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Abstract In this paper, a cooperative differential game with pairwise in-
teractions is investigated. As a basic solution, the τ−value is constructed.
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1. Introduction

In the field of fishery management, one of the critical challenges is balancing the
economic benefits of harvesting with the need for sustainable resource management
(Dockner, 2000). Fisheries are dynamic, renewable resources influenced by ecolog-
ical, environmental, and economic factors (Clark, 1986). As fish stocks are often
shared across multiple jurisdictions or among various fishing agents, cooperative
approaches to fishery management have gained significant attention (Mazalov and
Rettiva, 2010). Cooperative game theory, particularly differential games, provides
a robust framework to analyze strategic interactions over time.

In this paper, fishery games with pairwise interactions are considered. We also
add subsidy (Petrosyan et al., 2021) in the game and make sure that the instanta-
neous payoffs are non-negative. In Addition, we consider finite time horizon. The
τ−value as basic solution in this case. Finally, the results are illustrated by a three
person differential game with pairwise interactions.

The remainder of this paper is structured as follows: Section 2 describes the
model of differential games with pairwise interactions. Section 3 defines a charac-
teristic function. In Section 4, we introduce the formal definition of the Core and
the τ -value, and its role in the differential game framework. Numerical simulations
and case studies are provided in Section 5 to illustrate the practical applications of
the model. Finally, Section 6 concludes the paper.

2. Differential Games with Pairwise Interactions

Consider a class of n-person differential network games with pairwise interaction
over the time horizon [t0, T ]. The players are connected to a network system. Let
N = {1, 2, . . . , n} denote the set of players in the network. The nodes of the network
are used to represent the players in the network.
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A pair (N,L) is called a network, where N is a set of nodes, and L ⊂ N × N
is a given set of arcs. Note that the arc (i, i) /∈ L. If pair arc (i, j) ∈ L, denote link
as i ⇔ j connect players i and j, j ∈ K̃(i). It is assumed that all connections are
undirected. We also denote the set of players connected to player i as K̃(i) = [j :

arc(i, j) ∈ L], for i ∈ N , i ̸= j. K(i) = K̃(i) ∪ i.
The state dynamics of the game are given by

ẋij(τ) = f ij(xij(τ), uij(τ), uji(τ));xij(t0) = xij0 , (1)

for τ ∈ [t0;T ] and i ∈ N, j ∈ K̃(i).
Here xij(τ) ∈ Rm is the state variable of player i interacting with player j ∈ K̃(i)

at time τ , and uij(τ) ∈ U ij , U ij ⊂ CompRl, the control variable of player i inter-
acting with player j. Every player i plays a differential game with player j according
to the network structure. The function f ij(xij(τ), uij(τ), uji(τ)) is continuously dif-
ferentiable in xij(τ), uij(τ) and uji(τ).

Define the payoff of each player i at each link or arc i⇔ j by

Kij
i (xij0 , u

ij , uji, T − t0) =

T∫
t0

hji (x
ij(τ), uij(τ))dτ + qijx

ij(T ), (2)

where qijxij(T ) is the terminal cost. Because player i plays multiple different differ-
ential games, the dynamic equation contains the player i’s control and the control
of his neighbor who plays the differential game with him. The payoff function of
player i is not only dependent upon his control variable, which is from the con-
trol set ui(t) = (uij(t), j ∈ K̃(i)), and trajectories xi(t) = (xij(t), j ∈ K̃(i)) but
also depend on the control variables of his neighbor, which is from the control
set uj(t) = (uji(t), i ∈ K̃(j)). Denote by u(t) = (u1(t), ..., ui(t), ..., un(t)), where
ui(t) = (uij(t), j ∈ K̃(i)) is the control variable of player i in the network struc-
ture. We use x0 = (x10, ..., x

i
0, ..., x

n
0 ) to denote the vector of initial conditions, where

xi0 = (xij(t0), j ∈ K̃(i)) is the set of initial conditions of player i. The payoff function
of player i is given by

Hi(x
i
0, u

i, uj , T − t0) =
∑

j∈K̃(i)

Kij
i (xij0 , u

ij , uji, T − t0)

=
∑

j∈K̃(i)

( T∫
t0

hji (x
ij(τ), uij(τ))dτ + qij(x

ij(T ))

)
. (3)

Here, the term hji (x
ij(τ), uij(τ)) is the instantaneous gain that player i can ob-

tain through network link with player j. We also suppose that the term hji (x
ij(τ), uij(τ))

is non-negative.

3. Cooperative Differential Games with Pairwise Interactions

We use x̄t = (x̄1(t), . . . , x̄i(t), . . . , x̄n(t)) to denote the optimal cooperative tra-
jectory, where x̄i(t) = (x̄ij(t), j ∈ K̃(i)). Denote by ū(t) = (ū1(t), . . . , ūi(t), . . . , ūn(t))
optimal cooperative strategy. Suppose that players can cooperate to achieve the
maximum total payoff
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∑
i∈N

∑
j∈K̃(i)

(∫ T

t0

hji (x̄
ij(τ), ūij(τ))dτ + qij(x̄

ij(T ))

)

= max
u1,...,ui,...,un

∑
i∈N

∑
j∈K̃(i)

(∫ T

t0

hji (x
ij(τ), uij(τ))dτ + qij(x

ij(T ))

)
(4)

subject to dynamics (1).
In (He and Petrosyan, 2024), a special mechanism was proposed for construct-

ing characteristic function. The approach essentially simplifies the calculation as
traditional method, such as maxmin confrontation.

Definition 1. The characteristic function V (S;x0, T − t0) is defined as

V (S;x0, T − t0) =
∑
i∈S

∑
j∈K̃(i)∩S

(∫ T

t0

hji (x̄
ij(τ), ūij(τ), )dτ + qi(x̄

ij(T ))

)
+

+α
∑
i∈S

∑
j∈K̃(i)∩(N\S)

(∫ T

t0

hji (x̄
ij(τ), ūij(τ))dτ + qi(x̄

ij(T ))

)
. (5)

4. τ value

In this section, we consider allocating the grand coalition cooperative network
gain V (N, x0, T−t0) to individual players according to the τ value imputation (Tijs,
1987). Player i’s payoff under cooperative would become

τi(x0, T−t0) = λ[V (N ;x0, T−t0)−V (N \{i} , x0, T−t0)]+(1−λ)V ({i} , x0, T−t0)
(6)

where

λ =
V (N ;x0, T − t0)−

∑
i∈N V ({i} ;x0, T − t0)

n · V (N ;x0, T − t0)−
∑
i∈N V (N \ {i} ;x0, T − t0)−

∑
i∈N V ({i} ;x0, T − t0)

.

5. Example

Consider following alternative game-theoretic model. The network structure is
shown in Figure 1. N = {1, 2, 3}.

As for link 1 ⇔ 2, 2 ⇔ 3 (similar game is considered by Mazalov.V. (Mazalov,
2014)). Consider the bioresource management problem. Let the dynamics of player
i in a differential game with player j have the form

ẋij(t) = ϵxij(t)− uij(t)− uji(t), (7)

where xij(t) represents the population size of the resource i at time t, uij(t) and
uji(t) are the control strategies (harvest amounts) of player i and player j, respec-
tively. ϵ is the natural growth rate of the resource.
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Fig. 1. Example

The payoff of each player in the pairwise interactions game on the link 1 ⇔
2,2 ⇔ 3 is defined as

Kij
i (xij0 , u

ij(t), uji(t), T − t0)

=

∫ T

t0

[piju
ij(t)− cij [u

ij(t)]2 + C[Uij ]
2]e−r(t−t0)dt+ e−r(T−t0)qijx

ij(T ) (8)

where pij and pji are the unit prices of the harvested resource for player i and
player j, respectively. cij and cji are the harvesting costs for each player. e−ρt is the
discount factor, where ρ is the discount rate. C[Uij ]2 is the government subsidy to
players at each time. C ≥ max(cij , cji), Uij ≥ max(uij , uji), C,U ij ∈ R. qijxij(T )
and qjix

ji(T ) represent the terminal rewards based on the final resource level at
time T.

In the network game, as for multiple links, the payoff of each player is defined
as

H1(x
12
0 , u

12(t), u21(t), T − t0)

=

∫ T

t0

[p12u
12(t)− c12[u

12(t)]2 + C[U12]
2]e−ρ(t−t0)dt+ e−ρ(T−t0)q12x

12(T ),

H2(x
21
0 , x

23
0 , u

12(t), u21(t), u23(t), u32(t), T − t0)

=

∫ T

t0

[p21u
21(t)− c21[u

21(t)]2 + C[U21]
2]e−ρ(t−t0)dt+ e−r(T−t0)q21x

21(T )+

+

∫ T

t0

[p23u
23(t)− c23[u

23(t)]2 +D[U23]
2]e−r(t−t0)dt+ e−r(T−t0)q23x

23(T ),

H3(x
32
0 , u

23(t), u32(t), T − t0)

=

∫ T

t0

[p32u
32(t)− c32[u

32(t)]2 +D[U32]
2]e−r(t−t0)dt+ e−r(T−t0)q32x

32(T ).

The profit of the joint venture is the sum of the participating firms’ profits

V ({N} ;x0, T−t0) = max
u12,u21,u23,u32

(∫ T

t0

[p12u
12(t)−c12[u12(t)]2+C[U12]

2]e−ρ(t−t0)dt+

+e−ρ(T−t0)q12x
12(T ) + +

∫ T

t0

[p21u
21(t)− c21[u

21(t)]2 + C[U21]
2]e−ρ(t−t0)dt+
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+e−r(T−t0)q21x
21(T ) + +

∫ T

t0

[p23u
23(t)− c23[u

23(t)]2 +D[U23]
2]e−r(t−t0)dt+

+e−r(T−t0)q23x
23(T ) +

∫ T

t0

[p32u
32(t)− c32[u

32(t)]2 +D[U32]
2]e−r(t−t0)dt+

+e−r(T−t0)qijx
ij(T )

)
(9)

subject to the dynamics (7).
Denote cjtiρ = cije

−ρt, pjtiρ = pije
−ρt.

To find the optimal cooperative solution, we use Pontryagin’s maximal principle
solve this problem, construct the Hamiltonian function

H = p2t1ρu
12−c2t1ρ(u12)2+CU2

12+p
1t
2ρu

21−c1t2ρ(u21)2+CU2
21+p

3t
2ρu

23−c3t2ρ(u23)2+CU2
23+

+p2t3ρu
32 − c3t2ρ(u

32)2 + CU2
32 + λ12(ϵx

12 − u12 − u21) + λ21(ϵx
21 − u12 − u21)+

+λ23(σx
23 − u23 − u32) + λ32(σx

32 − u32 − u23).

By setting the partial derivative of H with respect to u12 to zero, we derive the
optimal control strategy for player 1

ū12(t) =
p2t1ρ − (λ12 + λ21)

4c2tiρ
. (10)

According to Pontryagin’s Maximum Principle, the adjoint variable λ12(t) sat-
isfies the following differential equation:

λ̇12(t) = − ∂H

∂x12
= −ϵx12(t)

with the terminal condition at time T given by:

λ12(x
12(T )) = e−ρ(T−t0)q12.

By solving the differential equation for λ12(t) and substituting it back into the
original variables, we obtain the final optimal control for player 1:

ū12(t) =
p12 − (q12 + q21)e

(T−t)(ϵ−ρ)

2c12
. (11)

Similarly, we obtain the optimal control for player 2,3 at pair of arc 1 ⇔ 2, 2 ⇔ 3

ū21(t) =
p21 − (q21 + q12)e

(T−t)(ϵ−ρ)

2c21
, (12)

ū23(t) =
p23 − (q23 + q32)e

(T−t)(σ−ρ)

2c23
, (13)

ū32(t) =
p32 − (q32 + q23)e

(T−t)(σ−ρ)

2c32
. (14)
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Corresponding optimal trajectory of each player at each pair of arc can be expressed
as

xij(t) =

xij0 +
pij
2ϵcij

+
pji
2ϵcji

−
(qij + qji)

(
1
cij

+ 1
cji

)
2(ρ− ϵ)

e(ϵ−ρ)(T−t0)

 eϵ(t−t0)−

− pij
2ϵcij

− pji
2ϵcji

+
(qij + qji)

(
1
cij

+ 1
cji

)
2(ρ− ϵ)

e(ϵ−ρ)(T−t).

Try to compute the τ value. Assume the following values of parameters: c12 = 3,
c21 = 3.2, p12 = 12, p21 = 10, q12 = 2, x120 = 10, x210 = 12, q21 = 3, ρ = 0.05,
ϵ = 0.04, U12 = U21 = 1.5, C = 3.5 c23 = 2.5, c32 = 3, p23 = 11, p32 = 13, q23 = 3,
q32 = 3.5, x230 = 8, x320 = 6, σ = 0.03, U23 = U32 = 1.2, D = 3, t0 = 0, T = 5,
α = 0.6. Then calculate

V ({1} , x0, T − t0) = 52.9280, V ({2} , x0, T − t0) = 119.2261,

V ({3} , x0, T − t0) = 76.6434, V ({1, 2} , x0, T − t0) = 239.6241,

V ({1, 3} , x0, T − t0) = 127.5713, V ({2, 3} , x0, T − t0) = 290.9311,

V (N, x0, T − t0) = 411.3291, λ = 0.4969,

τ(x0;T − t0) = (86.4567, 200.9889, 123.8835).

Figure 2 shows the domains corresponding to the feasible imputation set Γ (x0, T −

Fig. 2. The diagram of the Tau value

t0), and the core C(x0, T − t0) based on constructed V (S, x0, T − t0). Color with
green represents the core, and the blank star represents the τ value imputation. In
this example, τ value belongs to the core.
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6. Conclusion

In this paper, we studied differential games with pairwise interactions. A new
solution (τ -value) is proposed in the game. Finally, the results are illustrated by an
differential fishery game with pairwise interactions.
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