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Abstract This paper presents a clique-based centrality measure for hyper-
graphs, using the Shapley value to evaluate node centrality in multi-way
interactions. The proposed method identifies critical intersection nodes and
provides insights into the roles of peripheral nodes in different hypergraph
structures. Experimental results on various hypergraphs demonstrate the
method’s applicability and stability under different scaling factors
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1. Introduction

Hypergraphs have emerged as a powerful tool for modeling complex systems,
where relationships often extend beyond simple pairwise interactions. Unlike tradi-
tional graphs, which connect nodes with edges representing two-way relationships,
hypergraphs allow for hyperedges that link multiple nodes simultaneously. This ca-
pability makes hypergraphs particularly suited for applications such as social net-
work analysis, where group interactions are crucial, biological networks, where genes
participate in pathways, and knowledge graphs, where entities are interconnected
through multi-way relations. Hypergraphs can also be used in socio-philosophical
analysis, for example, to reflect the dynamic nature of the development of national
identity over historical periods. A similar analysis in a network setting is given in
(Tantlevskij et al., 2024). The vertices can represent cultural elements (language,
traditions, customs). The relationship of these elements to specific communities or
historical periods can be represented as edges. For the analysis of such structures
and the identification of their key aspects, it is important to be able to determine
the centrality of the nodes of a hypergraph.

However, evaluating node centrality in hypergraphs presents unique challenges.
Traditional centrality measures, such as degree, closeness, and betweenness central-
ity, are designed for graphs and often fail to capture the multi-way interactions
inherent in hypergraphs. For instance, in a social network represented by a hyper-
graph, traditional measures may overlook the critical role of a person connecting
multiple groups. This limitation underscores the need for new approaches tailored
to the hypergraph framework.

Recent studies have explored various centrality measures in hypergraphs, includ-
ing adaptations of graph-based metrics and hypergraph-specific algorithms (see, for
example, Tudisco and Higham, 2021, Tuǧal and Zeydin, 2021, Benson, 2019). How-
ever, for a social network an important property of a community is the ability of its
members to communicate with each other. In this regard, a method for constraining
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the centrality measure based on connectivity nodes to different hypergraph cliques
can be very useful.

In this paper, we propose a clique-based centrality measure that leverages game-
theoretic principles, specifically the Shapley value. Our approach quantifies the con-
tribution of a node based on its participation in hypergraph cliques formed by hy-
peredges, emphasizing its role in connecting and bridging overlapping communities.

2. Basic Definitions

Some concepts from hypergraph theory and game theory are briefly reviewed in
this section.

A hypergraph G is a pair G = (N,H), where N = {1, 2, . . . , n} represents a
finite set of vertices (nodes) and H = {h1, . . . , hm} is the set of hyperedges. Each
hyperedge hi ∈ H is a non-empty subset of N .

A subhypergraph GS = (S,HS) contains only vertices from S ⊂ N , and the set
of its hyperedges has the form HS = {h′i : h′i = hi ∩ S, hi ∈ H,h′i ̸= ∅}.

2.1. Hypergraph
Consider some basic definitions from hypergraph theory (see, for example, Bretto,

2013).

Definition 1. The primal graph P (G) of a hypergraph G is the graph with the
same set of vertices as the hypergraph G, and edges between all pairs of vertices
contained in the same hyperedge of G.

Definition 2. A hypergraph G is said to be conformal if every maximal clique of
its primal graph is a hyperedge, or equivalently, if every clique of its primal graph
is contained in some hyperedge.

Definition 3. A hypergraph is linear if every two edges intersect in at most one
vertex; otherwise, it is considered non-linear.

Definition 4. A cyclic hypergraph G = (N,H) is a hypergraph with such a set of
hyperedges H = {h1, . . . , hm}, that satisfies m ≥ 3, and every edge hi has nonempty
intersection only with hi−1 and hi+1 for every i ∈ {2, . . . ,m− 1}, h1 has nonempty
intersection only with h2 and hm, hm has nonempty intersection only with h1 and
hm−1. If m = 3, it is also required that h1 ∩ h2 ∩ h3 = ∅.

Definition 5. A hypergraph G = (N,H) with H = {h1, . . . , hm} is a sunflower if

for any hi, hj : hi ∩ hj =
m⋂
i=1

hi ̸= ∅.

For a hypergraph clique we use the definition from (Bykova, 2012).

Definition 6. If two vertices belong to a common hyperedge, they are said to be
adjacent. A set of vertices in which every pair is adjacent is called a hypergraph
clique. The maximal hypergraph clique is a hypergraph clique that is not a subset
of a larger hypergraph clique. The cardinality of a hypergraph clique is the number
of vertices it contains.

We define the intersection of a collection of hyperedges as the subset of vertices
contained in each of these hyperedges.

Definition 7. The maximal intersection is an intersection of hyperedges that is
not contained in any other intersection of hyperedges with more number of vertices.



Clique Based Centrality Measure in Hypergraphs 27

2.2. Game on hypergraph
A successful application of game-theoretic methods for determining the central-

ity of graph vertices was demonstrated in (Mazalov et al., 2016, Mazalov and Khi-
traya, 2021, Li et al., 2022). Typically, vertices are identified with players, and the
centrality of a vertex is defined as the payoff in a cooperative game constructed on
the set of all players. For the construction of a cooperative solution, a characteristic
function is defined as a measure of the importance of each subset of players (coali-
tion). The advantage of this method is that the centrality of a vertex is evaluated
taking into account its contribution to each possible coalition.

In this paper, we adapt the method proposed in (Li et al., 2022) to determine
the centrality of the vertices of a hypergraph. That requires building a special kind
of cooperative game on a hypergraph.

Let Γ = (G,V ) be a cooperative game on a hypergraph G = (N,H), where N
represents the set of agents (with each vertex representing an agent) and V : 2N → R
is the characteristic function with V (∅) = 0. A subset S of N is called a coalition
and N is called the grand coalition.

The characteristic function is said to be convex if, for every S ⊂ N and T ⊂ N ,
it satisfies the condition V (S ∪ T ) ≥ V (S) + V (T )− V (S ∩ T ).

A well-known solution to the cooperative game is the Shapley value. It was
proposed by Shapley (1953), which is an approach that allocates the total value of
the coalition to each agent based on their marginal contributions across all possible
coalitions.

The Shapley value in the game Γ = (G,V ) is the vector defined by

Shi =
∑
S⊂N
i∈S

(s− 1)!(n− s)!

n!
[V (S)− V (S\{i})], (1)

where i ∈ N, s = |S| is the number of vertices in S.
We have

∑
i∈N

Shi = V (N) and, for superadditive game, Shi ≥ V ({i}) for all

i ∈ N .

3. Construction of the Characteristic Function

Following (Li et al., 2022), we define a characteristic function in a cooperative
game on a hypergraph using the notion of hypergraph clique.

We assume that the more agents in the coalition that can interact directly with
each other, the higher the coalition should be valued. Thus, we can define a char-
acteristic function as follows:

Definition 8. The characteristic function V : 2N → R in the cooperative game
Γ = (G,V ) on the hypergraph G = (N,H) is defined by:

V (S) =

n∑
k=1

δkkak(S), δ ≥ 1, V (∅) = 0, (2)

where S ⊂ N, ak(S) is the number of hypergraph cliques of cardinality k in GS .

It can be seen that according to Definition 1, the cliques of the primal graph
P (G) coincide with the hypergraph cliques of a hypergraph G. It follows that the
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values of the characteristic functions constructed on G and P (G) will be the same.
Then according to (Li et al., 2022), we can conclude that the characteristic function
(2) is convex.

3.1. The Shapley value

We will use the Shapley value as the cooperative optimality principle. According
to (1), for its derivation, it is necessary to find the values of the characteristic
function of each coalition. However, in (Li et al., 2022) it was shown that for the
introduced cooperative game there is a simpler formula for computing the Shapley
value. This formula holds true for the hypergraph game as well.

Proposition 1. In the game Γ = (G,V ), the Shapley value for each player i is
given by:

Shi =
n∑
k=1

δkAik, (3)

where Aik is the number of hypergraph cliques in G of cardinality k containing the
node i.

The proof of this statement follows directly from (Li et al., 2022), since the
characteristic functions for G and P (G) coincide.

It also was mentioned in (Li et al., 2022) that in graphs, if δ = 1, then the Shap-
ley value coincides with the cross-clique connectivity proposed by Faghani (2013).

3.2. The centrality of nodes

In a cooperative game on a hypergraph, the cooperative solution can be used
to evaluate the centrality of vertices. Assuming the Shapley value is chosen as the
cooperative solution, let Sh(Γ ) denote the Shapley value in the game Γ . We define
the relative centrality of each vertex i as:

αi(Γ ) =
Shi(Γ )

V (N)
. (4)

Here, αi(Γ ) ∈ [0, 1] represents the normalized centrality of vertex i in the context
of game Γ , where V (N) is the value of the grand coalition (i.e., the total worth
of all agents in Γ ). This metric, αi(Γ ), offers a standardized way to interpret the
importance of each vertex, with values closer to 1 indicating higher centrality within
the network according to the Shapley value allocation in game Γ .

4. Different Types of Hypergraphs

In this section we consider different types of hypergraphs and for each of them
we derive special formulas for computing the characteristic function and the Shapley
value. For each type, we present an example, compute the centrality of each node,
and rank them accordingly.

4.1. Conformal hypergraph

First, consider a conformal hypergraph with m hyperedges hi (i = 1, . . . ,m) and
l maximal intersections Sk (k = 1, . . . , l). Here we assume that Si ∩ Sj = ∅ for any
i ̸= j.
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For this type of hypergraph, we can derive a method for the computation of
ak(S) (the number of hypergraph cliques in GS of cardinality k). Then the formula
for computing the characteristic function (2) takes the form:

V (S) =

max
i
{|S∩hi|}∑
j=1

[
m∑
i=1

(
Cj|S∩hi| −

l∑
k=1

Cj|S∩Sk∩hi|

)
+

l∑
k=1

Cj|S∩Sk|

]
δjj,

where for convenience, we define Cab = 0, if b > a.
For this type of hypergraph, the Shapley value of a node i ∈ N can be com-

puted in two cases: when the node i does not belong to the intersection of any
hyperedges, and when i belongs to the intersection of hyperedges. In each case, we
can drive different methods to compute Aik (the number of hypergraph cliques in G
of cardinality k containing the node i).

1. Assume i does not belong to any intersection, that is, i ∈ hi, i /∈ hj , i ̸= j. Then
the formula for computing the Shapley value (3) takes the form:

Shi =

|hi|∑
k=1

Ck−1|hi|−1δ
k = δ(1 + δ)|hi|−1;

2. When i belongs to a particular intersection, suppose i ∈ Sk, i ∈ hi1 , · · · , hit , i /∈
H\{hi1 , · · · , hit}. Then

Shi =

max
p
{|hip |}∑
j=1

[
t∑

p=1

(
Cj−1|hip |−1

− Cj−1|Sk∩hip |−1

)
+ Cj−1|Sk|−1

]
δj

=

t∑
p=1

(
δ(1 + δ)|hip |−1)− δ(1 + δ)|Sk∩hip |−1

)
+ δ(1 + δ)|Sk|−1.

Example 1. Let’s consider an example (see Figure 1). Given two cases for the scaling
factor δ, δ = 1 and δ = 2, we compute V (N) and the Shapley value for some nodes.
Other nodes have similar situations with the node under consideration, so they have
the same V (N) and Shapley value (e.g., node 1 and node 2). Using (4) we find the
centrality αi of these nodes and rank them in descending order. The results are
shown in Table 1.

Table 1. Results for Figure 1
δ V (N) i 1 3 5 6 7 10 11 13 15

1 1299
Shi 32 152 154 161 8 4 128 142 16
αi 0.0246 0.1170 0.1186 0.1239 0.0062 0.0031 0.0985 0.1093 0.0123

rank 6 3 2 1 8 9 5 4 7

2 38746
Shi 486 4806 4818 4870 54 18 4374 4530 162
αi 0.0125 0.1240 0.1243 0.1257 0.0014 0.0005 0.1129 0.1169 0.0042

rank 6 3 2 1 8 9 5 4 7

From Table 1, it is evident that node i = 6 has the highest relative centrality
(αi), indicating its significant contribution to the value of the grand coalition V (N).
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Fig. 1. Conformal hypergraph

This is attributed to its participation in multiple hypergraph cliques, especially large
or critical ones. In contrast, nodes with lower rankings, such as i = 10 has lower
centrality within the network due to its limited involvement in hypergraph cliques.

4.2. Sunflower
Second, consider a simple structure of hypergraph, sunflower. Suppose it has m

hyperedges hi for i = 1, . . . ,m, all of which construct this common intersection S1.
For sunflowers, we can simplify the form of the characteristic function by com-

puting the corresponding ak(S) in (2):

V (S) =

max
p
{|hip |}∑
j=1

(
m∑
p=1

Cj|hip∩S|
− (m− 1)Cj|S1∩S|

)
δjj.

For sunflowers, we need to compute the Shapley value of a node i ∈ N in two
cases: when i does not belong to the intersection S1, and when i does. A simplified
form of the Shapley value (3) can be determined by computing the corresponding
Aik in (3) in two cases:

1. Suppose i ∈ hi, i /∈ hj , i ̸= j :

Shi =

|hi|∑
k=1

Ck−1|hi|−1δ
k = δ(1 + δ)|hi|−1;

2. If i belongs to S1:

Shi =

max
i
{|hi|}∑
k=1

(
m∑
i=1

Ck−1|hi|−1 − (m− 1)Ck−1|S1|−1

)
δk

=

m∑
i=1

δ(1 + δ)|hi|−1 − (m− 1)δ(1 + δ)|S1|−1.

Example 2. Let’s consider an example (see Figure 2). Similar to Example 1, we
compute V (N), the Shapley value of each node and the centrality αi of these nodes
when the scaling factor δ = 1 and δ = 2. The results are shown in Table 2.

We can see that nodes belong to the central intersection has the highest centrality
because they connect all the hyperedges in the sunflower. Conversely, other nodes
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Fig. 2. Sunflower

Table 2. Results for Figure 2
δ V (N) i 1 2 3 4 5 6 7 8

1 116
Shi 4 8 8 16 16 16 24 24
αi 0.0345 0.0690 0.0690 0.1379 0.1379 0.1379 0.2069 0.2069

rank 8 6 6 3 3 3 1 1

2 1056
Shi 18 54 54 162 162 162 222 222
αi 0.0170 0.0511 0.0511 0.1534 0.1534 0.1534 0.2102 0.2102

rank 8 6 6 3 3 3 1 1

have lower centrality, reflecting their limited contribution to the value of the grand
coalition V (N).

4.3. Linear cyclic hypergraph with three hyperedges
In this section, we consider a linear cyclic hypergraph with three hyperedges hi

(i = 1, 2, 3), where each pair of hyperedges intersects at a unique vertex, forming the
intersection Si. This structure differs from a cyclic hypergraph with more than three
hyperedges in the computation of the characteristic function and the Shapley value.
Specifically, in this case, the three nodes in the intersections can form a hypergraph
clique of cardinality 3, which is not possible when add another hyperedge into the
cyclic structure.

Similarly, using (2), we can compute the characteristic function for this type of
hypergraph:

V (S) =

max
i
{|hi∩S|}∑
j=1

3∑
i=1

Cj|hi∩S|δ
jj −

3∑
k=1

C1
|Sk∩S|δ + C1

|S1∩S|C
1
|S2∩S|C

1
|S3∩S|δ

33,

where C1
|Sk∩S| = 0 if Sk ∩ S = ∅.

For the Shapley value, we need to consider two cases, when node i does not
belong to any intersection and when i belongs to a particular intersection:

1. When i does not belong to any intersection, suppose i ∈ hi, i /∈ hj , i ̸= j:

Shi =

|hi|∑
k=1

Ck−1|hi|−1δ
k = δ(1 + δ)|hi|−1;
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2. When i belongs to particular intersection, suppose i ∈ S1, i ∈ hi1 , i ∈ hi2 , i1 ̸=
i2:

Shi =

max
p
{|hip |}∑
k=1

2∑
p=1

Cδ
k

|hip |−1 − δ + δ3 =

2∑
p=1

δ(1 + δ)|hip |−1 − δ + δ3.

Example 3. Consider an example (see Figure 3) of this type of hypergraph. The
results are shown in the Table 3.

Fig. 3. Three hyperedges linear cyclic hypergraph

Table 3. Results for Figure 3
δ V (N) i 1 2 3 4 5 6 7

1 116
Shi 12 8 8 12 4 8 4
αi 0.2143 0.1429 0.1429 0.2143 0.0714 0.1429 0.0714

rank 1 3 3 1 6 3 6

2 1056
Shi 78 54 54 78 18 42 18
αi 0.2281 0.1579 0.1579 0.2281 0.0526 0.1228 0.0526

rank 1 3 3 1 6 5 6

It is clear that nodes that belong to the intersections contribute more to the
value of the grand coalition V (N), and thus have higher centrality than nodes that
do not belong to the intersections.

4.4. Non-linear cyclic hypergraph with three hyperedges
Let’s consider a hypergraph structure similar to the previous one, a hypergraph

with three hyperedges hi (i = 1, 2, 3), but non-linear, i.e. each pair of hyperedges
can intersect at more than one vertex, forming the intersection Si. Here, the char-
acteristic function has the following form:

V (S) =

max
i
{|hi∩S|}∑
j=1

(
3∑
i=1

Cj|hi∩S| −
3∑
k=1

Cj|Sk∩S|

)
δjj

+

|∪3
k=1Sk∩S|∑

p1+p2+p3=3
p1≥0;p2,p3≥1

Cp1|S1∩S|C
p2
|S2∩S|C

p3
|S3∩S|δ

p1+p2+p3(p1 + p2 + p3).
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For the Shapley value, we need to consider the case where node i does not belong
to any intersection and the case where i belongs to a particular intersection:

1. When i does not belong to any intersection, suppose i ∈ hi, i /∈ hj , i ̸= j:

Shi =

|hi|∑
k=1

Ck−1|hi|−1δ
k = δ(1 + δ)|hi|−1;

2. When i belongs to a particular intersection, suppose i ∈ S1, i ∈ hi1 , i ∈ hi2 , i1 ̸=
i2:

Shi =

max
p
{|hip |}∑
j=1

(
2∑
p=1

Cj−1|hip |−1
− Cj−1|S1|−1

)
δj

+

|∪3
k=1Sk|−1∑

p1+p2+p3=2
p1≥0;p2,p3≥1

Cp1|S1|−1C
p2
|S2|C

p3
|S3|δ

p1+p2+p3+1

=

2∑
p=1

δ(1 + δ)|hip |−1 + δ(1 + δ)|S1|−1

+

|∪3
k=1Sk|−1∑

p1+p2+p3=2
p1≥0;p2,p3≥1

Cp1|S1|−1C
p2
|S2|C

p3
|S3|δ

p1+p2+p3+1,

where C0
0 = 1.

Example 4. Consider an example (see Figure 4) of this type of hypergraph. Table
4 shows the results.

Fig. 4. Three hyperedges non-linear cyclic hypergraph

Comparing Table 3 and Table 4, we can see that in both structures the nodes
belonging to the intersections have higher centrality. However, their αi values are
slightly higher in the linear cyclic hypergraph (Table 3), because the simpler struc-
ture concentrates the centrality on fewer nodes. In contrast, nodes that do not
belong to the intersections have lower centrality in both tables, but their αi val-
ues are slightly higher in the non-linear cyclic hypergraph (Table 4) because the
increased density of the hypergraph spreads the centrality more evenly.
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Table 4. Results for Figure 4
δ V (N) i 1 2 3 4 5 6 7 8

1 116
Shi 8 16 16 4 24 24 14 22
αi 0.0625 0.1250 0.1250 0.0313 0.1875 0.1875 0.1094 0.1719

rank 7 4 4 8 1 1 6 3

2 1056
Shi 54 162 162 18 234 234 102 210
αi 0.0459 0.1378 0.1378 0.0153 0.1990 0.1990 0.0867 0.1786

rank 7 4 4 8 1 1 6 3

4.5. Linear cyclic hypergraph with more than three hyperedges
Let’s consider a linear cyclic hypergraph with m hyperedges hi (i = 1, . . . ,m,

m > 3) where each pair of hyperedges intersects at a unique vertex, forming the
intersection Si. This structure is similar to the three hyperedge linear cyclic hyper-
graph, without considering the special coalition as we said before.

Here, the characteristic function has the following form:

V (S) =

max
i
{|hi∩S|}∑
j=1

m∑
i=1

Cj|hi∩S|δ
jj −

m∑
k=1

C1
|Sk∩S|δ.

For the Shapley value, we consider two cases:

1. When i does not belong to any intersection, suppose i ∈ hi1 , i /∈ hi2 , i1 ̸= i2:

Shi =

|hi1|∑
j=1

Cj−1|hi1 |−1
δj = δ(1 + δ|)|hi1 |−1;

2. When i belongs to a particular intersection, suppose i ∈ hi1 , i ∈ hi2 , i1 ̸= i2:

Shi =

2∑
p=1

max
p
{|hip |}∑
j=1

Cj−1|hip |−1
δj − δ =

2∑
p=1

δ(1 + δ)|hip |−1 − δ.

Example 5. The results for the hypergraph in Figure 5 are shown in Table 5.

Fig. 5. More than three hyperedges linear cyclic hypergraph
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Table 5. Results for Figure 5
δ V (N) i 1 2 3 4 5 6 7 8

1 116
Shi 4 8 8 4 11 11 5 5
αi 0.0714 0.1429 0.1429 0.0714 0.1964 0.1964 0.0893 0.0893

rank 7 3 3 7 1 1 5 5

2 1056
Shi 18 54 54 18 70 70 22 22
αi 0.0549 0.1646 0.1646 0.0549 0.2134 0.2134 0.0671 0.0671

rank 7 3 3 7 1 1 5 5

4.6. Non-linear cyclic hypergraph with more than three hyperedges

Let’s consider a hypergraph structure similar to the previous one, a hypergraph
with m hyperedges hi (i = 1, . . . ,m, m > 3), but non-linear, i.e. each pair of
hyperedges can intersect at more than one vertex, forming the intersection Si.

In this case:

V (S) =

max
i
{|hi∩S|}∑
j=1

(
m∑
i=1

Cj|hi∩S| −
m∑
k=1

Cj|Sk∩S|

)
δjj.

For the Shapley value, we need to consider two cases:

1. Suppose i ∈ hi, i /∈ hj , i ̸= j:

Shi =

|hi|∑
k=1

Ck−1|hi|−1δ
k = δ(1 + δ)|hi|−1;

2. Suppose i ∈ hi1 , i ∈ hi2 , i1 ̸= i2 :

Shi =

max
p
{|hip |}∑
j=1

(
2∑
p=1

Cj−1|hip |−1
− Cj−1|hi1

∩hi2
|−1

)
δj =

=

2∑
p=1

δ(1 + δ)|hip |−1 − δ(1 + δ)|hi1
∩hi2

|−1.

Example 6. The results for the hypergraph in Figure 6 are shown in Table 6.

Table 6. Results for Figure 6
δ V (N) i 1 2 3 4 5 6 7 8

1 116
Shi 8 16 16 16 22 31 28 23
αi 0.0315 0.0630 0.0630 0.0630 0.0866 0.1220 0.1102 0.0906

rank 8 5 5 5 4 1 2 3

2 1056
Shi 54 162 162 162 210 322 306 214
αi 0.0210 0.0629 0.0629 0.0629 0.0815 0.1250 0.1188 0.0831

rank 8 5 5 5 4 1 2 3
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Fig. 6. More than three hyperedges non-linear cyclic hypergraph

5. Conclusion

This study proposes a clique-based centrality measure to evaluate the centrality
of nodes in hypergraphs. By introducing a game-theoretic approach and applying
the Shapley value, we quantify the influence of each node across different hyperedges
and hypergraph cliques, providing a refined and effective centrality measure. The
experimental results show that this method can effectively identify key nodes within
multiple interacting groups, providing deeper insights into their roles and positions
in the network structure.

Despite these contributions, particular limitations of the proposed method should
be noted. For instance, the computational complexity of the Shapley value may pose
challenges for large-scale hypergraphs. Additionally, the current approach assumes
fixed scaling factors and may not adapt well to highly dynamic or weighted hyper-
graph structures. Future work could focus on extending the methodology to handle
more complex hypergraph types, such as weighted or directed hypergraphs, and
exploring alternative centrality measures that complement or enhance the Shapley
value.

The findings of this study expand the application of centrality measures in hy-
pergraphs and provide more interpretable analysis tools for fields like social network
analysis, socio-philosophical analysis, and data mining. Future work could further
explore other centrality measures within complex networks and apply our approach
to a broader range of network structures, enhancing the accuracy and depth of
network analysis.
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