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Abstract This research incorporates urban transit movement into a Sus-
ceptiable -Exposed-Infected-Recovered (SEIR) framework to assess how travel
rates influence the transmission of disease among three interconnected urban
areas. This model allows us to simulate individual movements across mul-
tiple cities and their role in disease transmission, capturing the dynamics
of infectious disease spread among three cities. By incorporating symmetric
travel rates and uniform exposure assumptions, the model provides insight
into how human mobility influences the spread of epidemics and the ba-
sic reproduction number (R0). Our analysis demonstrates that travel rates
influence the cross-regional transmission dynamics. Our findings provide im-
portant guidance for public health policy, suggesting that the role of travel in
disease spread should be addressed, with enhanced international cooperation
and coordination for effective outbreak control. These findings underscore
the importance of implementing timely and stringent travel restrictions as
part of public health measures, especially in the early stages of an epidemic.
Keywords: SEIR Model, Travel Rate, Basic Reproduction Number, Travel
Restrictions.

1. Introduction

The rapid spread of infectious diseases in our highly interconnected world con-
stitutes a substantial public health challenge. Urban transportation systems, while
essential for facilitating interconnectivity and supporting economic development,
inadvertently function as conduits for pathogen dissemination (Qian, 2021). Given
the expanding urban populations and the resulting demand for efficient transporta-
tion networks, it is crucial to comprehend and mitigate the impact of these systems
on disease transmission. To address this, we incorporate the dynamics of urban
transportation into the Susceptible-Exposed-Infected-Recovered (SEIR) model, a
widely recognized framework in epidemiological modeling (Gubar et al., 2023).

The SEIR model represents a sophisticated stage in the progression of infec-
tious disease modeling and is especially appropriate for examining outbreaks such
as COVID-19, characterized by specific incubation periods and subsequent immu-
nity post-recovery (Anastassopoulou et al., 2020). Its efficacy has been substanti-
ated through research on a range of diseases, including influenza (Saito et al., 2013),
Ebola (Diaz et al., 2018), and COVID-19 (Yang et al., 2020). Nonetheless, conven-
tional implementations of the SEIR model frequently disregard the complexities
inherent in urban environments comprising multiple interconnected regions. This
omission can lead to predictions of diminished accuracy and, consequently, less ef-
fective policy interventions.
https://doi.org/10.21638/11701/spbu31.2024.06
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Our approach involves enhancing the conventional SEIR model by incorporating
travel rate parameters to connect three distinct urban centers, thereby improving
its applicability to real-world urban settings. This augmented model allows us to
simulate individual movements across multiple regions and their role in disease
transmission, capturing the dynamics of infectious disease spread among three in-
terconnected cities. By examining varying travel rates, our objective is to identify
key factors influencing disease spread, providing a critical basis for targeted inter-
vention strategies. These insights are particularly valuable for decision-making on
the implementation of lockdowns during outbreaks to effectively curtail the spread
of infections across different urban regions.

The context of our study includes the implementation of travel quarantines and
their effects on disease dynamics. Specifically, we examine how travel rates between
three cities influence disease transmission, drawing insights into the interplay be-
tween urban mobility and the spread of infectious diseases. Our research progresses
from the foundational SEIR model, through the incorporation of travel rates con-
necting three cities, to the development of a novel infectious disease model. We
then analyze how variations in travel rates affect the basic reproduction number
R0, highlighting the significant impact of these travel connections on disease dy-
namics.

By integrating the dynamics of urban transportation into the SEIR model for
multiple cities, we provide a more comprehensive understanding of how infectious
diseases proliferate in interconnected urban environments. This enhanced model
serves as a valuable tool for predicting disease spread and implementing timely
measures to curtail disease propagation.
The first part of this article begins with an overview of the fundamental SEIR model
for infectious disease dynamics. In the second section, to enhance realism, we ex-
tend the basic model by incorporating real-life travel dynamics among three regions,
allowing us to better capture cross-regional interactions. In the third section, we in-
troduce a travel rate parameter to quantify and analyze the influence of movement
between regions on disease spread. In Section fourth, we employ the next-generation
matrix approach to derive a generalized expression for the basic reproduction num-
ber R0, accounting for the effects of interregional travel. Finally, using data from
three countries, we investigate how varying travel rates impact the progression of
infectious diseases, offering insights into the interplay between mobility and disease
transmission.

2. Modeling Disease Spreading with Travel Contagion

2.1. Basic SEIR Model and Specific Components
A generalized SEIR modeling framework was adopted, analogous to that pro-

posed by (Peng et al., 2020), was adopted to facilitate the testing of control in-
terventions. Mathematical models based on dynamical equations often provide in-
sights into epidemic dynamics that are not available from statistical methods alone.
Throughout human history, numerous epidemics have emerged, including dengue
fever, malaria, influenza, plague, and HIV/AIDS. The development of accurate epi-
demiological models for these diseases presents a significant challenge. Some re-
searchers adopt a complex network perspective in their analysis of disease trans-
mission, employing this approach for forecasting and modeling purposes (Cantó et
al., 2017). To illustrate, in the context of the ongoing pandemic (Prasse et al.,2020 )
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devised a network-based model that incorporates urban centers and traffic patterns
to capture the epidemic dynamics in Hubei province.

Currently, models such as the SIS (van den Driessche et al.,2000), SIR (Cai,2017),
and SEIR (Almeida, 2018) are widely used to simulate the spread of infectious dis-
eases. A substantial body of research has demonstrated that these models are an
accurate reflection of the dynamics of a range of epidemics. For example, Tang et
al. (Tang, B et al., 2020) investigated a generalized SEIR model that incorporates
interventions such as quarantine, isolation, and treatment, demonstrating its versa-
tility in addressing real-world scenarios. These frameworks collectively enhance our
capacity to predict and control epidemics. Thus in this paper, we try to propose a
SEIR model to simulate the process of COVID-19.

The SEIR model, an extension of the SIR model, classifies individuals into four
compartments: Susceptible (S), Exposed (E), Infected (I) and Recovered (R).

To begin, we define nS as the number of individuals in the susceptible group; nE
as the number of individuals in the exposed group; nI as the number of individuals
in the infected group; and nR as the number of recovered individuals. The total pop-
ulation N is represented as the sum of these compartments: N = nS+nE+nI+nR.
At any given time t, the compartments are described in the following proportions:
S (t) = nS

N represents the susceptible population, which includes healthy individuals
not yet exposed to the disease. E (t) = nE

N represents the exposed population, con-
sisting of individuals who have contracted the virus but do not yet show symptoms.
I (t) = nI

N represents the infected population, consisting of individuals exhibiting
symptoms of the disease. R (t) = nR

N represents the recovered population, consisting
of individuals who have recovered and are no longer infectious. The sum of these
fractions is equal to one, that is, 1 = S(t) + E(t) + I(t) + R(t). Additionally, the
rates of death and birth are represented by µ.

The transitions between these compartments are governed by a system of differ-
ential equations which describe the dynamics of susceptible, infection, exposure, and
recovery. These equations encompass the intricacies involved in the transmission of
the disease, rendering the SEIR model an effective instrument for epidemiological
studies (Lloyd and May, 1996).

Fig. 1. SEIR model

dS

dt
= −βSI + µ− S, (1)

dE

dt
= βSI − σE − µE, (2)

dI

dt
= −γI + σE − µI, (3)

dR

dt
= γI − µR. (4)

The initial conditions for the SEIR model are critical to accurately simulate the
progression of an epidemic. The susceptible population (S0) typically constitutes
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the majority of the total population at the start of an epidemic. It is calculated as
follows:

S0 = N − E0 − I0 −R01, (5)

where N is the total population, E0 represents the initial exposed population, I0
is the initial infected population and R01 is the initial recovered population. These
compartments together satisfy the condition N = S0 + E0 + I0 + R01, ensuring
consistency in population accounting.

In this model, the transmission rate β determines the rate with which susceptible
individuals quickly transition to the exposed category after contact with infectious
individuals, reflecting the contagiousness of the disease. The progression rate σ
specifies how quickly exposed individuals become infectious, acting as a reciprocal
of the average incubation period.

2.2. Dynamics of Population Movement Between Cities

Fig. 2. SEIR Model with Urban Transportation and Travel Contagion Dynamics

In today’s interconnected world, the diversity and convenience of transportation
options such as airplanes, trains, and ships have significantly enhanced popula-
tion mobility. However, this increased mobility also presents substantial challenges.
The ease with which individuals can move across cities has facilitated the spread
of infectious diseases, creating a double-edged sword. As a result, the rapid and
widespread transmission of diseases has become a critical concern, particularly in
densely populated urban areas.

In our extended SEIR model, we incorporate the dynamics of population move-
ment between three interconnected cities. By modeling intercity movement with
travel rate parameters, we can more accurately represent the spread of diseases
across urban environments. The movement dynamics are defined by the rates at
which individuals travel from one city to another, influencing the transmission and
progression of disease in each urban area. The travel rates between cities are de-
noted as hij , representing the rate of movement from city i to city j. Including
these travel rates allows us to understand the impact of human mobility on the
spread of infectious diseases across multiple regions, providing valuable information
for targeted intervention strategies.

To make the model more applicable to real-world scenarios, it is necessary to
incorporate the impact of travel rates on disease transmission dynamics.
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As described by (Sattenspiel and Dietz, 1995) residents of the city i depart from
the city at a per capita rate of gi ≥ 0 per unit time. The rate of movement from zone
i to zone j is denoted as mij . The departed population then joins the population in
travel and will arrive at the activity location with a rate of α−→

ij
, who again join the

population in travel and eventually arrive at home with the rate of α←−
ij

. In contrast,
individuals who have reached the destination city j return to their origin city i at
a rate of rij . The transient population is composed of individuals leaving city i for
other cities, as well as those coming into city i from other cities. The product of gi
and mij represents the rate at which people travel from city i to city j. The travel
dynamics between the cities are represented as follows:

S1 S2

S3

g1m12

r12
g1m13

r13 g2m23

r23

As depicted above, we observe the movement process of susceptible individu-
als between three cities. This understanding of population movement dynamics is
integral to model and predict disease transmission patterns accurately in a three-
city SEIR model. The inclusion of intercity travel dynamics in the SEIR model
enables us to simulate how infections can spread from one urban area to another,
emphasizing the importance of travel restrictions and mobility management during
outbreaks.

3. Epidemic Model Equations for Three Cities

The susceptible population (S) denotes individuals who are not yet infected
but are likely to be exposed to the virus. For the susceptible population between
different cities, we have the following differential equation:

dS−→
12

dt
= g1m12S1 − α−→

12
S−→
12

− h−→
12
(S,E)− µS−→

12
, (6)

dS−→
13

dt
= g1m13S1 − α−→

13
S−→
13

− h−→
13
(S,E)− µS−→

13
, (7)

dS−→
23

dt
= g2m23S2 − α−→

23
S−→
23

− h−→
23
(S,E)− µS−→

23
, (8)

dS←−
12

dt
= r12S2 − α←−

12
S−→
21

− h←−
12
(S,E)− µS←−

12
, (9)

dS←−
13

dt
= r13S3 − α←−

13
S−→
31

− h←−
13
(S,E)− µS←−

13
, (10)

dS←−
23

dt
= r23S3 − α←−

23
S−→
32

− h←−
23
(S,E)− µS←−

23
, (11)
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The exposed population (E) represents individuals who have been exposed to
the virus but have not yet infected others. For the exposed population across cities,
the following differential equation is applicable:

dE−→
12

dt
= g1m12E1 − α−→

12
E−→

12
+ h−→

12
(S,E)− σE−→

12
− µE−→

12
, (12)

dE−→
13

dt
= g1m13E1 − α−→

13
E−→

13
+ h−→

13
(S,E)− σE−→

13
− µE−→

13
, (13)

dE−→
23

dt
= g2m23E2 − α−→

23
E−→

23
+ h−→

23
(S,E)− σE−→

23
− µE−→

23
, (14)

dE←−
12

dt
= r12E2 − α←−

12
E−→

21
+ h←−

12
(S,E)− σE←−

12
− µE←−

12
, (15)

dE←−
13

dt
= r13E3 − α←−

13
E−→

31
+ h←−

13
(S,E)− σE←−

13
− µE←−

13
, (16)

dE←−
23

dt
= r23E3 − α←−

23
E−→

32
+ h←−

23
(S,E)− σE←−

23
− µE←−

23
, (17)

The infected population (I) denotes individuals who are infected and contagious.
For the infected population between different cities, we have the following differential
equation:

dI−→
12

dt
= g1m12I1 − α−→

12
I−→
12

+ σE−→
12

− γI−→
12

− µI−→
12
, (18)

dI−→
13

dt
= g1m13I1 − α−→

13
I−→
13

+ σE−→
13

− γI−→
13

− µI−→
13
, (19)

dI−→
23

dt
= g2m23I2 − α−→

23
I−→
23

+ σE−→
23

− γI−→
23

− µI−→
23
, (20)

dI←−
12

dt
= r12I2 − α←−

12
I−→
21

+ σE←−
12

− γI←−
12

− µI←−
12
, (21)

dI←−
13

dt
= r13I3 − α←−

13
I−→
31

+ σE←−
13

− γI←−
13

− µI←−
13
, (22)

dI←−
23

dt
= r23I3 − α←−

23
I−→
32

+ σE←−
23

− γI←−
23

− µI←−
23
, (23)

The recovered population (R) denotes the population that has recovered and is
immune. For the recovered population across cities, we have the following differential
equation:
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dR−→
12

dt
= g1m12R1 − α−→

12
R−→

12
+ γI−→

12
− µR−→

12
, (24)

dR−→
13

dt
= g1m13R1 − α−→

13
R−→

13
+ γI−→

13
− µR−→

13
, (25)

dR−→
23

dt
= g2m23R2 − α−→

23
R−→

23
+ γI−→

23
− µR−→

23
, (26)

dR←−
12

dt
= r12R2 − α←−

12
R−→

21
+ γI←−

12
− µR←−

12
, (27)

dR←−
13

dt
= r13R3 − α←−

13
R−→

31
+ γI←−

13
− µR←−

13
, (28)

dR←−
23

dt
= r23R3 − α←−

23
R−→

32
+ γI←−

23
− µR←−

23
. (29)

These equations describe the transmission of infectious diseases between three
cities, including travel-based spread and the transition between different compart-
ments.

This transient population is a combination of those leaving city i for other cities
N−→
ij

, and those coming into city i from other cities N←−
ij

for all j. In addition, we
assume that the exposure levels across cities are relatively uniform or proportional
to the population size of each city. Under this assumption, we can approximate:

E←−
ij

N←−
ij

≈
E−→
ij

N−→
ij

≈ Eavg

Navg
=

∑3
i=1Ei∑3
i=1Ni

, (30)

This approximation allows us to simplify the summation terms into a single
average exposure rate across all cities.

For a three-city scenario, we can explicitly write out the transmission dynam-
ics without relying on double summations. With various modes of transportation
available, the potential for disease transmission occurs when the exposed population
Eij comes into contact with the susceptible population Sij while using a particular
mode of transport d at time T . The transmission rate of this interaction is denoted
by βTd . For example, the travel-based transmission term can be expressed as:

h−→
ij
(S,E) = βTd S−→ij

(
E←−

12

N←−
12

+
E−→

12

N−→
12

+
E←−

13

N←−
13

+
E−→

13

N−→
13

+
E←−

23

N←−
23

+
E−→

23

N−→
23

)
, (31)

This form provides a manageable representation of the transmission dynamics
for three interconnected cities.

3.1. Average Transmission Rate Across Cities
If the spread of the disease in cities is relatively similar, we can further simplify

by replacing the summation with an average travel-based transmission term:

h−→
ij
(S,E) ≈ βTd S−→ij

(∑3
i=1

∑3
j=1Eij∑3

i=1

∑3
j=1Nij

)
. (32)

This approach effectively reduces the double summation to a single average
value, simplifying the equation while preserving the model’s overall dynamics.
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Considering these factors, our improved SEIR model effectively represents the
dynamics of infectious disease transmission both within and between cities. This
approach facilitates a more thorough understanding of the role urban transportation
plays in epidemic outbreaks and offers essential insights for executing focused public
health strategies.

4. Recalculation of Basic Reproduction Number

Definition 1. (Barabási, 2013) The basic reproduction number R0, represents the
average number of susceptible individuals infected by an infected individual during
its infectious period in a fully susceptible population.

We employ the next-generation matrix (NGM) methodology as elaborated in
(Diekmann et al., 1990; Diekmann and Heesterbeek, 2000). Let F represent the rate
of emergence of new infections within compartment i, whereas V indicates the rate
at which individuals enter compartment i through alternate mechanisms. To de-
rive the mathematical formulation for R0 within the framework of the model, we
reference the research conducted by (Driessche and Watmough, 2002). In order to
simplify the analysis of the three-city model, we introduce two key assumptions:
symmetric travel rates and a uniform exposure assumption.

4.1. Simplified Transmission Terms
We assume that the travel rates between cities are symmetric, such that:

α←−
ij

= α−→
ij

(33)

This symmetry reduces the number of unique terms in the summation, simplify-
ing the calculation of the total transmission rate across all cities. Using the above
assumptions, we can simplify the travel-based transmission term in the three-city
model.

For travelers moving from city to city, the transmission term can be expressed
as:

h−→
ij
(S,E) = βTd S−→ij

∑
all travelers

E

N
, (34)

Applying the uniform exposure assumption, because there are six categories of trav-
elers in a three-city model, approximate this sum of travelersвЂ™ exposure rates
as: ∑

all travelers

E

N
≈ 6× Eavg

Navg
, (35)

since there are six categories of travelers in a three-city model (each pair of cities
having bidirectional travel).

Thus, the transmission term can be rewritten as:

h−→
ij
(S,E) = βTd S−→ij × 6× Eavg

Navg
, (36)

4.2. Constructing the Next-Generation Matrix
The infection term for all exposed individuals is given by:

Fi = βTd Si × 6× Eavg

Navg
, (37)
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Transition Term :
For exposed individuals, the transition term is:

Vi = (µ+ σ + αi)Ei, (38)

Given symmetric travel rates, the net population flow caused by travel cancels out,
allowing us to focus solely on disease progression, recovery, and natural mortality
in the transition term.

Determining the Jacobian Matrices and the Jacobian of the Infection Term,
given that depends linearly on , the elements of the Jacobian matrix are as follows:

∂Fi
∂Ej

= βTd Si × 6× 1

Navg
× ∂Eavg

∂Ej
, (39)

We have:
∂Eavg

∂Ej
=

1

3
, (40)

Thus, the Jacobian matrix elements are:

∂Fi
∂Ej

= 2βTd
Si
Navg

, (41)

Jacobian of the Transition Term. Given that is solely a function of , the Jacobian
matrix is diagonal, and its principal diagonal consists of elements:

∂Vi
∂Ej

=

{
µ+ σ + αi, if i = j

0, if i ̸= j,
(42)

The next-generation matrix has elements:

Kij =
∂Fi
∂Ej

× 1

µ+ σ + αi
, (43)

Substituting the previous results:

Kij = 2βTd
Si
Navg

× 1

µ+ σ + α
. (44)

4.3. Calculating the Basic Reproduction Number
In this model, the next generation matrix K exhibits a rank-1 structure, where

each row is identical. This implies that transmission between the three cities is uni-
form, with each exposed individual having the same infection potential regardless
of the city they are in. This structure simplifies the analysis, as a rank-1 matrix has
only one non-zero eigenvalue, with all other eigenvalues being zero. The assumption
of uniform transmission reflects an idealized situation in which the contribution of
exposed individuals to the spread of infection is identical across all cities, indepen-
dent of specific city characteristics.
This simplification significantly facilitates the calculation of the basic reproduc-
tion number R0. Under this condition, the only non-zero eigenvalue of the matrix
corresponds to R0, resulting in R0 = 3k.
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Thus, the basic reproduction number is:

R0 = λ = 3k = 3× 2βTd × 1

µ+ σ + α
=

6βTd
µ+ σ + α

, (45)

The basic reproduction number for the three-city model is:

R0 =
6βTd

µ+ σ + α
. (46)

5. Numerical Simulation

The travel policies and behaviors of various countries have had a significant
impact on the COVID-19 pandemic. Unlike other nations, Brazil did not initially
enforce strict border closures, which likely contributed to the virus’s spread. China,
conversely, adopted a zero-COVID strategy characterized by swift and strict lock-
down alongside extensive testing to suppress transmission (Pequeno et al., 2020).
This method was temporarily successful but necessitated substantial social and
resource commitment. In Algeria, deficiencies in public health resources and infras-
tructure (Bentout et al., 2020) could have hindered its ability to effectively manage
borders and contain disease spread, compared to other countries.

Table 1. Epidemiological parameters for different regions: Brazil, China and Algeria
Parameter Brazil China Algeria

Ni 45,919,049 9,785,388 1,977,663
β 0.6043 0.4689 0.41
σ 0.2 0.28 0.2
γ 0.1508 0.154 0.1
µ 0.0006 0.0001 0.0001

(Paul et al., 2021) (Pang, et al., 2020) (Bentout et al., 2020)
(Rocha Filho et al., 2021 )

To perform numerical simulations using the SEIR model, we define the initial
conditions for each region based on population data and assumptions regarding the
initial states of the epidemic.

The SEIR model consists of four compartments: Susceptible (S), Exposed (E),
Infected (I), and Recovered (R). The initial numbers of Exposed (E0), Infected (I0),
and Recovered (R0) individuals are determined based on assumptions or available
data. For the three regions under consideration, the initial states are defined as
follows:

E1,0 = 10, 000, I1,0 = 5, 000, R1,0 = 2, 000,

E2,0 = 12, 000, I2,0 = 6, 000, R2,0 = 3, 000,

E3,0 = 9, 000, I3,0 = 2, 000, R3,0 = 1, 000.
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The initial numbers of susceptible individuals (S0) for each region are calculated
using the total population (N) and the initial states of the other compartments,

S1,2,3(0) = N1,2,3 − E1,2,3(0)− I1,2,3(0)−R1,2,3(0)

In addition, based on the assumptions in this study, the initial states of popu-
lations related to inter-regional travel are set to zero. For instance:

S12,0 = S13,0 = S21,0 = S23,0 = S31,0 = S32,0 = 0,

Fig. 3. Dynamics of an SEIR model for two cities over time. A symmetric travel
rate was set (αij = α = 0.05). The migration rate was set as gimij = 0.01. the
disease’s progression towards control

The analysis of this figure confirms that our research findings align with the
expected outcomes of the model. In Brazil and China, where transmission rates
are higher, we observe a rapid decline in the susceptible population and an earlier
peak in infections, reflecting faster disease spread. In contrast, Algeria, with a lower
transmission rate, shows a slower decline in the susceptible population and a delayed
infection peak, consistent with slower epidemic progression. The steady increase in
the recovered population in all countries further supports the assumption of the
SEIR model that infected individuals eventually transition to immunity. Public
health policies should prioritize controlling areas with high transmission rates and
strengthen international cooperation to prevent cross-border spread effectively.
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6. Impact of Travel Rates on the Basic Reproduction Number R0

If condition R0 < 1 holds, it is likely that the infection will naturally decline; on
the contrary, if R0 > 1, it is expected that the infection will continue to spread and
persist within the population. A higher value of R0 implies a faster spread of the
infection. Given that China’s value β is relatively high due to data from the early
outbreak stage, averaging β values from various sources may not yield a representa-
tive value for βTd . Instead, we will adopt a practical approach by referencing relevant
literature to estimate a reasonable value. In the absence of specific data, we will
use a conservative estimate similar to transmission rates reported in close-contact
environments in other studies (Pandey et al., 2020;Rahman, B.et al., 2020), setting
βTd at 0.2 to reflect these practical considerations.

Our calculations indicated that, under symmetric move rates (α = 0.05) and
uniform exposure assumptions, the values of R0 for these countries were as follows:

Table 2. Basic Reproduction Number (R0) for Brazil, China, and Algeria
Country R0

Brazil RBrazil
0 ≈ 4.69

China RChina
0 ≈ 3.64

Algeria RAlgeria
0 ≈ 4.80

Fig. 4. The relationship between the basic reproduction number R0 and the trans-
mission rate during travel βTd for Brazil, China, and Algeria at a fixed arrival rate
α = 0.05

These values highlight a higher potential for epidemics in Algeria and Brazil
than in China, which may be attributed to their respective transmission rates,
natural death rates, and migration or travel behaviors. However, travel rates and
interconnectivity also play an essential role in these differences, as travel facilitates
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cross-regional transmission, leading to synchronized epidemic peaks and increased
infection burdens in interconnected regions.

6.1. Impact of Travel Rates on Epidemic Spread
In countries with high intercity travel rates, such as Brazil, where a high number

of confirmed COVID-19 cases appeared early in cities with greater air connectiv-
ity, travel has been observed to accelerate the spread of infections across regions
(Ribeiro et al., 2020 ). The role of air travel and the higher population density
in Brazilian cities align with host density theories, indicating that densely con-
nected areas with frequent travel are more susceptible to rapid epidemic spread
(Poole, 2020). This suggests that cities with high mobility require more targeted
interventions to control transmission across the national network.

Similarly, China’s rapid and rigorous restrictions on both internal and external
travel early in the pandemic, along with strict lockdown measures, were quickly re-
duced R0 by limiting population mobility. Despite having a high initial transmission
rate (β = 0.78), China’s proactive restrictions curtailed further spread, underscoring
the effectiveness of minimizing travel in controlling epidemic transmission.

In Algeria, partial lockdowns and limitations on gatherings had an effect on
reducing transmission but were implemented with varying intensity according to
region-specific conditions. The relatively high RAlgeria0 ≈ 4.80 despite moderate
transmission rates suggests that inconsistent travel restrictions and differing public
adherence can impact the effectiveness of these measures. This underlines the need
for consistent and well-enforced travel policies to manage transmission between
regions.

6.2. Summary of Travel Rate Effects on R0

Our analysis demonstrates that travel rates significantly impact the basic re-
production number R0 by influencing the dynamics of transregional transmission.
Higher travel rates increase the potential for infection spread between intercon-
nected regions, while restrictive travel policies, as evidenced in China, help to con-
trol R0 by limiting the reach of infections:

– Increased Travel Rates: Countries with higher travel rates, like Brazil, face
increased infection spread due to the ease with which infections can move be-
tween densely populated and connected regions. High travel rates also synchro-
nize epidemic peaks across cities, leading to a more widespread infection burden.

– Restricted Travel Policies: Strict border and travel restrictions, as seen in
China, help control the spread of infections by reducing R0. These measures buy
time for healthcare system preparation and facilitate a more gradual response,
preventing healthcare overload.

– Importance of Socioeconomic Conditions: Socioeconomic factors, such
as population density and household size, also play a critical role. For exam-
ple, densely populated areas in Brazil saw a faster spread of COVID-19, while
crowded housing conditions and limited sanitation infrastructure in certain re-
gions increased the difficulty of controlling transmission, thus increasing R0.

7. Conclusions

This study illustrates that travel rates and socioeconomic factors are crucial
in determining the dynamics of epidemic spread and the efficacy of interventions.
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Higher travel rates contribute to an increase R0 and a faster spread across intercon-
nected regions, necessitating more robust containment strategies. Countries with
higher population density and greater intercity connectivity, like Brazil, can ben-
efit from targeted restrictions in high-mobility areas to reduce transmission risks.
In contrast, countries that implemented strict travel limitations, such as China,
successfully managed their values R0 and prevented widespread transmission of
epidemics.

These findings underscore the importance of implementing timely and stringent
travel restrictions as part of public health measures, especially in the early stages
of an epidemic. Furthermore, socioeconomic conditions should be considered when
designing these interventions to ensure their effectiveness in different demographic
groups. In the context of global interconnectedness, coordinated international health
policies are essential to address cross-border transmission and protect vulnerable
regions.
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