Petrosyan and Yeung, 2020, Petrosyan and Zaccour,
2003)

S̄hi(x0, t0) =
∑
S⊂N,
S∋i

(|S| − 1)!(n− |S|)!
n!

× (5)

[V̄ (x0, T − t0, S)− V̄ (x0, T − t0, S\{i})]. i ∈ N,

and we shall call vector S̄h — modified Shapley value.
It can be shown that the modified Shapley value is time-consistent (dynamically

stable) (Yeung, 2010).

Proposition 2. Modified Shapley value determined by the formula (5) with the
analogue of the characteristic function (4) is time consistent.

Example 2. Consider an example of a network game |N | = 6 with players A, B, C,
D, E. On the Fig. 1. we have the network Ḡt0 which maximizes the players’ joint
payoff on time interval [t0, T ].

Find the Shapley value for the initial network which maximizes the joint payoff
of players. Denote by γij(x0, T − t0) = γij , i, j = A,B,C,D,E, F .

ShA(x0, t0) =
γAB + γBA + γAE + γEA + γAD + γDA

2
=

37

2
,

ShB(x0, t0) =
γAB + γBA + γCB + γBC + γBD + γDB

2
=

45

2
,

ShC(x0, t0) =
γCB + γBC + γCE + γEC + γCF + γFC

2
=

34

2
,

ShD(x0, t0) =
γDA + γAD + γBD + γDB + γDF + γFD

2
= 22,

ShE(x0, t0) =
γCE + γEC + γEA + γAE + γEF + γFE

2
=

29

2

ShF (x0, t0) =
γFE + γEF + γFD + γDF + γFC + γCF

2
=

21

2
.

Compute the vector of payments to players on the interval [t0, t′), if these pay-
ments are made in accordance with the Shapley value calculated for the initial
network which maximizes the joint payoff on time interval [t0, T ] of players without
the correction of the network at the time instant t′. Denote by γij(x0, t′− t0) = γ0ij ,
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i, j = A,B,C,D,E, F

HsA(x0, t0) =
γ0AB + γ0BA + γ0AE + γ0EA + γ0AD + γ0DA

2
= 9,

HsB(x0, t0) =
γ0AB + γ0BA + γ0CB + γ0BC + γ0BD + γ0DB

2
= 12.5,

HsC(x0, t0) =
γ0CB + γ0BC + γ0CE + γ0EC + γ0CF + γ0FC

2
= 8,

HsD(x0, t0) =
γ0DA + γ0AD + γ0BD + γ0DB + γ0DF + γ0FD

2
= 9,

HsE(x0, t0) =
γ0CE + γ0EC + γ0EA + γ0AE + γ0EF + γ0FE

2
= 6.5,

HsF (x0, t0) =
γ0FE + γ0EF + γ0FD + γ0DF + γ0FC + γ0CF

2
= 3.

On the figure (Fig.2 ) we present Ḡ1 which maximizes the players’ joint payoff
on time interval [t′, T ].

Find the Shapley value for the network which maximizes the joint payoff of
players on time interval [t′, T ] (the network Ḡ1). Denote by γij(¯̄x(t′), T − t′) = γ′ij ,
i, j = A,B,C,D,E, F

ShA(¯̄x(t
′), t′) =

γ′AB + γ′BA + γ′AE + γ′EA + γAD + γ′DA
2

= 12.5,

ShB(¯̄x(t
′), t′) =

γ′AB + γ′BA + γ′CB + γ′BC + γ′BD + γ′DB
2

= 11,

ShC(¯̄x(t
′), t′) =

γ′CB + γ′BC + γ′CE + γ′EC + γ′CF + γ′FC
2

= 12.5,

ShD(¯̄x(t
′), t′) =

γ′DA + γ′AD + γ′BD + γ′DB + γ′DF + γ′FD
2

= 16.5,

ShE(¯̄x(t
′), t′) =

γ′CE + γ′EC + γ′EA + γ′AE + γ′EF + γ′FE
2

= 10,

ShF (¯̄x(t
′), t′) =

γ′FE + γ′EF + γ′FD + γ′DF + γ′FC + γ′CF
2

= 7.5

We see (Table 1) that after the correction of network at time instant t′ the joint
payoff of players increases.

– This justifies the correction of the network that we have introduced. As a result,
the components of the Shapley value for four out of 6 players increase as well,
i.e.

S̄hi(x0, t0) = HSi(x0, t0) + Shi(¯̄x(t
′), t′) > Shi(t0, x0), i = A,B,C,D,E

S̄hF (x0, t0) = HSF (x0, t0) + ShF (¯̄x(t
′), t′) < ShF (t0, x0).
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Table 1. Comparison of the solutions
Players Shi(x0, t0) S̄hi(x0, t0)

A 18.5 9 + 12.5 = 21.5
B 22.5 12.5 + 11 = 23.5
C 17 8 + 12, 5 = 20.5
D 22 9 + 16.5 = 25.5
E 14.5 6.5 + 10 = 16.5
F 18.5 3+7.5=10.5

Joint Payoff 105 117.5

The example shows only a lower estimate for the possibility of increasing the
cooperative joint payoff, since the increase occurs only due to the correction of
the network structure, without changing the optimal cooperative control, using the
same as calculated for a time interval [t0, T ]. Additional optimization of controls
gives an even greater increase in the maximum joint payoff (cooperative payoff).

5. Conclusion

We considered a cooperative differential network game where players simultane-
ously and independently choose neighbors with whom they intend to interact during
the game. The players create the network to miximize the joint payoff. We proved
that network which is optimal at the initial time instant may cease to be so at some
intermediate time instant.
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