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Abstract This paper presents the dynamic epidemic model of the direct
transmission of the vector-host type. The malaria distribution model is de-
termined by a system of ordinary differential equations. The host population
is divided into four subpopulations: susceptible, exposed, infected, and re-
covered, and the vector population is divided into three subpopulations:
susceptible, exposed, and infected. Using the theory of Lyapunov functions,
certain sufficient conditions are achieved for the stability of the disease-free
equilibrium and endemic equilibrium. The basic reproductive number R0

has been found, it characterizes the epidemic development in the population.
The part of the human population is vaccinated and we examine how this
prevents the development of mosquitoes in the vector population. Finally,
numerical modeling is carried out to study the influence of key parameters
on the spread of vector-borne diseases.
Keywords: malaria, vector-host epidemic model, numerical modeling, host
population, vector population, subpopulations, reproductive number, disease-
free equilibrium, endemic equilibrium.

1. Introduction

Malaria is a vector-borne disease transmitted during blood meal by infectious
anopheles mosquitoes as a result of sporozoites spreading into the blood of suscep-
tible people (Niare et al., 2016). According to the latest global malaria report from
the World Health Organization (WHO), in 2020, there were about 241 million cases
of malaria worldwide and 627000 deaths from malaria. This is about 14 million
more cases in 2020 compared to 2019 and 69000 more deaths. Approximately two
thirds of these additional deaths (47000) have been associated with interruptions
in the provision of malaria prevention, diagnosis, and treatment services during the
pandemic (Labadin et al., 2009, WHO, 2021).

Mathematical modeling is an important tool for understanding the spread of
infectious diseases. Modeling means describing the real situation in a mathematical
form, most often in equations, so one cannot pretend to model the spread of the
disease without knowing, at least in general terms, the mechanisms of its spread.

The mathematical model provides only part of the theory to determine the dy-
namics and possible measures to combat the transmission of pathogens by mosquitoes:
it is also necessary to use epidemiological and entomological concepts to measure
disease transmission (Smith et al., 2021). Mathematical modeling uses more or less
computerized models to describe, explain, or predict behavior or phenomena in the
real world. This approach is especially relevant for studying questions or testing
ideas in complex systems. It makes an important contribution to decision-making
in the fight against simulated disease, which involves a profound change in the
complex network of interconnected biological systems. The evolutionary potential
of parasites and vectors, the increase and decrease of human immunity, behavioral
https://doi.org/10.21638/11701/spbu31.2024.11
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changes in human and vector populations, as well as interactions within numerous
and heterogeneous subpopulations of the corresponding organisms complicate the
development of optimal programs and policies (WHO, 2024).

The popularity of modeling the spread of malaria is partly explained by its
virulence. It is indeed one of the causes of mortality among infectious diseases
worldwide, such as respiratory infections, HIV/AIDS, diarrhea diseases, and tuber-
culosis (Jia, 2013). From one to three million people die from malaria every year,
75% of which are African children (Nakul et al., 2006). In sub-Saharan Africa, it is
the second leading cause of death.

In the Millennium Development Goals, WHO has set itself the goal of eradicat-
ing this disease. The joint efforts of many stakeholders are needed to achieve this
goal. Among these subjects, mathematicians have a role to play in developing math-
ematical models that will help public health authorities take consistent measures to
reduce the spread of this disease and thus lead to a reduction in mortality rates.

Since the nineteenth century, the development of mathematical models has been
crucial in providing a foundation and understanding of the dynamics of infectious
diseases (Bernoulli, 1760, Kermack et al., 1927, Dietz et al., 2002). Several mathe-
matical models of malaria dynamics have appeared in the literature, studying var-
ious aspects of this disease (Herdicho et al., 2021). While the mosquito population
fluctuates depending on the climatic seasons, the seasonal factor usually affects the
dynamics of infected mosquitoes and human populations in regions with a warm
climate (Herdicho et al., 2021). Due to mathematical traceability and convenience,
we will not take into account the seasonality of mosquito birth rates. For several
decades, concerted and determined efforts have been made around the world to
develop an effective and safe vaccine for usage in the human population against
malaria (Forouzannia et al., 2014), with several candidate vaccines targeted at var-
ious stages of the malaria parasite life cycle (Forouzannia et al., 2015). In this math-
ematical model, the strategy of destroying the mosquito population is investigated.
A review of integrated mathematical models for predicting the epidemiological and
economic impact of malaria vaccines on clinical epidemiology and the natural his-
tory of malaria Plasmodium falciparum at both the individual and population levels
were presented in Smith et al., 2006, Atcheson et al., 2019. It should be noted that
these models provide a unique platform for predicting the short- and long-term
effects of malaria vaccines on disease burden, as well as on mosquito eradication
strategy, which allows to consider the temporal dynamics of effects on immunity
and transmission. As mathematical models are increasingly used to make informed
decisions throughout the product development process, from preclinical research to
the introduction of new health interventions in countries, Galactionova et al., 2021
illustrate the usefulness of simulation approaches by considering research on the
modeling of an antimalarial vaccine. A mathematical model of the vaccine associa-
tion suitable for mouse malaria research based on simple probabilistic assumptions
is developed in Atcheson et al., 2019.

Vaccines blocking malaria transmission have been investigated
in Takashima et al., 2021, where it is shown, as expected, that vaccination has a
positive effect on reducing disease burden, while malaria can be controlled if the
duration of effectiveness is within the range of human life expectancy (Koella, 1991).
The impact of the dynamic transmission blocking vaccine model on public health,
along with existing interventions, suggests that school-age children are an attractive
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population group to target when vaccinating (Challenger et al., 2021). That is, the
benefits of vaccination, widespread among the population, make it possible to avoid
the greatest number of cases of the disease in the population of young children. Even
an imperfect malaria vaccine (with modest effectiveness and coverage) can lead to
effective disease control (Teboh-Ewungkem et al., 2010).

This paper is a continuation of the work Ndiaye, 2022, where the epidemic
model of malaria in the absence of vaccination is examined. It proposes a math-
ematical model of malaria spreading in a human population that is divided into
susceptible, exposed, infected, and recovered while the mosquito population is di-
vided into susceptible, exposed, and infected subpopulations. The system is mod-
eled by differential equations. The stability of the equilibrium of the differential
equation system is studied. The analysis shows that there are equilibria char-
acterizing the state of the system without an epidemic, as well as stable states
in the presence of an epidemic. Using the theory of Lyapunov functions and the
Routh-Hurwitz criterion, we study the problem of asymptotic stability of equilibria
(Ndiaye and Parilina, 2022). It is shown that the disease-free equilibrium is locally
asymptotically stable when R0 ≤ 1. The endemic equilibrium is also locally asymp-
totically stable when R0 > 1. In Ndiaye and Parilina, 2022, Aldila and Seno, 2019,
Lipsitch et al., 2003, Britton, 2010, Diekmann et al., 2010, Van den Driessche, 2017,
Jones, 2007, it is shown that the dynamics of the system is determined by the value
of the basic reproductive number R0. If R0 ≤ 1, the state of the system is stable
in the absence of disease. If R0 ≥ 1, there is a single endemic equilibrium and it is
asymptotically stable. Numerical modeling is carried out to study the effect of the
level of vaccination of the population on the spread of the disease.

The rest of the paper has the following structure. In Section 2, the construction
of a model is proposed. The equilibria are studied in Section 3. The definition of
the basic reproductive number R0 is provided in Section 4. The stability of the
equilibria is investigated in Section 5. Numerical modeling results are presented in
Section 6. We briefly conclude in Section 7.

2. Mathematical Model

Let there be two populations: a host (human population) and a vector (mosquito
population) that have been vaccinated to reduce disease. Vaccination is expressed
as a percentage. Note that dv is the percentage of vaccination performed in host
population, and σ is a reduction rate of malaria infected mosquitoes by a set of
methods used to eliminate or prevent mosquito development.

The model shown in Fig. 1 is based on the following hypotheses:

1. Absence of migration of individuals in the population;
2. Assumption that the sizes of both populations (human and mosquito) are not

constant during a study interval;
3. Relatively short lifespan (an infected mosquito does not have time to recover);
4. Assumption that a susceptible person becomes contagious after an infected

mosquito bite and becomes susceptible again after recovery; and a healthy
mosquito becomes infected after it bites an infected person.

The total host population can be represented as N(t) = S(t)+E(t)+I(t)+R(t)
and the total vector population can be represented as Nk(t) = Sk(t)+Ek(t)+Ik(t).
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Fig. 1. Vector-borne model with vaccination

The mathematical model of population dynamics (human and mosquito) can
be represented analytically by the following nonlinear system of seven ordinary
differential equations:

dS(t)

dt
= −αS(t)Ik(t) + aN0(t)− a′S(t)− dvS(t),

dE(t)

dt
= αS(t)Ik(t) + µR(t)− bE(t)− βE(t),

dI(t)

dt
= βE(t)− cI(t)− γI(t),

dR(t)

dt
= γI(t)− δR(t)− µR(t) + dvS(t),

dSk(t)

dt
= −αkSk(t)I(t) + akNk0(t)− a′kSk(t)− σSk(t),

dEk(t)

dt
= αkSk(t)I(t)− bkEk(t)− βkEk(t)− σEk(t),

dIk(t)

dt
= βkEk(t)− ckIk(t)− σIk(t),

(1)

with initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, Sk(0) ≥ 0, Ek(0) ≥ 0, Ik(0) ≥ 0. (2)
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The general dynamics of human population is represented by the equation:

dN

dt
= aN0 − a′S − bE − cI − δR.

Given initial conditions (2) must satisfy inequality:N(0) ≥ 0. Thus, total population
size N(t) remains positive and limited during the entire time t > 0. The dynamics
of mosquito population is as follows

dNk
dt

= aN0k − a′Sk − bEk − cIk − σ(Sk + Ek + Ik).

The model uses the following parameters:

– N(t) — size of human population;
– S(t) — size of subpopulation of susceptible individuals;
– E(t) — size of subpopulation of exposed people;
– I(t) — size of subpopulation of infected people;
– R(t) — size of subpopulation of recovered people;
– a — birth rate in human population;
– a′ — mortality rate among subpopulation S;
– b — mortality rate among subpopulation E;
– c — mortality rate among infected subpopulation I;
– δ — mortality rate among recovered subpopulation R;
– β — intensity of people’s transition from subpopulation E to I with the onset

of isease symptoms;
– γ — intensity of people’s recovery, i.e. transition from subpopulation I to R;
– µ — rate of people’s return from recovered to susceptible;
– α — probability of transmitting an infectious mosquito bite to a susceptible

person;
– Nk(t) — total mosquito population;
– Sk(t) — number of mosquitoes that can be infected;
– Ek(t) — number of mosquitoes susceptible to the disease;
– Ik(t) — number of infected mosquitoes;
– ak(t) — birth rate in mosquito population;
– a′k(t) — mortality in susceptible mosquito population;
– bk(t) — mortality of exposed mosquito population;
– ck(t) — mortality of infected mosquito population;
– αk(t) — probability of mosquito moving from susceptible to exposed group;
– βk(t) — coefficient of mosquitoes that begin to show disease symptoms;
– dv ∈ (0, 1) — level of vaccination of susceptible part of population;
– σ — decrease level of mosquito population as a result of anti-epidemiological

measures.

2.1. Region of Admissible Values
A mathematical model represented by a system of differential equations (1)

describes changes in human and mosquito populations. Therefore, it is important
to make sure that all solutions with nonnegative initial conditions (2) will remain
nonnegative for any t. All solutions of the proposed system that have initial data
in region Ω.
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Theorem 1. Let (S,E, I,R, Sk, Ek, Ik) be any solution of system (1) with positive
initial conditions (2). For any time t ≥ 0 there exists:

Ω =
{
(S,E, I,R, Sk, Ek, Ik) ∈ R

7
+, V1 ≤ aN0

a′ + b+ c+ δ
, V2 ≤ akN0k

a′k + bk + ck + σ

}
.

Then Ω is positively invariant and absorbing for system (1) with initial conditions
(2).

Proof. To prove the theorem, we use the Lyapunov functions. Consider the Lya-
punov function V (t) = (V1(t), V2(t)). Suppose that functions V1(t), V2(t) are de-
fined for ∀ t ≥ 0, they are also differentiable and continuously differentiable on set
Ω containing the origin.

The time derivative of function V (t) is equal to

dV (t)

dt
=


dV1(t)

dt
= aN0 − (a′ + b+ c+ δ)V1 − a′S − bE − cI − δR,

dV2(t)

dt
= akN0k − (a′k + bk + ck + σ)V2 − a′kSk − bkEk − ckIk − σNk.

(3)
For system (3), it is obvious that

dV1(t)

dt
≤ aN0 − (a′ + b+ c+ δ)V1,

dV2(t)

dt
≤ akN0k − (a′k + bk + ck + σ)V2.

(4)

By the properties of the Lyapunov function, we obtain the following conditions:
dV1
dt

≤ aN0 − (a′ + b+ c+ δ)V1 ≤ 0 for V1 ≥ aN0

a′ + b+ c+ σ
,

dV2
dt

≤ akN0k − (a′k + bk + ck + σ)V2 ≤ 0 for V2 ≥ akN0k

a′k + bk + ck + σ
.

(5)

From the conditions of (5), it follows that
dV (t)

dt
≤ 0, which means that Ω is a

positively invariant and absorbing set.
From the above equations and conditions (3), we obtain the inequalities for V1

and V2:

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ δ
+ e−(a

′+b+c+δ)t
(
V01 −

aN0

a′ + b+ c+ δ

)
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck + σ
+ e−(a

′
k+bk+ck+σ)t

(
V02 −

akN0k

a′k + bk + ck + σ

)
.

For t −→ +∞ we get

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ δ
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck + σ
,
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and we can conclude that Ω is an absorbing set. Indeed, the following inequalities
hold for t −→ +∞:

lim sup
t→+∞

V1 ≤ aN0

a′ + b+ c+ δ
,

lim sup
t→+∞

V2 ≤ akN0k

a′k + bk + ck + σ
.

Thus, Ω is positively invariant, and all solutions are bounded in interval [0,∞).

3. Some Equilibria

For the model, we study two equilibria of a system of differential equations (1):

1. Equilibrium without disease Es;
2. Endemic equilibrium Ee.

Solving the following system of differential equations

−αS(t)Ik(t) + aN(t)− a′S(t)− dvS(t) = 0
αS(t)Ik(t) + µR(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,
γI(t)− δR(t)− µR(t) + dvS(t) = 0,

−αkSk(t)I(t) + akNk(t)− a′kSk(t)− σSk(t) = 0,
αkSk(t)I(t)− bkEk(t)− βkEk(t)− σEk(t) = 0,

βkEk(t)− ckIk(t)− σIk(t) = 0,

(6)

find two equilibrium points:

1. Equilibrium without disease free equilibrium Es = ( a
a′+dvN0, 0, 0, 0,

ak
a′k+dv

N0k , 0, 0),
t .e. this is a solution to a system in which there are no disease cases in both
populations;

2. Endemic equilibrium of system Ee = (S∗, E∗, I∗, R∗, S∗k , E
∗
k , I
∗
k), implying the

presence of a disease and all subpopulations are present in population.

To find equilibrium, from the first equation of system (6) we get

S =
aN0

αIk + a′ + dv
, from the third equation we get E =

c+ γ

β
I or I =

β

c+ γ
E,

then from the fourth equation: R =
γ

δ + µ
I +

dv

σ + µ
S, from the fifth equation:

Sk =
akN0k

αkI + a′k + σ
, from the sixth equation: Ek =

αkSk
bk + βk + σ

I, from the seventh

equation: Ik =
βkEk
ck + σ

, from the second equation: E =
α

b+ β
SIk +

µ

b+ β
R.

Substituting the first, third, fourth, fifth, sixth and seventh equations of system
(6) into the second equation of the system, we obtain

E =
aakααkβkN0N0k(γ + c)(δ + µ)I + µaN0(γ + c)K1

K2(akααkβkN0kI + (a′ + dv)K1)
,
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where

K1 = (ck + σ)(βk + bk + σ)(αkI + a′k + σ),

K2 = (b+ β)(δ + µ)(c+ γ)− µγβ.

Establishing equality with the third equation obtained in system (6), we get an
equation of the second degree, which has two solutions, and the solution that satisfies
the conditions is:

I =
−(βaN0αk(αβkakNk(δ + µ) + µ(ck + σ)(βk + bk + σ)))

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
+

+
−(K2(a

′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)) +
√
∆

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
,

where

∆ = [K2(a
′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)+

+K2(a
′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)]2−

− 4K2(ααkβkakNk0 + αk(a
′ + dv)(ck + σ)×

× (βk + bk + σ))(βaN0µ(ck + σ)(βk + bk + σ)(a′k + σ)).

Therefore, the endemic equilibrium of model (1) is defined as a vector
Ee = (S∗, E∗, I∗, R∗, S∗k , E

∗
k , I
∗
k) with components:

I∗ =
−(βaN0αk(αβkakNk(δ + µ) + µ(ck + σ)(βk + bk + σ)))

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
+

+
−(K2(a

′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)) +
√
∆

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
,

S∗ =
aN0

αI∗k + a′ + dv
,

E∗ =
c+ γ

β
I∗,

R∗ =
γ

δ + µ
I∗ +

dv

δ + µ
S∗,

S∗k =
akN0k

αkI∗ + a′k
σ,

E∗k =
αk

bk + βk − σ
S∗kI

∗,

I∗k =
βk

ck + σ
E∗k .

Equilibrium Ee is an endemic point of the model, where all subgroups of two pop-
ulations are represented.

4. Basic Reproduction Number R0

Determine basic reproduction number R0 for modified model SEIRSkEkIk pre-
sented above. This number is used to study the epidemic process evolution and
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can be interpreted as an average number of new malaria cases caused by one in-
fected person in a fully susceptible population. To calculate R0, we use a method
of next-generation matrix described in Calistus, 2022, Chander and Tulkens, 1997,
Chang et al., 2020, Cooper et al., 2020. For the presented model, the calculation of
R0 can be represented as follows:

dx

dt
= F (x)− V (x),

x = (S,E, I,R, Sk, Ek, Ik)
T .

Using a next generation matrix method, the following calculations are required.
First, we define matrices F and V :

F =


αkSk(t)I(t)

0
αS(t)Ik(t)

0

 , V+ =


µR(t)
βE(t)

0
βkEk(t)

 , V− =


−(b+ β)E(t)
−(c+ γ)I(t)

−(bk + βk)Ek(t)− σEk
−ckIk(t)− σIk(t)

 ,

hence we get that

V = V+ + V− =


µR(t)− (b+ β)E(t)
βE(t)− (c+ γ)I(t)

−(bk + βk)Ek(t)− σEk
βkEk(t)− ckIk(t)− σIk

 .

Define matrices

DF(Es) =


0 αkS

0
k 0 0

0 0 0 0
0 0 0 αS0

0 0 0 0

 ,

DV(Es) =


−(b+ β) 0 0 0

β −(c+ γ) 0 0
0 0 −(bk + βk + σ) 0
0 0 βk −(ck + σ)

 .

Hence,

F =

[
0 αkS

0
k

0 0

]
, F ′ =

[
0 αS0

0 0

]
,

V =

[
−(b+ β) 0

β −(c+ γ)

]
, V ′ =

[
−(bk + βk + σ) 0

βk −(ck + σ)

]
.

Calculate R0 using formula R0 = ρ(−FV −1), where

V −1 =
1

det(V )
t(com(V )),

and

det(V ) = (b+ β)(c+ γ), t(com(V )) =

[
−(c+ γ) 0

−β −(b+ β)

]
.
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Substituting det(V ) and t(com(V )) into expression V −1, we get

V −1 =
1

(b+ β)(c+ γ)

[
−(c+ γ) 0

−β −(b+ β)

]
,

(V ′)−1 =
1

(bk + βk + σ)(ck + σ)

[
−(ck + σ) 0

−βk −(bk + βk + σ)

]
.

These formulas are valid:

FV −1 =

[
− αkβS

0
k

(b+β)(c+γ) −
αkS

0
k

c+γ

0 0

]
,

FV ′−1 =

[
− αβkS

0)
(ck+σ)(bk+βk+σ)

− αS0

(ck+σ)

0 0

]
,

calculate Rh and Rk:

Rh = ρ(−FV −1) = αkβS
0
k

(b+ β)(c+ γ)
, Rk = ρ(−FV ′−1) = αβkS

0

(ck + σ)(bk + βk + σ)
,

from which we obtain the basic reproduction number R0 in the form:

R0 = Rh ×Rk =
αkβS

0
kαβkS

0

ck + σ)(bk + βk + σ)(b+ β)(c+ γ)
,

where (S0, S0
k) = ( a

a′+dvN0,
ak

a′k+σ
N0k), and as a result write the final formula for

R0:

R0 =
αβαkβkaakN0N0k

(a′k + σ)(ck + σ)(a′ + dv)(b+ β)(c+ γ)(bk + βk + σ)
.

R0 gives information about the disease course. If R0 ≤ 1, the number of infected
people will decrease, and the disease will eventually pass. If R0 ≥ 1, the number
of infected people increases, the disease can spread to the entire population and
become endemic. Numerical analysis will show how the disease proceeds in the
population at different values of R0.

5. Equilibrium Stability

First, we analyze the stability of equilibrium without disease using the system
of equations (1) using basic reproductive number R0.

Theorem 2. Disease-free equilibrium Es is locally asymptotically stable if R0 ≤ 1
and B1B2B3+B1B5

B2
1B4+B2

3
> 1, and unstable if R0 > 1. Expressions for B1, B2, B3, B4 and

B5 are given in the proof.

Proof. The Jacobi matrix of system (1) is written as
J(S,E, I,R, Sk, Ek, Ik) =

−αIk − a′ − dv 0 0 0 0 0 −αS
αIk −b− β 0 µ 0 0 αS
0 β −c− γ 0 0 0 0
dv 0 γ −δ − µ 0 0 0
0 0 −αkSk 0 −αkI − a′

k − σ 0 0
0 0 αkSk 0 αkI −bk − βk − σ 0
0 0 0 0 0 βk −ck − σ

 .
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The Jacobi matrix at disease-free equilibrium point Es is equal to

J(Es) =



−a′ − dv 0 0 0 0 0 −α aN0
a′+dv

0 −b− β 0 µ 0 0 α aN0
a′+dv

0 β −c− γ 0 0 0 0
dv 0 γ −δ − µ 0 0 0

0 0 −αk
akN0k
a′
k
+σ

0 −a′
k − σ 0 0

0 0 αk
akN0k
a′
k
+σ

0 0 −(bk + βk + σ) 0

0 0 0 0 0 βk −ck − σ


.

Let’s find the eigenvalues of this matrix by equating its determinant to zero, that
is,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a′ − dv − λ 0 0 0 0 0 −α aN0
a′+dv

0 −b− β − λ 0 µ 0 0 α aN0
a′+dv

0 β −c− γ − λ 0 0 0 0
dv 0 γ −δ − µ− λ 0 0 0

0 0 −αk
akN0k
a′
k
−σ

0 −a′
k − σ − λ 0 0

0 0 αk
akN0k
a′
k
+σ

0 0 −(bk + βk + σ)− λ 0

0 0 0 0 0 βk −ck − σ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
we obtain the following characteristic equation:

λ7 +B1λ
6 +B2λ

5 +B3λ
4 +B4λ

3 +B5λ
2 +B6λ+B7 = 0,

where

B1 = βk + bk + ck + 3σ + a′k + γ + c+ δ + µ+ a′ + dv + b+ β,

B2 = (βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ) + (γ + c+ δ + µ+

+ a′ + dv + β + b)(βk + bk + ck + 3σ + a′k) + (a′ + dv)(β + b)+

+ (a′ + dv + β + b)(γ + c+ δ + µ) + (γ + c)(δ + µ),

B3 = (a′k + σ)(βk + bk + σ)(ck + σ) + (γ + c+ δ + µ+ a′ + dv + β + b)

((βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ)) + ((a′ + dv)(β + b)+

+ (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))(βk + bk + ck + 3σ + a′k) + ((a′ + dv)(β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ)(a′ + dv + β + b)) + βγµ,

B4 = (γ + c+ δ + µ+ a′ + dv + β + b)(a′k + σ)(βk + bk + σ)(ck + σ)+

+ ((a′ + dv)(β + b) + (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))((βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ))+

+ (a′ + dv)(β + b)(γ + c+ δ + µ) + (γ + c)(δ + µ)(a′ + dv + β + b)+

+ ((a′ + dv)(β + b) + (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))(βk + bk + ck + 3σ + a′k) + (a′ + dv)(β + b)(γ + c)(δ + µ)−

− αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ) + βγµ(a′ + ak + dv + σ),
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B5 = (a′k + σ)(βk + bk + σ)(ck + σ)((a′ + dv)(β + b) + (a′ + dv + β + b)

(γ + c+ δ + µ) + (γ + c)(δ + µ)) + ((a′ + dv)(β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ)(a′ + dv + β + b))((βk + bk + σ)(ck + σ)+

+ (a′k + σ)(βk + bk + ck + 2σ)) + (a′ + dv)(b+ β)(c+ γ)(δ + µ)

(bk + βk + ck + 3σ + a′k)−
2αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
−

− αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)− (a′ + ak + dv + σ)

(
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ) + βγµ(a′ + dv)(a′k + σ),

B6 = ((a′ + dv)(b+ β)(c+ γ + δ + µ) + (c+ γ)(δ + µ)(a′ + dv + b+ β))

((a′k + σ)(βk + bk + σ)(ck + σ) + (βk + bk + σ)(ck + σ) + (a′k + σ)

(βk + bk + ck + 2σ))(a′ + dv)(β + b)(γ + c)(δ + µ)−

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(2ck + a′k + βk + bk + 4σ)

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(2ck + a′k + βk + bk + 4σ)−

− (a′ − ak + dv + σ)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)−

− (a′k + σ)(a′ + dv)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ),

B7 = (a′ + dv)(b+ β)(c+ γ)(δ + µ)(a′k + σ)(βk + bk + σ)(ck + σ)−

− (a′k + σ)(a′ + dv)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)−

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(ck + σ)(a′k + βk + bk + 2σ).

The characteristic equation can have seven roots, which can be obtained by solving
the following equation:

λ7 +B1λ
6 +B2λ

5 +B3λ
4 +B4λ

3 +B5λ
2 +B6λ+B7 = 0.

It is impossible to write the solutions explicitly, so to determine the nature of the
stability of equilibrium point Es, we use the Routh-Hurwitz criterion to study the
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stability. To do this, we write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B2 B4 B6 0 0
B1 B3 B5 B7 0 0

B1B2 −B3

B1

B1B4 −B5

B1

B1B6 −B7

B1
0 0 0

B3 −
B1(B1B4 −B5)

B1B2 −B3
B5 −

B1(B1B6 −B7)

B1B2 −B3
B7 0 0 0

B′1 B′2 0 0 0 0
B′3 B7 0 0 0 0

B′
3B

′
2−B

′
1B7

B′
3

0 0 0 0 0

B7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

where

B′1 =
B1B4 −B5

B1
− (B1B2 −B3)(B5(B1B2 −B3)−B1(B1B6 −B7))

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
,

B′2 =
B1B6 −B7

B1
− B7(B1B2 −B3)

2

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
,

B′3 = B5 −
B1(B1B6 −B7)

B1B2 −B3
− B3(B1B2 −B3)−B1(B1B4 −B5)

B1B2 −B3

B′2
B′1

.

Applying the Routh-Hurwitz criterion, we obtain that system (1) is asymptotically
stable at equilibrium Es if these inequalities are satisfied:

B1 > 0,

B7 > 0,

B1B2 −B3

B1
> 0,

B3 −
B1(B1B4 −B5)

B1B2 −B3
> 0,

B1B4 −B5

B1
− (B1B2 −B3)(B5(B1B2 −B3)−B1(B1B6 −B7))

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
> 0,

B1B6 −B7

B1
− B7(B1B2 −B3)

2

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
> 0,

B5 −
B1(B1B6 −B7)

B1B2 −B3
− B3(B1B2 −B3)−B1(B1B4 −B5)

B1B2 −B3

B′2
B′1

> 0,

B′3B
′
2 −B′1B7

B′3
> 0.

Then from B1B2−B3

B1
> 0 and B1 > 0 it follows that B1B2 −B3 > 0. The fourth

inequality is equivalent to B3(B1B2−B3)−B1(B1B4−B5) > 0, or B1B2−B3 > 0.
The fifth inequality is equivalent to B1(B1B4 −B5)(B3(B1B2 −B3)−B1(B1B4 −
B5)) − B1(B1B2 − B3)(B5(B1B2 − B3) − B1(B1B2 − B3) − B1B6 − B7)) > 0, or
B2

1(B3(B1B2 − B3) − B1(B1B4 − B5) > 0. The sixth inequality is equivalent to
B1(B1B6 − B7)(B3(B1B2 − B3) − B1(B1B4 − B5)) − B1B7(B1B2 − B3)

2 > 0, or
B′1 > 0. The seventh inequality is equivalent to B5B

′
1(B1B2 −B3)−B1B

′
1(B1B6 −
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B7) − B′2(B3(B1B2 − B3) − B1(B1B4 − B5)) > 0. Then the last inequality can be
simplified as B′3B′2 −B′1B7 > 0, or B′3 > 0.

Therefore, we get the system:

B1 > 0,

B7 > 0,

B1B2 −B3 > 0,

B3(B1B2 −B3)−B1(B1B4 −B5) > 0,

B1(B1B4 −B5)(B3(B1B2 −B3)−B1(B1B4 −B5))−
−B1(B1B2 −B3)(B5(B1B2 −B3)−B1(B − 1B6 −B7)) > 0,

B1(B1B6 −B7)(B3(B1B2 −B3)−B1(B1B4 −B5))−B1B7(B1B2 −B3)
2 > 0,

B5B
′
1(B1B2 −B3)−B1B

′
1(B1B6 −B7)−B′2(B3(B1B2 −B3)−

−B1(B1B4 −B5)) > 0,

B′3B
′
2 −B′1B7 > 0,

then seven eigenvalues have negative real parts, which follows from the Routh-
Hurwitz criterion. Thus, all eigenvalues of the characteristic equation have neg-
ative real parts if and only if R0 < 1 and B1B2B3 + B1B5 > B2

1B4 + B2
3 , i.e.

B1B2B3+B1B5

B2
1B4+B2

3
> 1, then the disease-free equilibrium Es is locally asymptotically

stable.

Theorem 3. Endemic equilibrium point Ee is locally asymptotically stable if R0 >
1 and D1D2D3+D1D5

D2
1D4+D2

3
> 1, where expressions for D1, D2, D3, D4 and D5 are given

in the proof.

Proof. The Jacobi matrix of system (1) is written as:
J(S,E, I,R, Sk, Ek, Ik) =

−αIk − a′ − dv 0 0 0 0 0 −αS
αIk −b− β 0 µ 0 0 αS
0 β −c− γ 0 0 0 0
dv 0 γ −δ − µ 0 0 0
0 0 −αkSk 0 αkI − a′

k − σ 0 0
0 0 αkSk 0 αkI −(bk + βk + σ) 0
0 0 0 0 0 βk −ck − σ

 .

The Jacobi matrix at endemic equilibrium Ee = (S∗, E∗, I∗, R∗, S∗k , E
∗
k , I

∗
k) can be

written as
J(Ee) =

−αI∗k − a′ − dv 0 0 0 0 0 −αS∗

αI∗k −b− β 0 µ 0 0 αS∗

0 β −c− γ 0 0 0 0
dv 0 γ −δ − µ 0 0 0
0 0 −αkS

∗
k 0 −αkI

∗ − a′
k − σ 0 0

0 0 αkS
∗
k 0 αkI

∗ −(bk + βk + σ) 0
0 0 0 0 0 βk −ck − σ

 .

Let us find the eigenvalues of this matrix, equating its determinant to zero, we
obtain the following characteristic equation:

λ7 +D1λ
6 +D2λ

5 +D3λ
4 +D4λ

3 +D5λ
2 +D6λ+D7 = 0,
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where

D1 = (β + b+ γ + c+ αkI
∗ + a′k + 2σ + βk + bk + ck + σ + αI∗k + a′ + dv),

D2 = (βk + bk + σ)(β + b+ γ + c+ αkI
∗ + a′k + σ)+

+ (β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ) + (βk + bk + σ)(β + b+ γ + c+ αkI

∗ + a′k+

+ 2σ + βk + bk)(ck + σ + αI∗k + a′ + dv) + (ck + σ)(αkI
∗ + a′ + dv),

D3 = (βk + bk + σ)((β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ) + βαγ) + (ck + σ + αI∗k + a′ + dv)

((βk + bk + σ)(β + b+ γ + c+ αkI
∗ + a′k + σ) + (β + b)(γ + c)+

+ (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ) + (δ + µ)(αkI

∗ + a′k + σ))+

+ (β + b+ γ + c+ αkI
∗ + a′k + 2σ + βk + bk)((ck + σ)(αkI

∗ + a′ + dv)),

D4 = βαβkαkS
∗2 + βγµβk + βγµbk + 2βγµσ + βγµαkI

∗ + βγµa′k+

+ (βk + bk + σ)((β + b)(γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (β + b+ γ + c)(δ + µ)(αkI
∗ + a′k + σ))+

+ (β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ) + (ck + σ + αI∗k + a′ + dv)

((βk + bk + σ)((β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ) + (αkI
∗ + a′k + σ) + βαγ)) + ((βk + bk + σ)(β + b+ γ + c+

+ αkI
∗ + a′k + σ)+

+ (β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ))((ck + σ)(αkI

∗ + a′ + dv)),

D5 = (βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS
∗
kI
∗+

+ βαS∗2βkαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ)+

+ (ck + σ + αI∗k + a′ + dv)(βαβkαkS
∗2 + βγµβk + βγµbk + 2βγµσ+

+ βγµαkI
∗ + βγµa′k + (βk + bk + σ)((β + b)(γ + c)(δ + µ+ αkI

∗+

+ a′k + σ) + (β + b+ γ + c)(δ + µ)(αkI
∗ + a′k + σ)) + (β + b)(γ + c)

(δ + µ)(αkI
∗ + a′k + σ)) + ((βk + bk + σ)((β + b)(γ + c)+

+ (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ) + (δ + µ)(αkI

∗ + a′k + σ) + βαγ))

((ck + σ)(αkI
∗ + a′ + dv)) + α2βαkβkS

∗
kS
∗I∗k .

D6 = ((βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS
∗
kI
∗+

+ βαS∗2βkαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))

(ck + σ + αI∗k + a′ + dv) + ((ck + σ)(αkI
∗ + a′ + dv))((βk + bk + σ)(β + b)

(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS
∗
kI
∗+

+ βαS∗2βkαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))+

+ αβαkβkS
∗
kS
∗(αkI

∗ + a′k+

+ σ + µdv + αI∗k(α+ µ) + αkI
∗αI∗k),

D7 = ((βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS
∗
kI
∗+

+ βαS∗2βkαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))

((ck + σ)(αkI
∗ + a′ + dv)) + αβα2

kβkµdvI
∗S∗kS

∗ + α2βα2
kβkI

∗S∗kS
∗I∗k(α+ µ)+

+ αβαkβkS
∗
kS
∗(αkI

∗ + a′k + σ)(µdv + αI∗k(α+ µ)).
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Matrix eigenvalues are solutions of the characteristic equation. The equation has
seven roots. We use the Routh-Hurwitz criterion.

We write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D2 D4 D6 0 0
D1 D3 D5 D7 0 0

D1D2 −D3

D1

D1D4 −D5

D1

D1D6 −D7

D1
0 0 0

D3 −
D1(D1D4 −D5)

D1D2 −D3
D5 −

D1(D1D6 −D7)

D1D2 −D3
D7 0 0 0

D′1 D′2 0 0 0 0
D′3 D7 0 0 0 0

D′
3D

′
2−D

′
1D7

D′
3

0 0 0 0 0

D7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

D′1 =
D1D4 −D5

D1
− (D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7))

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
,

D′2 =
D1D6 −D7

D1
− D7(D1D2 −D3)

2

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
,

D′3 = D5 −
D1(D1D6 −D7)

D1D2 −D3
− D3(D1D2 −D3)−D1(D1D4 −D5)

D1D2 −D3

D′2
D′1

.

Applying the Routh-Hurwitz criterion, we obtain that system (1) is asymptotically
stable at equilibrium point Ee if these inequalities are satisfied:

D1 > 0,

D7 > 0,

D1D2 −D3

D1
> 0,

D3 −
D1(D1D4 −D5)

D1D2 −D3
> 0,

D1D4 −D5

D1
− (D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7))

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
> 0,

D1D6 −D7

D1
− D7(D1D2 −D3)

2

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
> 0,

D5 −
D1(D1D6 −D7)

D1D2 −D3
− D3(D1D2 −D3)−D1(D1D4 −D5)

D1D2 −D3

D′2
D′1

> 0,

D′3D
′
2 −D′1D7

D′3
> 0.

It follows from D1D2−D3

D1
> 0 and D1 > 0 that D1D2−D3 > 0. The fourth inequality

is equivalent to D3(D1D2−D3)−D1(D1D4−D5) > 0, or D1D2−D3 > 0. The fifth
inequality is equivalent to (D1D4−D5)(D3(D1D2−D3)−D1(D1D4−D5))−(D1D2−
D3)(D5(D1D2−D3)−D1(D1D6−D7)) > 0, orD1(D3(D1D2−D3)−(D1D4−D5)) >
0. The sixth inequality is equivalent to (D1D6−D7)(D3(D1D2−D3)−D1(D1D4−
D5))−D7(D1D2−D3)

2 > 0, orD1(D3(D1D2−D3)−(D1D4−D5)) > 0. The seventh
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inequality is equivalent to D5D
′
1(D1D2−D3)−D1D

′
1(D1D6−D7)−D′2(D3(D1D2−

D3)−D1(D1D4 −D5)) > 0, or D′1 > 0. Then the last inequality can be simplified
as D′3D′2 −D′1D7 > 0, or D′3 > 0.

Therefore, we get the system:

D1 > 0,

D7 > 0,

D1D2 −D3 > 0,

D3(D1D2 −D3)−D1(D1D4 −D5) > 0,

D1(D1D4 −D5)(D3(D1D2 −D3)−D1(D1D4 −D5))−
−D1(D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7)) > 0,

D1(D1D6 −D7)(D3(D1D2 −D3)−D1(D1D4 −D5))−D1D7(D1D2 −D3)
2 > 0,

D5D
′
1(D1D2 −D3)−D1D

′
1(D1D6 −D7)−D′2(D3(D1D2 −D3)−

−D1(D1D4 −D5)) > 0

D′3D
′
2 −D′1D7 > 0,

Seven eigenvalues have negative real parts if they satisfy the Routh-Hurwitz
criterion. Thus, all eigenvalues of a characteristic equation have negative real parts
if and only if R0 > 1 and D3D1D2 + D1D5 > D2

3 + D2
1D4, which is true when

D1D2D3+D1D5

D2
1D4+D2

3
> 1, then endemic equilibrium Ee is locally asymptotically stable.

6. Numerical Simulations

Numerical modeling allows us to better understand the dynamics of the malaria
epidemic. Let us study the dynamics of development of each population subgroup
depending on the disease severity. In this part, we will focus on the simulation
parameters associated with vaccination by presenting several graphical representa-
tions of the disease dynamics with different values of the parameters and different
values of R0. Computer simulation is carried out using the Matlab software. The
parameters used for numerical simulation are presented in Tables 1 and 2.

Table 1. Parameters for the simulation, which results are presented in Fig. 2
α αk β βk γ µ a a′ ak a′

k b bk c ck d σ dv R0

In Fig. 2.6 (first set of parameters)
0.72 2.0 0.5 0.5 0.5 0.01 0.8 0.01 0.4 0.2 0.2 0.1 0.4 0.25 0.01 0.00 0.00 7.26

In Fig. 2.6 (second set of parameters)
0.72 2.0 0.5 0.5 0.5 0.01 0.8 0.01 0.4 0.2 0.2 0.1 0.4 0.25 0.01 0.75 0.25 0.32

In Fig. 2 we present four series of numerical experiments for which R0 = 7.26
(first two lines) and R0 = 0.32 (last two lines). It can be noted that the disease
exists in populations (host and vector). Without vaccination or methods of reduc-
ing mosquito population, susceptible subpopulation is declining. At the same time,
the representative curves of subpopulations (exposed, infected, and recovered) con-
verge to equilibrium values, and we note a significant presence of the disease in the
population. Vaccination was carried out in human population (second line of graph
and first figure), which shows that the disease has practically disappeared, and the
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Fig. 2. Epidemic process for different values of R0 (R0 = 7.26 and R0 = 0.32)
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curves of other subpopulations converge to equilibrium values. The last two lines of
the graph show that with vaccination and a method of preventing mosquito devel-
opment, one can observe that the representative curves of the population (host and
vector) quickly stabilize, and the disease disappears from the population.

Table 2. Parameters for the simulation, which results are presented in Fig. 3
α αk β βk γ µ a a′ ak a′

k b bk c ck d σ dv R0

In Fig. 2.7 (first set of parameters)
0.8 2.5 0.4 0.6 0.45 0.02 0.4 0.25 0.5 0.25 0.15 0.2 0.25 0.3 0.05 0.00 0.00 10.36

In Fig. 2.7 (second set of parameters)
0.8 2.5 0.4 0.6 0.45 0.02 0.4 0.25 0.5 0.25 0.15 0.2 0.25 0.3 0.05 0.25 0.6 2.59

In Fig. 3 there are four series of simulations for which R0 = 10.36 (first two
lines of graphs) and R0 = 2.59 (last two lines of graphs). It can be noted that the
disease lasts in host and vector populations relatively long. At the same time, a
representative curve of susceptible subpopulation decreases. At the same time, rep-
resentative curves of the subpopulations (exposed, infected, and recovered) converge
to equilibrium values, and a significant disease presence can be noted in the popu-
lation. If control measures are not taken, there is a risk that the disease will remain
in the population because the calculated basic reproduction number indicates that
at least one infected person can infect several people. If human people has been
vaccinated with a parameter of dv = 0.6 (second line of graph, first figure), then
despite the fact that the disease still exists in the population, an infection rate de-
creases due to vaccination of the population. The last two lines show that with the
help of vaccination and a method of preventing mosquito development (parameter
σ = 0.25), representative curves of populations (host and vector) gradually converge
to equilibrium values.

In general, the results of numerical simulations show that a method of elimi-
nating or preventing mosquito development is very effective in suppressing a rapid
epidemic development, but it is very difficult and expensive for applying it in prac-
tice.

7. Conclusions

Malaria is a tropical infectious disease. Nowadays, scientists have failed to de-
velop an effective vaccine to combat this disease which can be very dangerous and
may cause many deaths in the human population. The mathematical modeling
of this disease plays a crucial role in understanding the dynamics of transmission
and appropriate prevention strategies. In this paper, we study the SEIRSkEkIk
model with vaccination and strategies of decreasing of mosquitos population. For
the model, we examine two stable equilibria: a disease-free equilibrium, in which the
disease is not presented in the populations; and an endemic equilibrium, when there
is a non-zero infected subpopulation. We establish the stability of these two equilib-
ria using the theory of Lyapunov functions. It is proved that the dynamic process
is completely determined by the number of basic reproductions R0. If R0 ≤ 1, the
disease-free equilibrium is locally asymptotically stable. If R0 > 1, there is a globally
asymptotically stable endemic equilibrium. The results of the simulations show how
the disease spreads in the population. The spread of this disease can be prevented
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Fig. 3. Epidemic process for different values of R0 (R0 = 10.36 and R0 = 2.59)
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through vaccination strategies and methods of reducing the mosquito population.
The numerical results show the impact of vaccination of the human population,
with good vaccine the disease will disappear in the population.
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