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Abstract This paper investigates a differential game model of R&D com-
petition, starting with a two-stage structure and then extending this struc-
ture to a generalized multi-stage model.The two-stage model captures dis-
tinct efficiency dynamics, and the Nash equilibrium analysis reveals optimal
strategies for resource allocation. The multi-stage extension generalizes these
insights, providing a broader view of firms’ strategic adjustments. The study
identifies these key properties: the consistent ratio of control efforts across
different stages, the structural uniformity of Nash equilibrium strategies, and
the continuity of these properties in multi-stage scenarios. These findings
enhance the understanding of strategic behavior in competitive innovation
environments.
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1. Introduction

Innovation plays a critical role in today’s business environment. The rapidly
changing global economy and the rapid obsolescence of new technologies require
companies to constantly adapt and innovate. Complex market competition makes
effective research and development (R&D) management a key challenge for many
companies. Good results of application of game-theoretic methods in the study of
competition in innovation were demonstrated, for instance, in (Reinganum, 1982,
Feichtinger, 1982, Dockner et al., 1993, Dockner et al., 2000, Keller, 2007, Wang,
2016, Beach, 2017, Jiang et al., 2024, Yanase and Long, 2024). These works are ba-
sed on the assumption that it is the profit of being first that is the driving force
behind entrepreneurial creativity and, therefore, inventions. Usually, the hazard
rate corresponding to the random time of some firm’s innovations is considered
as a linear function of the firm’s research effort. However, the business environ-
ment is becoming increasingly dynamic due to various factors such as financial
crises, changing customer needs, and others. In this context, realistic models of in-
novation development should take into account the possibility of sharp changes in
their structure and dynamics, the so-called regime switching. In this paper, we con-
sider the model proposed in (Dockner et al., 1993) with the additional assumption
that there is switching in hazard rate dynamics. This approach aims to capture
the evolving nature of R&D competition and provide more accurate insights into
firms’ strategic behavior across time. The proposed idea is close to the using of
a composite distribution function for random terminal time in differential games
(Kamien and Schwartz, 1972, Gromov and Gromova, 2017, Balas and Tur, 2023).
https://doi.org/10.21638/11701/spbu31.2024.04



Differential Games of R&D Competition with Switching Dynamics 39

2. Problem Formulation

First, consider the two-stage differential R&D competition game. There are n
identical firms, whose set is denoted by N = {1, 2, . . . , n}, competing to complete a
research project. Assume that the time of the completion of the project by firm i is a
random variable τi with the probability distribution function Fi(t) = Prob(τi ≤ t).
And assuming that there are no knowledge spillovers between firms, it is plausible
to assume that the random variables τi are stochastically independent.

Denote the time instant at which one of the firms makes the innovation by
τ = min

i=1,...,n
{τi}. We call the player k with τk = τ the innovator. Under the inde-

pendence assumption, it holds that

Prob(τ ≤ t) = 1−
n∏
i=1

[1− Fi(t)].

Let ui(t) ≥ 0 denote the rate of R&D efforts that firm i devotes to its project.
The hazard rate corresponding to the distribution Fi(t) is assumed to be propor-
tional to effort ui(t). And it can be thought of as the (conditional) probability that
a breakthrough will be made at time t, given that this has not happened before
time t.

Additional assumption is that there exists a special time inflection point t1 here,
which divides the development process into two stages, with different linear coeffi-
cients between the hazard rate and the control variables in the two time periods,
then we have

Ḟi(t) =

{
λ1ui(t)(1− Fi(t)), t ≤ t1,
λ2ui(t)(1− Fi(t)), t > t1,

in which λ1 and λ2 are positive constants and λ1 ̸= λ2. As the proportional coef-
ficient between the hazard rate and the firms’ R&D efforts in each time interval,
under the condition of the same R&D efforts, the larger the coefficient, the greater
the probability of successful R&D.

Denote by r the common discount rate and by PL the present value of the
net benefits to the innovator or leader who wins at t. Moreover PF is the present
value of the net benefits to any competitor other than the innovator (assume that
PL > PF ). Finally, we choose a quadratic cost function of R&D and we observe the
race for development over a fixed finite time period [0, t1] and [t1, T ]. According to
the definitions above, the expected payoff for player i is given by

Ki =

∫ t1

0

(PLḞi
∏
j ̸=i

(1− Fj) + PF
∑
j ̸=i

Ḟj
∏
k ̸=j

(1− Fk)−
1

2
e−rtu2i

∏
i

(1− Fi)) dt

+

∫ T

t1

(PLḞi
∏
j ̸=i

(1− Fj) + PF
∑
j ̸=i

Ḟj
∏
k ̸=j

(1− Fk)−
1

2
e−rtu2i

∏
i

(1− Fi)) dt,

to simplify the presentation in this equation, we introduce the following state trans-
formation and denote interval [0, t1] as I1, interval [t1, T ] as I2.

−ln(1− Fi(t)) =

{
λ1zi(t), t ∈ I1,

λ2zi(t), t ∈ I2.
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Differentiating equation with respect to time yields

żi(t) = ui(t), zi(0) = 0, i ∈ N, (1)

the corresponding transformed payoffs are

Ki =

∫ t1

0

exp(−λ1
n∑
i=1

zi)[λ1PLui(t) + λ1PF
∑
j ̸=i

uj(t)−
1

2
e−rtu2i (t)] dt

+

∫ T

t1

exp(−λ2
n∑
i=1

zi)[λ2PLui(t) + λ2PF
∑
j ̸=i

uj(t)−
1

2
e−rtu2i (t)] dt, i ∈ N.

(2)

The R&D game defined by (1) and (2) can be given the following interpretation.
Let the control ui(t) represent firm i’s rate of acquisition of know-how at time t.
Then, by (1), the state variable zi(t) is firm i’s accumulated know-how by time t.

Let us denote the one-dimensional state variable

y1(t) = exp(−λ1
n∑
i=1

zi(t)), t ∈ I1, (3)

y2(t) = exp(−λ2
n∑
i=1

zi(t)), t ∈ I2. (4)

Note that the state variables y1(t) and y2(t) represent the aggregate (i.e., industry-
wide) stock of know-how. And we need to assume that players know y1(t) and y2(t)
for any t. Differentiation of (3) and (4) with respect to time provides the single
state equation

ẏ1(t) = −λ1y1(t)
n∑
i=1

ui(t), t ∈ I1,

ẏ2(t) = −λ2y2(t)
n∑
i=1

ui(t), t ∈ I2,

and
y1(0) = 1.

And the corresponding payoffs are given by

Ki =

∫ t1

0

y1(t)[λ1PLui(t) + λ1PF
∑
j ̸=i

uj(t)−
1

2
e−rtu2i (t)] dt

+

∫ T

t1

y2(t)[λ2PLui(t) + λ2PF
∑
j ̸=i

uj(t)−
1

2
e−rtu2i (t)] dt

∆
= Ki1 +Ki2, i ∈ N.

We divide player i’s payoffs by two part Ki1 and Ki2, which means the payoffs
of player i in two time interval. Next step, we will look for a Nash equilibrium with
open-loop effort strategies of two-stages situation.
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3. Open-Loop Nash Equilibrium

Let us consider the second interval I2 = [t1, T ] firstly, the payoff function of
player i is

Ki2 =

∫ T

t1

y2(t)[λ2PLui(t) + λ2PF
∑
j ̸=i

uj(t)−
1

2
e−rtui(t)

2
] dt,

where the state function

ẏ2(t) = −λ2y2(t)
n∑
i=1

ui(t). (5)

Consider the initial condition y1 for this interval as a parameter

y2(t1) = y1.

Define for i = 1, . . . , n the present-value Hamiltonians

Hi
2(y2, ui, ϕi, t) = y2[λ2PLui + λ2PF

∑
j ̸=i

uj −
1

2
e−rtu2i ]− ϕiλ2y2[ui +

∑
j ̸=i

uj(t)],

in which ϕi are present-value costate variable. Assuming that the equilibrium effort
rates are strictly positive, the necessary conditions for Hamiltonian maximization
provide the candidate strategies

ui(t)I2 = λ2(PL − ϕi(t))e
rt, (6)

where the costates must satisfy the partial differential equations and their transver-
sality condition

ϕ̇i(t) = −∂H
i(y2(t), ui(t), ϕi, t)

∂y2
, ϕi(T ) = 0.

To solve the problem we start by supposing that

ui(t)I2 = −b2(t)λ2ert. (7)

Using (6) yields an expression for costate

ϕi(t) = PL + b2(t).

Hence b2(T ) = −PL, and substituting our conjectured solution (7) into (5) provides
the state equation

ẏ2(t) = λ22nb2(t)y2(t)e
rt, y2(t1) = y1. (8)

Now, for the conjectured solution to hold, the function b2(t) must satisfy

ḃ2(t) = −λ
2
2e
rt

2
[(2n− 1)b22(t) + 2b2(t)(1− n)(PF − PL)],

we can get

b2(t) =

[
A−

(
A+

1

PL

)
eM2(t)

]−1
,
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where A = 1−2n
2(n−1)(PL−PF ) , and M2(t) = k2(e

rt − erT ), k2 =
λ2
2(n−1)(PL−PF )

r . By
solving (8), we get

yNE2 = y1(Ae
−k2ert1 −B2)

λ2
2n

rk2A (Ae−k2e
rt

−B2)
−λ2

2n

rk2A ,

where B2 = (A+ 1
PL

)e−k2e
rT

.
Second, we consider the first interval I1 = [0, t1]. The payoff function is

Ki1 =

∫ t1

0

y1[λ1PLui + λ1PF
∑
j ̸=i

uj −
1

2
e−rtui

2] dt,

where

ẏ1(t) = −λ1y1(t)
n∑
i=1

ui, y1(0) = 1.

Define for i = 1, ..., n the present-value Hamiltonians

Hi
1(y1, ui, ψi, t) = y1[λ1PLui + λ1PF

∑
j ̸=i

uj −
1

2
e−rtui

2]− ψiλ1y1[ui +
∑
j ̸=i

uj(t)].

Similarly, we find
ui(t)I1 = λ1(PL − ψi(t))e

rt,

and remark (Riedinger et al., 2003) that

ψi(t1) = ϕi(t1).

Suppose
ui(t)I1 = −b1(t)λ1ert (9)

and ϕi(t1) = PL + b2(t1), hence b1(t1) = b2(t1). Similarly to the solution on the
interval I2, we get

b1(t) = [A− (A− 1

b2(t1)
)eM1(t)]−1,

where M1(t) = k1(e
rt − ert1), k1 =

λ2
1(n−1)(PL−PF )

r . Substituting b2(t1) into b1(t),
we have:

b1(t) = [A− (A+
1

PL
)eM1(t)+M2(t1)]−1 (10)

Solving the differential equation for y1(t)

ẏ1(t) = λ21nb1(t)y1(t)e
rt, y1(0) = 1, (11)

we get

yNE1 (t) = (Ae−k1 −B1)
λ2
1n

rk1A (Ae−k1e
rt

−B1)
− λ2

1n

rk1A , (12)

where B1 = (A+ 1
b2(t1)

)e−k1e
rt1 . To obtain yNE2 we find the parameter y1 from the

condition y1(t1) = y1 = y2(t1), then

yNE2 = yNE1 (t1)(Ae
−k1ert1 −B2)

λ2
2n

rk1A (Ae−k1e
rt

−B2)
−λ2

2n

rk1A .
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Substituting b2(t) and b1(t) into (7) and (9), we get the Nash equilibrium strate-
gies

uNEi (t)I2 = −
[
A−

(
A+

1

PL

)
eM2(t)

]−1
λ2e

rt, t ∈ [t1, T ],

uNEi (t)I1 = −[A− (A+
1

PL
)eM1(t)+M2(t1)]−1λ1e

rt, t ∈ [0, t1].

To compare the strategies found at different intervals, we formulate the following
proposition

Proposition 1. For given positive numbers λ1, λ2, the ratio of the optimal controls
at the moment of switching is the same for all t1 ∈ (0, T ) for any player i and has
the form

uNEi (t1)I1
uNEi (t1)I2

=
λ1
λ2
.

Proof. Taking t = t1 into the optimal control of two time interval I1 and I2, we
have

uNEi (t1)I1
uNEi (t1)I2

=
A− (A+ 1

PL
)eM2(t1)

A− (A+ 1
PL

)eM2(t1)+M1(t1)
· λ1
λ2

=
λ1
λ2
.

Since M1(t1) = k1(e
rt1 − ert1) = 0.

We can analyse how changing the values of λ1 and λ2 affects a firmвЂ™s control
over resource allocation and find the numerical relationship of the control on the
different intervals at a particular switching point of during the R&D process. Figures
1 – 3 demonstrate Nash equilibrium control in the two-stage model with different
ratios λ1 and λ2. Let t1 = 4, T = 10, N = 15, PL = 5, PF = 2.5, r = 0.01. In the
example shown in Fig. 1 λ1 = 0.1, λ2 = 0.05. In Fig.2: λ1 = λ2 = 0.1. In Fig.3:
λ1 = 0.05, λ2 = 0.1.

Fig. 1. Optimal control in the two-stage model with λ1 > λ2

When λ1 is greater than λ2 (Figure 1), which means that the first stage has a
higher R&D efficiency, firms tend to invest more resources in the first stage.The
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idea is to make the most of the initial phase when returns on investment are higher.
And at the switching moment t1, when λ1 changes to λ2, the control is reduced to
half of its original size.

Fig. 2. Optimal control in the two-stage model with λ1 = λ2

When λ1 is equal to λ2 (Figure 2), both stages have the same R&D efficiency,
making the process steady and similar to a classical R&D model without a distinct
break between stages.

Fig. 3. Optimal control in the two-stage model with λ1 < λ2

In the third case, when λ2 is greater than λ1 (Figure 3), which means that the
second stage has higher efficiency, firms adopt a different strategy. They reduce their
investment in the first stage and focus on the second stage, where R&D efficiency is
higher. By the way, we can be simple to find that in these two time interval, control
always increases over time. And on the switching moment the control will double
its original value.

In summary, the values of λ1 and λ2 have a direct impact on how a firm allocates
resources in each stage of the R&D process. When λ1 is greater than λ2, firms invest
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heavily in the first stage; when λ2 is greater, they concentrate resources in the second
stage. These findings suggest that firms can adjust their resource allocation based
on stage efficiencies, optimizing their overall strategy for innovation.

4. General k-Stage Model

Now we consider about the general situation,there are k time intervals during the
competition, i.e. k − 1 switching points t1, t2, . . . , tk−1. Each interval has different
positive constant λ1, λ2, . . . , λk. Denote time intervals [0, t1], [t1, t2], . . . , [tk−1, T ] as
I1, I2, . . . , Ik, respectively.

For an arbitrary player i ∈ N , we decompose his payoff function into the sum
of k parts, each of which is the payoff for each time interval.

Ki =

k∑
l=1

Kil, (13)

where

Ki1 =

∫ t1

0

y1[λ1PLui + λ1PF
∑
j ̸=i

uj −
1

2
e−rtu2i ] dt,

Kil =

∫ tl

tl−1

yl[λlPLui + λlPF
∑
j ̸=i

uj −
1

2
e−rtu2i ] dt, l = 2, . . . , k − 1,

Kik =

∫ T

tk−1

yk[λkPLui + λ1PF
∑
j ̸=i

uj −
1

2
e−rtu2i ] dt.

And the state function of each time t ∈ Il(l = 1, 2, . . . , k) is given by

ẏl(t) = −λlyl(t)
n∑
i=1

ui (14)

with initial condition y1(0) = 1.

Proposition 2. For any positive integer k > 1 with corresponding λ1, λ2, . . . , λk,
and switching moments t1, t2, . . . , tk−1, the equilibrium strategies in the problem
(13)-(14) have the following form

uNEi (t)Il = −[A− (A+
1

PL
)eMl(t)+

∑k−1
j=l Mj+1(tj)]−1λle

rt, t ∈ Il, l = 1, 2, . . . , k,

where

Ml(t) = kl(e
rt − ertl), kl =

λ2l (n− 1)(PL − PF )

r
, l = 1, 2, . . . , k,

tk = T , and time intervals [0, t1], [t1, t2], . . . , [tk−1, T ] are denoted as I1, I2, . . . , Ik,
respectively.

Proof. Suppose that for a given arbitrary positive integer m. We have that when
k = m− 1, by using backward calculation method we define the optimal control is
uNEi (t)I1 , ..., u

NE
i (t)Im−1

for each time interval respectively. And the form of optimal
control is as follows
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uNEi (t)Im−1
= −[A− (A+

1

PL
)eMm−1(t)]−1λ1e

rt, t ∈ [tm−2, T ],

· · ·

uNEi (t)I2 = −[A− (A+
1

PL
)eM2(t)+

∑m−2
l=2 Ml+1(tl)]−1λ2e

rt, t ∈ [t1, t2],

uNEi (t)I1 = −[A− (A+
1

PL
)eM1(t)+

∑m−2
l=1 Ml+1(tl)]−1λ1e

rt, t ∈ [0, t1],

where

Ml(t) = kl(e
rt − ertl), kl =

λ2l (n− 1)(PL − PF )

r
, l = 1, 2, ...,m− 2,

and

Mm−1(t) = km−1(e
rt − erT ), km−1 =

λ2m−1(n− 1)(PL − PF )

r
.

Then, we consider the situation when k = m. Without loss of generality, we
add a new switching point t0 to the first interval of the original m − 1 intervals,
and divide the interval [0, t1] into interval [0, t0] with a new positive constant λ0
and interval [t0, t1], which are denoted as I0 and I1 respectively. Therefore, due to
the properties of backward method and the consistency of the solution, the interval
I2, ..., Im−1 have the same optimal control uNEi (t)I2 , ..., u

NE
i (t)Im−1

.
Let us focus on the time interval I1([t0, t1]) and I0([0, t0]). Continuing with the

backward method, we consider the payoffs function for the given player i in the
interval I1:

Ki1 =

∫ t1

t0

y1[λ1PLui + λ1PF
∑
j ̸=i

uj −
1

2
e−rtui

2] dt,

where

ẏ1(t) = −λ1y1(t)
n∑
i=1

ui.

Construct the corresponding Hamiltonians

Hi
1(y1, ui, ϕi1, t) = y1[λ1PLui + λ1PF

∑
j ̸=i

uj −
1

2
e−rtui

2]− ϕi1λ1y1[ui +
∑
j ̸=i

uj(t)],

in which ϕi1 is the present-value costate variable of time interval I1. Assuming
that the equilibrium effort rates are strictly positive, the necessary conditions for
Hamiltonian maximization provide the candidate strategies

ui(t)I1 = λ1(PL − ϕi1(t))e
rt,

where the costates must satisfy the differential equations

˙ϕi1(t) = −∂H
i(y1(t), ui(t), ϕi1, t)

∂y1
, ϕi1(t1) = ϕi2(t1).
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Notice that ϕi2 is the costates of Hamiltonians Hi
2(y2, ui, ϕi2, t) in time interval I2.

Hence, we suppose
ui(t)I1 = −b1(t)λ1ert

and ϕi1(t1) = ϕi2(t1) = PL + b2(t1), we can also get b1(t1) = b2(t1) and calculate
the value of b1(t), we get

b1(t) = [A− (A− 1

b2(t1)
)eM1(t)]−1, (15)

where M1(t) = k1(e
rt − ert1), k1 =

λ2
1(n−1)(PL−PF )

r .
Due to the assumption, we know that

b2(t) = [A− (A+
1

PL
)eM2(t)+

∑m−2
l=2 Ml+1(tl)]−1, (16)

and when we take (16) into (15), we can find this form as follows

b1(t) = [A− (A+
1

PL
)eM1(t)+

∑m−2
l=1 Ml+1(tl)]−1. (17)

So we get a new optimal control with the same form:

uNEi (t)I1 = −[A− (A+
1

PL
)eM1(t)+

∑m−2
l=1 Ml+1(tl)]−1λ1e

rt, t ∈ [t0, t1].

Finally, we consider the time interval I0 = [0, t0], the corresponding Hamiltoni-
ans

Hi
0(y0, ui, ϕi0, t) = y0[λ0PLui + λ0PF

∑
j ̸=i

uj −
1

2
e−rtui

2]− ϕi0λ0y0[ui +
∑
j ̸=i

uj(t)],

where

ẏ0(t) = −λ0y0(t)
n∑
i=1

ui, y0(0) = 1.

The costate ϕi0(t0) = ϕi1(t0), hence we still consider the form of control is

ui(t)I0 = −b0(t)λ0ert, b0(t0) = b1(t0).

And
b0(t) = [A− (A− 1

b1(t0)
)eM0(t)]−1,

where M0(t) = k0(e
rt − ert0), k0 =

λ2
0(n−1)(PL−PF )

r . After substituting b1(t0) from
(17) we can find the optimal control in time interval I0 as following:

uNEi (t)I0 = −[A− (A+
1

PL
)eM0(t)+

∑m−2
l=0 Ml+1(tl)]−1λ0e

rt, t ∈ [0, t0].

Therefore, under the assumption that the number of time intervals k = m−1, we
have proven that the optimal control has the same form when k = m. Additionally,
by combining the case from the previous section where there is only one time node,
we can prove that for any number of time intervals, the optimal control in each time
interval has the same form.
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Proposition 3. For given any positive integer k > 1 with corresponding λ1, λ2, ..., λk,
the ratios of the optimal controls at the moments of switching tj, j ∈ {1, 2, ..., k−1}
are the same for any set of switching moments {t1, . . . , tk−1} for any player i and
have the form

uNEi (tj)Ij
uNEi (tj)Ij+1

=
λj
λj+1

.

Proof. The proof of proposition 3 is similar to that of proposition 1.

Let us analyse how changing the values of λi affects a firmвЂ™s control in general
situation(k = 3). Figures 4 – 6 demonstrate Nash equilibrium control in the three-
stage model with different ratios. Let t1 = 5, t2 = 10, T = 15, N = 15, PL = 5, PF =
2.5, r = 0.01. In the example shown in Fig.4 λ1 = 0.05, λ2 = 0.10, λ3 = 0.15. In
Fig.5: λ1 = 0.05, λ2 = 0.05, λ3 = 0.05. In Fig.6: λ1 = 0.15, λ2 = 0.10, λ3 = 0.10.

Fig. 4. Optimal control in three-stage model (λ1 < λ2 < λ3)

Fig. 5. Optimal control in three-stage model (λ1 = λ2 = λ3)
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In Figure 4, the efficiency parameters increase sequentially across the three stages
(λ1 < λ2 < λ3), the equilibrium control uNEi (t) shows distinct jumps at the switch-
ing points t1 and t2, determined by the ratios λ1/λ2 and λ2/λ3. Within each stage,
the control exhibits a consistent upward trend, reflecting firms’ adaptive strate-
gies to allocate more resources as efficiency improves over time. The highest control
value is achieved in the third stage, highlighting the incentivizing effect of increasing
efficiencies.

In Figure 5, when all stages share identical efficiency parameters (λ1 = λ2 = λ3),
the equilibrium control uNEi (t) is continuous at the switching points t1 and t2, with
no observable jumps. This uniformity results in a smooth transition across stages
and steady growth within each stage, making the control behavior comparable to
that of a single-stage model.

Fig. 6. Optimal control in three-stage model (λ1 > λ2 > λ3)

In Figure 6, the efficiency parameters decrease sequentially across the three
stages (λ1 > λ2 > λ3), the equilibrium control uNEi (t) decreases at the switching
points t1 and t2, with the jumps characterized by the ratios λ1/λ2 and λ2/λ3. De-
spite these decreases at the switching points, the control grows consistently within
each stage, reflecting firms’ adaptive strategies to maximize payoff despite declining
efficiencies. This dual behavior decreasing control at switching points yet increas-
ing within stagesвЂ”emphasizes the balance firms maintain between cumulative
resource allocation and efficiency dynamics.

These numerical results align with the graphical observations, emphasizing the
impact of efficiency parameters on the control variable’s dynamics across different
stages.

5. Conclusion

This paper develops a differential game model to study the dynamics of R&D
competition, starting with a two-stage model that serves as a foundation for analyz-
ing firms’ resource allocation optimal strategies. The two-stage model captures the
impact of efficiency differences on firms’ behavior and provides Nash equilibrium
strategies in a competitive environment.
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Building on this analysis, the study extends the model to a multi-stage design,
offering a more comprehensive perspective on strategic adjustments throughout the
R&D process. The findings demonstrate how firms respond to efficiency changes
across stages to enhance their overall outcomes. We found that the Nash equilibrium
control for each firms has the same framework and at the moment of switching
optimal control has a particular ratio relationship. This work not only advances
the theoretical understanding of multi-stage R&D competition but also provides
practical guidance for firms seeking to improve their strategic decision-making in
innovation-driven markets.
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