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Abstract In this study, we investigate an opinion dynamics game with
active and passive agents. Using a well-established framework for opinion
dynamics, we formulate the problem as a linear-quadratic game with active
agents competing for opinions. Our analysis focuses on the Nash equilibrium
as the solution concept, under the assumption that active agents strategically
select their actions throughout the game to minimize their individual costs.
This paper places significant emphasis on numerical modeling to illustrate
opinion dynamics. We aim to demonstrate how varying parameters impact
opinions of passive agents and costs of active agents in the Nash equilibrium.
Keywords: social networks, opinion dynamics, Nash equilibrium.

1. Introduction

The field of opinion dynamics modeling aims to formalize the process of aggre-
gation and dissemination of information within social groups. The DeGroot (DG)
model (DeGroot, 1974), which is fundamental to the field of study, assumes that
agents update their opinions over time by considering the current opinions of other
agents with given weights. An extension of the DG model is the Friedkin – Johnsen
(FJ) model (Friedkin and Johnsen, 1990), which incorporates the concept of stub-
bornness of agents regarding their initial opinions. This model acknowledges that
some individuals may resist changing their views despite external influences. The
Hegselmann – Krause model (Hegselmann and Krause, 2002) aligns in accordance
with the principle of bounded confidence, where agents interact based on the prox-
imity of their opinions. Specifically, each agent updates his opinion by averaging
the opinions of his neighbors whose opinions differ from his own by no more than
a specified threshold. A critical issue in these studies is whether agents reach a
consensus under a predetermined opinion formation rule.

Early research in this field largely overlooked the issue of social conflict. How-
ever, subsequent investigations situated social interaction within a broader con-
text, leading to the application of game-theoretic approaches. A promising strategy
for managing opinion dynamics in social groups involves integrating the strategic
influence of certain members into the opinion formation mechanism. Agents who
strategically choose their influence efforts are typically referred to as active agents,
players, or influencers. Scenarios involving multiple active agents and their inter-
actions with one another are modeled in the literature using differential and dis-
crete time games. The study in (Niazi and Özgüler, 2021) examines consensus issues
(including partial consensus) and Nash equilibrium within the context of differen-
tial games. In (Mazalov and Parilina, 2020), an average-oriented opinion dynamics
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model is proposed, and the Nash equilibrium is identified in a dynamic game using
the Euler method. The Nash equilibrium has become a widely accepted solution in
dynamic models where influencers compete for the opinions of agents. It has been
extensively analyzed in works such as (Sedakov and Zhen, 2019, Wang et al., 2021,
Jiang et al., 2023) for opinion dynamics games employing various types of strategies
(e.g., open-loop and feedback).

At the same time, research on influence extends beyond merely identifying Nash
equilibria. For example, (Rogov and Sedakov, 2018) investigates the cooperation
among active agents and the redistribution of their collective costs while coordinat-
ing their actions within the framework of the DG model. In (Kareeva et al., 2023),
which utilizes the FJ model, the potential for negotiation between active agents
is emphasized, leading to considerations of Pareto optimal and Nash bargaining
solutions. These solutions imply that the active agents choose their actions simul-
taneously, but one party can make the choice first, and the others adapt to it. This
makes it appropriate to consider the Stackelberg solution, which on the one hand
accounts for the sequential choice of actions, and on the other hand stems from the
independence of the choices. (Zhen, 2019) characterizes the Stackelberg solution for
the DG opinion dynamics game with two influencers. (Kareeva et al., 2024) exam-
ines the Stackelberg solution for an opinion dynamics game in a social group with
two active agents based on the FJ model.

In this paper, our analysis focuses on the Nash equilibrium as the solution
concept, under the assumption that active agents strategically select their actions
throughout the game to minimize their individual costs. This paper places signifi-
cant emphasis on numerical modeling to illustrate the dynamics of the system. We
aim to demonstrate how varying parameters impact the Nash equilibrium.

2. The Model

We examine a model of strategic influence on opinions in a social network with
a finite number of agents from (Kareeva et al., 2023). Let N and A be the sets
of active and passive agents, respectively, with |N | = n, |A| = a, and a ≫ n. A
passive agent, or simply an agent1, has his own real-valued opinion about a topic,
e.g., his personal quantitative measure of a certain parameter or the probability of a
certain event. An active agent, or a player2, can deliberately influence the opinions
of agents, aiming at her designated purpose. She does this by choosing her influence
effort to achieve the desired opinion in a social network during a finite set of periods
T = {0, 1, . . . , T} . We use ui(t) ∈ Ui ⊂ R to denote an influence effort (an action)
of player i ∈ N in period T \{T}. Let ui = (ui(0), . . . , ui(T −1)) be the profile of all
actions of player i ∈ N . We also write xj(t) ∈ X ⊂ R to denote the current opinion
of agent j ∈ A in period t ∈ T , where xj(0) = xj0 is his initial opinion on the topic.
Let x(t) = (x1(t), . . . , xa(t))

′, t ∈ T , where x0 = x(0) = (x10, . . . , xa0)
′.

Following the FJ model as a basis, we assume that an agent j ∈ A updates his
opinion by aggregating the current opinions of other agents as well as actions of
players and his own initial opinion:

xj(t+ 1) = sj

(∑
ℓ∈A

wjℓxℓ(t) +
∑
i∈N

bjiui(t)
)
+ (1− sj)xj0, t ∈ T \{T}, (1)

1for whom we use he
2for whom we use she
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where sj ∈ [0, 1] represents the susceptibility of agent j ∈ A to be exogenously
affected by other agents and players, while 1 − sj reflects the agent’s stubbornness
with respect to his initial opinion xj(0). Here wjℓ ∈ [0, 1] and bji ∈ [0, 1] are scalar
weights characterizing trust levels of agent j ∈ A in the opinion of agent ℓ ∈ A and
player i ∈ N , respectively. The equality wjℓ = wℓj does not necessarily hold true;
however,

∑
ℓ∈A wjℓ +

∑
i∈N bji = 1 for each agent j ∈ A.

Meanwhile, a player i ∈ N chooses such actions that minimize her cost func-
tional:

Ji(x0, u) =

T−1∑
t=0

ϱt
(αi
a

∑
j∈A

(xj(t)− x̂i)
2 + (1− αi)ciui(t)

2
)
+

+ϱT
βi
a

∑
j∈A

(xj(T )− x̂i)
2.

(2)

Here x̂i ∈ X is the desired and an a priori given opinion of player i ∈ N which she
wants to establish in a social network by choosing her action ui; ci ≥ 0 is a cost
parameter for this player. Next, ϱ ∈ (0, 1] is a common discount factor; αi ∈ [0, 1)
and βi ≥ 0 reflect player i’s weight on the squared deviation of the current opinions
from the desired one x̂i.

Given that the system dynamics (1) are linear and players’ costs (2) are quadra-
tic, we may formulate a linear-quadratic game for the model.

Hereinafter, we assume that each player behaves selfishly and chooses her ac-
tions (influence efforts) with the aim of minimizing her individual cost functional
in the game. To characterize this type of behavior, we examine the feedback Nash
equilibrium solution.

A feedback information structure implies that the current choice of actions is
dependent on both the current game period and the profile of agents’ opinions in this
period. A feedback strategy ui(t, x(t)) of player i ∈ N is a mapping that depends on
stage t and the current state x(t), i.e., ui(t) = ui(t, x(t)), where ui : T \{T} ×X 7→
Ui. We define Ui as the set of players i’s strategies, and U =

∏
i∈N Ui. A feedback

Nash equilibrium is a feedback strategy profile uN = (uN1 , . . . ,u
N
n ) ∈ U defined by

uNi = argminui∈Ui Ji(ui,u
N
−i) for any player i ∈ N . A detailed description of the

feedback Nash equilibrium solution can be found in (Kareeva et al., 2023).

3. Numerical Simulations

In this section, we conduct an analysis of the model through numerical simula-
tions. The primary objective is to investigate how the key parameters of the model
affect opinions of agents in the Nash equilibrium solution. As a specific case study, we
examine a two-person opinion dynamics game on a random scale-free network, which
is constructed using the Barabási – Albert (BA) model (Albert and Barabasi, 1999,
Albert and Barabasi, 2002).

The BA model is a well-known algorithm for generating scale-free networks
through a mechanism of preferential attachment. The only parameter in this model
is m (1 ≤ m ≤ a), which represents the number of edges that each new node
will create when it connects to existing nodes in the network. Specifically, when a
new node is added, it connects to m existing nodes, chosen preferentially based on
their degree (the number of connections they already have). The parameter m is
critical for determining how interconnected the emerging nodes within the network.
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It directly influences both the growth dynamics and the resulting degree distribution
of the network.

The scale-free property of networks is of particular interest, as it frequently ap-
pears in various forms of networks, including social networks (Mislove et al., 2007).

3.1. Estimating Trust Levels
In the case when the level of trust among agents in the network wjℓ remains

known, it can be estimated based on various centrality measures. Centrality metrics
serve as indicators of a node’s importance within the network structure. Conse-
quently, representing a social group as a network makes it possible to use specific
graph characteristics of the graph for the evaluation of unknown values. This study
employs the degree centrality measure to assess mutual trust among agents. This
approach aligns with a common observation in social dynamics: an agent’s signifi-
cance within the social structure tends to increase with the number of connections
he maintains with other agents.

In the context of this study, we assume that the network is formed by the
agents themselves, while players exist outside this network. The level of trust that
agents exhibit towards players, in contrast to their trust in other agents, can be
quantified using the Likert scale. This psychometric instrument is widely used in
survey research and typically consists of a range of response options from “strongly
disagree” to “strongly agree” (Nemoto and Beglar, 2014).

Let us assume that agents assess their trust in players according to the following
scale:

– 0: “None at all”;
– 0.25: “Not very much”;
– 0.5: “Don’t know”;
– 0.75: “Quite a lot”;
– 1: “A great deal”.

This scale is frequently utilized to evaluate the level of trust in an information source
within the context of sociological surveys.

Thus, the level of trust exhibited by agent j ∈ A towards both other agents and
players are calculated using the following rules in proportion to the values of degree
centrality:

wjℓ =


ωζ(ℓ)∑

g∈Aj(G)∪{j}

ζ(g)
, ℓ ∈ Aj(G) ∪ {j},

0, else,

(3)

bji =
(1− ω)rji∑
g∈N

rjg
, i ∈ N , (4)

where G is the social network of agents and Aj(G) = {ℓ ∈ A\{j} : (j, ℓ) ∈ G}
represents the set of neighbors of agent j ∈ A. The parameter ω ∈ (0, 1) reflects
the agent’s preference towards a specific group: either other agents or players, rji ∈
{0, 0.25, 0.5, 0.75, 1} denotes the trust rating that agent j ∈ A assigns to player
i ∈ N on the Likert scale, while ζ(j) indicates the centrality measure of node
j ∈ A.
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3.2. Parameters
Using the Barabási – Albert model, networks are generated with a total of

a = 100 nodes and a parameter m that varies from 2 to 20. The initial opinions of
the agents are randomly selected from the unit interval. Furthermore, we assume
that agents exhibit equal preference towards neighboring agents and influencing
players, such that ω = 0.5.

For the simulation, we assume that the number of players is n = 2. Play-
ers are supposed to choose their actions over T = 10 periods. The desired opin-
ions of players are x̂1 = 0 and x̂2 = 0.4. We assume that an agent’s trust in a
player is determined according to a probabilistic distribution based on the previ-
ously presented trust scale. The probability distribution for player 1 is defined as
p1 = [0.1, 0.1, 0.2, 0.4, 0.2], indicating that with a probability of 0.1, an agent does
not trust player 1, with a probability of 0.1, an agent tends not trust him, and
so forth. For player 2, the distribution is given by p2 = [0.1, 0.2, 0.4, 0.2, 0.1]. This
distribution can be interpreted to suggest that agents are more inclined to trust
player 1 compared to player 2.

Players have direct influence cost parameters that are equal c1 = c2 = 0.1.
Parameters α1 = α2 = α = 0.5, indicating that the players place equal weights
to the average deviation of agents’ opinions and their direct cost. The condition
β1 = β2 = α means that the average deviation of the agents’ opinions in the last
period has the same priority for the players as in any intermediate period. Finally,
the discount factor is set to be ρ = 0.95.

3.3. Results
We begin by analyzing the average terminal opinions x̄(T ) as a function of the

parameters sj = s for agent j ∈ A andm. It is evident that as the value of s increases
– indicating greater susceptibility of agents – the average terminal opinions x̄(T )
decrease and tend to align more closely with the desired opinion of player 1 (x̂1 = 0).
This phenomenon may be attributed to the fact that agents generally exhibit a
higher tendency to trust player 1, ultimately steering their opinions toward the
desired opinion of that player. Notably, the parameter m, which actually reflects
the degree of connectivity of the network, does not significantly influence the overall
results.

We next examine the standard deviation of terminal opinions x(T ), normalized
by the number of agents in the network, defined as

sd(x(T )) =

√
1

a

∑
j∈A

(xj(T )− x̄(T )).

As the value of the parameter s increases, sd(x(T )) decreases. This indicates that
agents who are more susceptible to external influences tend to have more similar
viewpoints, which is a natural outcome. Conversely, agents that exhibit greater
stubbornness demonstrate a higher dispersion in their opinions x(T ). While the
parameter m, does not significantly affect results, it is noted that lower values of
this parameter are associated with a greater overall dispersion of opinions.

Let us also examine players’ costs in the feedback Nash equilibrium. It can be
observed that for player 1, as the value of s (susceptibility) increases, the costs
decrease. This trend is attributed to the high level of susceptibility to external
influences within the society and a high level of trust in player 1. In contrast to
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Fig. 1. Average terminal opinions x(T ) as functions of s and m

Fig. 2. Standard deviations of x(T ) as functions of s and m

player 1, player 2 generally incurs lower costs than player 1, which can be explained
by the proximity of player 2’s desired opinion to the average initial opinion within
the society. However, when agents exhibit high susceptibility, the costs of player 2
exceed those of player 1. This is also due to the extremely high susceptibility of the
society to external influences and a high level of trust in player 1.
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Fig. 3. Players’ equilibrium costs as functions of s and m (the red plot represents
the costs of player 1, while the green plot represents the costs of player 2)

4. Conclusion

We investigated the FJ opinion dynamics game in a social network in which
players intentionally influence the opinions of network agents. The players decide
their influence efforts by weighting the average deviation relating to agents’ opinions
and their direct influence costs. Meanwhile, the agents aggregate their opinions,
accounting for their neighborhood and personal stubbornness. It is assumed that
the players act independently, therefore, Nash equilibrium solution are studied.

Due to the fact that the feedback Nash equilibrium in a linear-quadratic dynamic
game is represented by a system of recurrent relations, which poses analytical chal-
lenges, this study conducts numerical simulations for scale-free networks. In future
research, we are going to examine whether the results of numerical simulations
are consistent with those based on the introduced FJ opinion dynamics game, but
applied another class of social graphs.
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