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Abstract The Dirichlet’s Unit Theorem describes the structure of the group
of units as follows: let K be an algebraic number field with r1 real and 2r2
complex embeddings and ring of integers OK . Then the group of units of OK

is equal to the direct product of the finite cyclic group E(K) of roots of unity
contained in K and a free abelian group of rank r := r1 + r2 − 1. Dirichlet’s
E-symbol ("container" of the numbers of a special type) became the object
of Nikolai Bugaev’s mathematical dissertation.Bugaev and his followers of
Moscow’s Philosophical Mathematical School have attempted to develop a
sort of E-games which we define today as noncooperative signaling games
in post-Quantum perspective. Our very short introduction in E-games de-
scribes historical circumstances and the reasons for introduction of E-games
in post-quantum game theory. Fundamental Riemann problem and ABC
conjecture in Number theory are considered also as an examples of E-game,
hence, game-theoretical approach in Number theory is firstly justified.
Keywords: acausality, Schopenhauer, Moscow’s Philosophico-Mathematical
School, Bugaev, penny-flip game, 2+1 players game, quantum leadership, E-
game, signaling game, Riemann problem, ABC conjecture.

1. Introduction

The Dirichlet’s Unit Theorem describes the structure of the group of units as
follows. Let K be an algebraic number field with r1 real and 2r2 complex non-real
embeddings and ring of integers OK . Then the group of units of OK is equal to
the direct product of the finite cyclic group Е(K) of roots of unity contained in
K and a free abelian group of rank r := r1 + r2 − 1. In his publication of 1856
Dirichlet showed that E - symbol ("container") can have a mathematical theory
applied in general mathematics. Nikolai Bugaev (1837–1912) a legendary founder of
Moscow’s Idealistic Philosophico-Mathematical School (P.A. Nekrasov 1853–1924,
V.Ia. Zinger 1836–1907, L.M. Lopatin 1855–1920, V.G. Alekseev 1866–1943, D.F.
Egorov 1869–1931, P.A. Florensky 1882–1937, independent St Petersburg’s N.M.
Gunter 1871–1941) and distinguished number - theorist made the next step towards
post-Dirichlet’s E-symbol theory. He created a new kind of E(x) Calculus and E-
game theory, based on a very original idealistic philosophy of Leibniz’s monads
(Bugaev 1866, 1905, 1879). Similar with Arthur Schopenhauer - who had a decisive
influence in the middle of the 19th century on German mathematics, Nikolai Bugaev
(being PhD student of Dirichlet) proclaimed that physical causality was only one
of the rulers of the world; the other was a metaphysical acausality investigated by
mathematicians.

As earlier Schopenhauer wrote "coincidence is the simultaneous occurrence of
causally unconnected events. If we visualize each causal chain progressing in time as
https://doi.org/10.21638/11701/spbu31.2024.14
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a meridian on the globe, then we may represent simultaneous events by the parallel
circles of latitude. . . All the events in a man’s life would accordingly stand in two
fundamentally different kinds of connection: in the objective, causal connection of
the natural process; secondly, in the subjective connection which exists only in
relation to the individual who experiences it, and and which is thus as subjective as
his own dreams, whose unfolding content is necessarily determined, but in manner in
which the scenes in a play are determined by the poet’s plot. That both connection
exist simultaneously, and the self-same event, although a link in two different chains,
nevertheless falls into place in both, so that the fate of one individual invariably fits
the fate of the other, and each is the hero of his own drama while simultaneously
figuring in a drama foreign to him — this is something that surprises our powers
of comprehension, and can only be conceived as possible by virtue of the most
wonderful pre-established harmony... (Kostler 1972, 107–108).

In the given passage Schopenhauer is describing main ideas of Bugaev-Necrasov’s
acausal or E-games conjecture (Nekrasov 1902, 1904, 1916), which was a subject
of my presentation for GTM 2024 International Conference at St. Petersburg State
University.

2. General Remark

I’d like to begin our discussion of E-game theory by reviewing my old result
of this field which initiated anthropological studies in quantum games. In 2009
I proposed that one can construct 2-players games with quantum-like systems in
which if one (collective) player is restricted to classical strategies, while the other
player has access to quantum (non-classical) strategy, the quantum-like player will
win (Popov, 2009). What is meant for E-game theory is described below.

3. The Classical Penny-Flip Game

If for Arthur Schopenhauer and Moscow’s idealists-mathematicians coincidence
is the simultaneous occurrence of causally unconnected events (or, there is an
acausality), a famous Nash equilibrium occurs when all the players are simulta-
neously making a best reply to the strategy choices of the others. In other words, a
Nash equilibrium is just a pair of strategies whose use results in a cell which both
payoffs are causally circled. Let a 2-players classical penny-flip gam consisting of
players A and B, and a coin. The coin starts out in a state Heads. Player A is asked
to select between one of two strategies — Flip (F)) or non-Flip (N).In other words
A can choose to either Flip the coin or to leave it. Correspondingly, player B is
asked to choose between F or N without revealing the coin to him. Next phase of
the game: player A is asked again to choose between one of the 2 moves. The coin
is revealed to both players at the end of 3 moves. Following game rules, each player
can only perform operations on the coin but cannot know a real state during the
game. In the case when at the end of the 3 moves the state of the coin is Heads,
we define that player A wins, alternatively, if it is Tails, player B wins. The payoff
function πB of player B in a classical penny - flip game can be presented in the
following form (Table 1):

For any play, ρ, playoff of player A is πA(ρ) = −πB(ρ). In other words, this is
a zero sum game. It is easy to see hence, that none of the players have a dominant
strategy and, correspondingly, there are no Nash - Equilibria in Pure strategies.
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Table 1. Playoff of player B

NN NF FN FF
N -1 +1 +1 -1
F +1 -1 -1 +1

However, there is a Nash equilibrium in Mixed strategies ρNF (ρB , ρA) where ρB =
[ 12

1
2 ], ρA = [ 14

1
4
1
4
1
4 ].

4. The Quantum Penny-Flip Game

4.1. This is a nonclassical game consisting of players A and B, and the coin (in
"quantum box" assuming an existence of Verifier). Quantum games are an area of
experimental quantum mechanics and in order to describe the quantum penny-flip
game we need some sort of "cross-disciplinary translator" (because any quantum
game is usually associated with a quantum experimental setup in a specialised
quantum lab - this is introducing the quantum probabilistic definition of game
strategy). Please, see Appendix . In particular, physically speaking, in the classical
penny-flip game player A chooses the side of the coin (Tails, Heads), locks it in a
"box" and sends it to player B. Player B has proof that the coin was specifically
prepared, but he cannot predict the actual result. If it is Tails, player B wins.
Quantum cryptographers may say in this context that "there is no classical protocol
which allows unrestricted security against cheating for the "coin tossing" protocols".
However, using quantum mechanics, it is possible, at least, to limit probability in
the situations when player B, for instance, is always losing.
4.2. In quantum games we replace the "box" by a quantum state (in quantum
laboratory ). Player A chooses one among a series of non-orthogonal states and
sends it to player B. Each of the states encodes the result of the transformation of
the coin. Thus without previous knowledge, player B cannot know with certainty
which of the states he possesses. At this point player B makes his bet or he chooses
between two possible moves. To "unlock" the state player A can have dialogue
(question-answer) with player B on which state A sent. Player B can measure it
in an orthogonal basis to check player A’s answers. Thus, it is easy to see, hence,
that in quantum interpretation classical penny-flip game became 2 + 1 - players
cooperative game consisting of player A, player B and the Verifier. In the terms of
generalised algebra of quantum cooperative games, we have actually a non - local
game as a tuple G = (IA, IB , OA, OB): where IA, IB are finite sets that represent
questions for A and B; OA, OB are finite sets that represent answers for players A
and B. and, when Rule function is defined as λ : IA ∗IB ∗OA ∗OB → {0, 1}. Verifier
randomly sends a question x (which belongs to IA) to player A and y (belonging to
IB) to player B separately. The players respond with individual answer a (belonging
OA) and b (belonging OB) respectively. Correspondingly, players win the round
<–> λ(x, y, a, b) = 1.

Experimental physicists usually say in this context about a necessity to use three
dimensional quantum states or so-called "qutrits" (Molina-Terriza, 2004): the pro-
tocols using qutrits are better suited for this particular game. Founder of quantum
game theory physicist Meyer (1999) optimistically suggested that a player, equipped
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with a quantum computer, may always win no matter what classical player does in
any type of classical games actually.

5. Post-Quantum E-games

5.1. Always winning players in the history of science and management ("the Chal-
lenge of Perfect Play") represent an open (may be elusive) problem of classical
game theory and psychology of management today. Some historical observations,
nevertheless, may suggest some analogy for that elusive problem in quantum game
theory, where a quantum player (hypothetical "quantum leader") equipped with a
quantum device can certainly win some types of classical games no matter what
other classical players do indeed (Meyer, 1999). Similar reflections (Khan et al.,
2018; Leung, 2011, Popov, 2009) on the problem of "quantum leadership", however,
can produce ideas of the End of Classical game theory and some sort of "Superde-
terminism" in post-quantum game theory. But it is not clear here what kind of
post-quantum games could be useful in the future leadership paradigm. Current ex-
periments in the area of Artificial Intelligence and Quantum Artificial Intelligence,
unfortunately, are not able to provide essential clarification of such question, also
(Dilmegani 2022, Dey et al., 2023)
5.2. It is not surprisingly, that working systematically under philosophy of global
leadership and genius psychology, Schopenhauer and Moscow’s idealists - mathe-
maticians made some attempts to develop intuitive E-games or "post-quantum"
noncooperative non-local (players are separated and cannot communicate physi-
cally with each other during game) and without real Verifier (in the modern terms)
games which could be associated with a problem of mathematical winners beyond
materialism and "fundamental fatalism".
5.3. In his "Математика и научно-философское миросозерцание" (1905), in par-
ticular, Nikolai Bugaev attempted to define quite puzzling "free values function"
(функцию произвольных величин), which in comparison with analytical contin-
uous functions of Analysis and discrete functions of Number theory (Bugaev’s
"Аритмологии") pretended to have manifold of the meanings for the same mean-
ing of the independent variable ("Между тем в аритмологии встречаются особые
функции, обратные прерывным. Их можно назвать функциями произвольных
величин. Оне обладают свойством иметь бесчисленное множество значений для
одного и того же значения независимой переменной")(Bugaev, 1905, p. 364).
Bugaev’s free values function is a nonanalytical discontinuous function, which could
be used as a marker of an existence of fundamental error in theory or conjec-
ture. Semi-analytical E(x) function, correspondingly, may be used as "an antidote"
against speculative free values functions and it contains constantly changing ran-
dom independent variable x, applicable in E-games in science making. In agreement
with Pavel Nekrasov, hypothetical E-games can continue the tradition of idealistic
probability mathematics (Nekrasov 1902, 1916). He predicted that E-games could
be noncooperative-like games, where an essential role is played by mathematical
language of probability theory (Bernoulli-Chebyshev theorems), when analytical
and nonanalytical applications are useless and there is no "hidden" scientific law
for scientific explanation in principle.
5.4. Closest example of such sort of E-Game is Riemann problem in Number
theory. This is 2-players noncooperative signaling game consisting of two players-
mathematician M and Nature ("Creator of Mathematics"), N. It is assumed that



168 Michael A. Popov

a formal role in that game is played by nonnatural language (Number theoreti-
cal mathematical language), which is commonly accepted by both players M and
N. Some non exact analogies for this new kind of E-game could be found in con-
temporary literature on communication games (Crawford & Sobel 1982), signaling
games (Kohlberg & Mertens 1986, Crossman & Perry 1986, Cho & Kreps 1987) and
language games (Reny 2024). In the terms of signaling games, in our Riemannian E-
game there are two players: a Sender (M) and a Receiver (N). We allow M to make
mathematical statements (proofs) about the strategy which he is using. To be effec-
tive M - mathematical language must include some conventions. Following Nikolai
Bugaev, in order to provide the effective language for communication with N, the
false free values function must be replaced by the true semi analytical E-function. In
positive probability communications mathematical proof by M can take an effective
meaning. In some cases (please, see below ABC conjecture example) mathematical
formulation of the problem can be defined as an ill-posed problem and false conven-
tion is rejected by both players M and N (in order to achieve some kind of Nash’s
"mathematical-language-equilibrium"). Hence, M wins when the wrong convention
is rejected by M and N simultaneously. Similar with quantum games, E-game is
played as a series of rounds involving questions and answers between the imaginary
Vetifier and player M. Players are separated and cannot physically communicate
with each other during the E-game. A Vetifier is merely a speculative entity, but in
player M’s imagination two players try to convince an imaginary Verifier by giving
correct pair answers to pairs of questions posed by imaginary Verifier. . . Because
nobody knows in the Riemannian task why and what for distribution of the prime
numbers (N created "proto-integers" having only two divisors) has no analytical
mathematical law, mathematicians try to find unknown probability theory in order
to prove the Riemann hypothesis. It is quite possible that Riemann complex func-
tion could be associated with some unknown free values function and M is needed
for some unknown discontinuous semi analytical function, indeed.

5.5. In the 1950s legendary game theorist John Nash also attempted unsuccessfully
to find an unknown type of noncooperative game in order to prove the Riemann
hypothesis (he introduced a Nash Embedding Theorem). However, as we know
today, nobody knows what kind of randomness theory is used by N’s prime numbers
in their chaotic distribution, indeed.

5.6. Another example is connected with ABC conjecture in Number theory where
Nikolai Bugaev made his first historical contribution. Contemporary interpretation
of ABC conjecture by Masser-Osterle (1985) suggests that for every positive real
integer there can exist only finitely many triples (a, b, c) of coprime positive integers
with a+b = c such that c > Rad(abc)1+ε. In about 15.000.000.000 cases (c < 10000)
it became clear that as rule Rad(abc)1+ε > c, and, only in 120 cases of them (for
instance, 1 + 8 = 9) Rad(abc)1+ε < c.

Hence, because nobody knows what kind of probability theory is used by N’s
triples of coprime positive integers indeed, every new player M is faced with un-
known false free values function and with a necessity to find a true semi analytical
E(x) function. Following the earlier described heuristics of E-games, we may as-
sume that the Masser-Oesterle’s formulation of ABC conjecture contains some sort
of a convention between mathematicians invented to reduce a level of indetermi-
nacy of the task (to make effective language) (see, also Mochizuki, 2024). Let N
be a positive integer. Thus, in agreement with the fundamental theorem of arith-



E-Games: A Very Short Introduction 169

metic N must have unique prime factorisation. However, Masser and Osterle have
invented a special class of deformation of that fundamental theorem, when N is
transforming into a quasi - round number called Rad (n) or " radical of the integer
N". Thus, for example , in a normal case 60 is a product of 2.2.3.5 prime divisors.
But in Masser-Oesterle arithmetic, 60 became a product of 2.3.5. Correspondingly,
Rad(60) = 2.3.5 = 30. Similarly, in the normal case 100 = 2.2.5.5. After unlawful
free values deformation by Masser-Oesterle Rad(100) = 2.5 = 10. Free values func-
tion Rad (x) by Masser-Oesterle is introducing also a new sort of "pathology " of
fundamental theorem of arithmetic: every prime number for some unknown reasons
cannot have Masser-Oesterle deformation, hence Rad(5) = 5 and Rad(11) = 11.
Lack of proof of an existence of free values function ( Rad (x)) is producing an-
other kind of difficulty, connected with the introduction of so-called "indexes of
compositionality"(ε).

1260, 1680, 5040, 7560, 10080, 15120, 20160, 25200, 45360 and 50400 are different
integers, however, their free value function Rad(x) for x = 1260, x = 1680,. . . must
have the same value, because Rad(1260) = Rad(1680)= Rad(5040) = Rad(7560) =
Rad(10080) = Rad(15120) = Rad(20160) = Rad(25200) = Rad(45360) =
Rad(50400) = 2.3.5.7 = 210 . . . ! In order to distinguish them Masser and Oesterle
introduced artificial log - criterion LogN/LogRad (abc). Hence, say, (ε)1260 and
(ε)25200 must have different meanings: 1.335089. . . and 1.89534.

In his "Introduction in Number theory" Nikolai Bugaev (1905, see, also 1891)
formulated an earlier version of ABC conjecture without free values functionRad(x).
He introduced the semi analytical function ρ(n), where ρ(2) = 2, ρ(3) = 2, ρ(4) = 3,
ρ(5) = 2, ρ(6) = 4, ρ(7) = 2, etc. Hence, hypothetical Bugaev’s ABC conjecture
could be formulated in the form:

ABC conjecture: Suppose a, b, c are coprime positive integers such that a+b =
c. Then define d = Rad(abc) using ρ(n) function.

Formal comparisons of the two different interpretations of ABC conjecture may
suggest at least one conclusion: Masser-Oesterle interpretation of ABC conjecture
is an ill-posed problem, based on pure speculative free value function.

Masser-Oesterle’s ABC conjecture
9 + 4 = 13 , then d = Rad(9.4.13) = 2.3.13 = 78, hence, 78 > 13 (d > c)
25 + 7 = 32, then d = Rad(25.7.32) = 2.5.7 = 70 , hence, 70 > 32 (d > c)
8 + 1 = 9, then d = Rad(8.1.9) = 2.1.3 = 6, hence, 6 < 9 (d < c)

Bugaev’s ABC conjecture
9 + 4 = 13, then d = Rad(9.4.13) = 3.3.2 = 18 (because ρ(9) = 3, ρ(4) = 3,
ρ(13) = 2), hence, 18 > 13 (d > c)
25 + 7 = 32, then d = Rad(25.7.32) = 3.2.6 = 36 (because ρ(25) = 3, ρ(7) = 2,
ρ(32) = 6), hence, 36 > 32 (d > c)
8+ 1 = 9, then d = Rad(8.1.9) = 4.1.3 = 12 (because ρ(8) = 4, ρ(1) = 1, ρ(9) = 3),
hence, 12 > 9 (d > c)

6. Conclusion

Moscow’s idealists-mathematicians want to see more radical changes in the fu-
ture of probability theory and game theory because things haven’t gone nearly far
enough. I think the re-examination of well forgotten Bugaev’s E-games in today’s
post-quantum game theory could be quite suitable and productive indeed — a new
kind of game — theoretical approach in Number theory (applied to Riemann prob-



170 Michael A. Popov

lem and ABC conjecture) can become firstly justifiable. We showed that following a
pioneering attempt by John Nash (1950s) and combining a signaling E-game theory
with current Number theory (for instance in the case of successful analysis of ABC
conjecture) we may open new ways for game theory development assisted by AI and
Quantum AI achievements. It’s about time that it happened.
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Appendix

Quantum game theory is a relatively new field that extends the concepts of
classical game theory to the quantum realm. Here are comparative characteristics
of key notions of quantum game theory.

QUANTUM PLAYER
Quantum player is defined as a maker of quantum measurements.
QUANTUM STRATEGY
Strategy is an effective program of quantum measurements involving superpo-

sition and entanglement (entanglement is a counterintuitive nonlocal behaviour of
quantum particles which was mistakenly rejected by Albert Einstein (EPR article
1935) as "a game with Solipsism in scientific physics" (Nobel Prize in physics 2022)).

QUANTUM PAYOFF FUNCTIONS
Quantum mechanical expectations values.
QUANTUM EQUILIBRIUM CONCEPT
Quantum Nash-equilibrium. Quantum entanglement-assisted equilibrium.
QUANTUM GAME DYNAMIC
Quantum dynamic governed by the Schrödinger equation.
QUANTUM INFORMATION FLOW
Quantum information can be entangled and non-local in quantum games.
QUANTUM INFORMATION PROCESSING
The basic idea of quantum information processing is that information is stored

in quantum bits and processed by quantum logic gates. Just as classical logic gates
take classical bits of information from one site to another (in classical computers),
quantum logic gates take so-called "qubits" (or quantum bits) from one state to
another.

QUANTUM HAMILTONIAN
Quantum logic gates take qubits by modifying the system’s Hamiltonian, by

applying additional control fields to the background Hamiltonian, which underlies
the system.

QUANTUM EVOLUTION UNDER UNITARY TRANSFORMATION
Applying Hamiltonians will cause qubits to evolve under unitary transformations

(which are reversible).
"QUANTUM BOX"
"Quantum box" with the coin in quantum penny-flip game can be considered as

the Bloch sphere or as quantum logic gate and it can be implemented by applying
an appropriate Hamiltonian for an appropriate time.

HADAMARD GATE
Hadamard gate, usually indicated by the letter H, is self - inverse quantum logic

gate |+ > –> | 0 > and. | - > –> | 1>, so that applying it twice is equivalent
to doing nothing. This means that the Hadamard gate must correspond to a 180◦
rotation, and it is in fact equivalent to a 180◦ rotation around an axis tilted at 45◦
degrees from the x axis toward the x axis.

CHOICE OF QUANTUM GATES IN GAME PLANNING
It is possible to describe quantum gates in many different ways. The choice is

often a matter of context and the background of the quantum game - theorist.
Researchers with a background in computer science would tend to use the most
abstract notation X, while theoretical physicists might instead choose the Pauli
matrix form σx. By contrast, experimental physicists would usually use the H.
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Key differences and similarities
QUANTUM STRATEGIES
Quantum game theory allows players to employ quantum strategies leveraging

the principles of superposition and entanglement to gain strategic advantages.
QUANTUM ENTANGLEMENT
Entanglement enables players to correlate their strategies in a way that it is not

possible in classical game theory.
QUANTUM MEASUREMENT
The act of measurement in quantum mechanics can introduce randomness and

uncertainty, affecting the outcome of the game.
NASH EQUILIBRIUM
Both theories utilized the concept of Nash equilibrium , a state where no player

can improve their payoff by unilaterally changing their strategy. However, the def-
inition of Nash equilibrium is extended in quantum game theory to account for
quantum strategies.


