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Abstract This paper analyzes the public goods model with linear quadratic
utilities in which each player determines the intensity of the activity they
take, which can also be described as a network game with local payoff com-
plementarity, as well as positive payoffs and negative quadratic costs. Players
play cooperative games with each other, and cooperative solutions when the
game is the planner’s optimal concern for the collective, describing each
player’s optimal action in maximizing the individual and public interest.
They are implemented programmatically to facilitate simple computations.
In these games, players’ activities can be linked to their positions in the
local interaction network. The cooperative actions taken by any player are
proportional to their Katz-Bonacich centrality in a complementary linear
quadratic game. In other words, higher Katz-Bonacich centrality, higher ac-
tion. We then use a comparative statics framework to analyse the effect that
changes in individual variables have on cooperative actions.

Keywords: network game, quadratic utility function, cooperation, Katz-
Bonasic centrality.

1. Introduction

The impact of an individual on a group is a peer effect, as described by
(Debreu and Herstein, 1953). (Kandel, 1992) explores how profit, regulation, and
other factors interact and create incentives among peers. (Akerlof, 1997) describes
agents who are socially distant as having almost no interaction.

(Ballester, Calvó-Armengol and Zenou, 2006) consider a game with a finite pop-
ulation of players with a linear quadratic utility function, where the player’s utility
is decomposed into a special component, a global interaction component, and a local
interaction network. As described in (Cvetković and Rowlinson, 1990)
(Jackson, Rogers and Zenou, 2017) and (Economides, 1996), strategic complemen-
tarity occurs when a player’s optimal strategy is being dependent on the strategies of
other players. (Cooper and John, 1988) focuse on the importance of strategic com-
plementarity in player payoff functions. (Demange, 2017) analyzes the planner’s
optimal strategy for increasing the overall action. (Bramoullé and Kranton, 2007)
show that when contributors are jointly connected to many agents in the network,
it benefits the whole society. New connections increase access to public goods and
reduce incentives for individuals to contribute. (Allouch, 2015) discusses a more gen-
eral function in the public goods economy. The model of (Jackson, 2008) is a variant
of the (Ballester, Calvó-Armengol and Zenou, 2006) model, which is a pubilc goods
model of local strategic complementarity and presents the optimal actions for each
https://doi.org/10.21638/11701/spbu31.2023.17
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player when only his or her own interests are maximized. This paper is a discussion
and extension of the variant model.

(Calvó-Armengol, Patacchini and Zenou, 2009) show that an individual’s posi-
tion (determined by Katz-Bonacich centrality) in the network is a determinant of an
individual’s activity level, after controlling for observable individual characteristics
and unobservable network-specific factors. (Belhaj, Bramoullé and Deroian, 2014)
discuss a model with continuous actions, quadratic payoffs, and strategic comple-
mentarities and peer effect analysis.

In this paper, we study collective interests. By using the first and second or-
der conditions for the existence of extreme values of multivariate functions, the
optimal cooperative payoff of individuals are obtained when collective interests are
maximized. And we get the relationship between optimal cooperative actions and
individual positions in the network. In addition, we focus on the influence of various
factors in the network on the cooperative optimal solution.

2. The Model

We consider the public goods model of strategic complementarity, where ac-
tions are continuously adjustable, but where there are strategic complementarities
between players’ actions. The following model is a variant of the Ballester, et al.
(2006) model in which activities are complementary to strategies.

Each player i = 1, 2, ..., n chooses an intensity at which he undertakes the activ-
ity, player j = 1, 2, ..., n is the neighbor directly connected to player i, where j ̸= i.
Let xi denote the intensity of activity, such that player i’s higher activity intensity
xi corresponds to higher action. The payoff function for player i is described by

ui(xi, x−i) = aixi −
bi
2
x2
i︸ ︷︷ ︸

individual part

+
∑
j ̸=i

wijxixj︸ ︷︷ ︸
local network effect

, (1)

where ai > 0 and bi > 0 are scalars, and the wij ’s are weights that the player i places
on j’s action. Where wij = 0 if player i does not nominates j (j ̸= i) as a neighbor
of i. If wij > 0, then the activities of i and j are strategic complements, so that
more activities of j will arouse i’s enthusiasm for activities, while if wij < 0, then
the activities of i and j are strategic substitutes, and the increase of j’s activities
will reduce the activities of i.

In particular, when we think of a given individual taking their action xi, other
players are taking actions x−i. Let xi > 0 or xi = 0, so player i is taking some
real valued action. The utility that players gain increases linearly in my own action.
And quadratically, there is going to be a cost, so eventually player i does not want
to take too much action, because i will paying for that in terms of bi

2 x
2
i . In terms of

strategic complementarity, i weights different neighbors of i, so i has some weight
on j, i get some results of their actions. So if other players are taking very high
action, then that motivates us to take even higher action. When players act higher,
we get rewarded from taking higher action.

That is, we get positive returns aixi from our own direct actions. We get some
negative costs bi

2 x
2
i and which is quadratic, and then a bonus in terms of what other

individuals are doing in a strategic complements.
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3. Cooperative Solutions

We calculate the total social utility in the game, that is the sum of the payoff
ui(xi, x−i) for each player i. The expression can be written as

n∑
i=1

ui(xi, x−i) =

n∑
i=1

aixi −
n∑

i=1

bi
2
x2
i +

n∑
i=1

∑
j ̸=i

wijxixj , (2)

We use the idea of calculating the extreme points of the n-variable function
to calculate the strategy set that maximizes the total utility. The calculation have
following 4 steps:

(1) For the function
∑n

i=1 ui(xi, x−i), which has gradient vector

∇
∑n

i=1ui(xi, x−i) =


∂
∑n

i=1 ui

∂x1
∂
∑n

i=1 ui

∂x2

...
∂
∑n

i=1 ui

∂xn

, we take the values ∇
∑n

i=1 ui(xi, x−i)|X

at each point. Let X be (x1, x2, ...xn), when ∇
∑n

i=1 ui(xi, x−i)|X = 0, X is an
extreme point and stable point;

(2) Compute ∇
∑n

i=1 ui(xi, x−i)|X = 0, we can get action for each player xi =
ai

bi
+
∑

j ̸=i
wij+wji

bi
xj , and the set of actions for all players X = (I − δ)−1α;

(3)
∑n

i=1 ui(xi, x−i) has a second-order continuous partial derivative, and X is sta-
ble point. If Hessian Matrix H(

∑n
i=1 ui(xi, x−i)) is negative definite,∑n

i=1 ui(xi, x−i)|X takes maximum value;
(4) For the function

∑n
i=1 ui(xi, x−i), its cooperative solution is X = (I − δ)−1α.

We know from the above steps that, we can have the gradient vector

∇
n∑

i=1

ui(xi, x−i) =


∂
∑n

i=1 ui

∂x1
∂
∑n

i=1 ui

∂x2

...
∂
∑n

i=1 ui

∂xn

 . (3)

The action of player i in maximizing the total utility function is found by setting
the partial derivative of the total utility

∑n
i=1 ui(xi, x−i) with respect to the action

level xi equal to 0.

∇
n∑

i=1

ui =



∂
∑n

i=1 ui

∂x1
= a1 − b1x1 +

∑
j ̸=1(w1j + wj1)xj = 0,

∂
∑n

i=1 ui

∂x2
= a2 − b2x2 +

∑
j ̸=2(w2j + wj2)xj = 0,

...
∂
∑n

i=1 ui

∂xn
= an − bnxn +

∑
j ̸=n(wnj + wjn)xj = 0.

(4)

By calculating the above equations, we can get the optimal action of player 1 to
n respectively in the case of maximizing the total utility. (4) can be written as
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x1 = a1

b1
+
∑

j ̸=1
w1j+wj1

b1
xj ,

x2 = a2

b2
+
∑

j ̸=2
w2j+wj2

b2
xj ,

...
xn = an

bn
+
∑

j ̸=n
wnj+wjn

bn
xj .

(5)

According to the equation, we can get the optimal actions for each player i,
where i = 1, 2...n.

xi =
ai
bi

+
∑
j ̸=i

wij + wji

bi
xj . (6)

In fact, a strategy profile X = (x1, x2, ...xn) can be expressed in matrix form as
the solution of

x1

x2

...
xn

 =


a1

b1
a2

b2
...
an

bn

+


0 w12+w21

b1
· · · w1n+wn1

b1
w21+w12

b2
0 · · · w2n+wn2

b2
...

...
. . .

...
wn1+w1n

bn
wn2+w2n

bn
· · · 0



x1

x2

...
xn

 . (7)

Let δij =
wij+wji

bi
(and set δii = 0). We can think of δ as a weighted and directed

network. The solution can be expressed as

X = α+ δX, (8)

where X is the n × 1 vector of xi’s and α is the n × 1 vector of ai

bi
’s. If ai = 0

for each player i, then (8) becomes X = δX and so then X is a unit right-hand
eigenvector of δ. Otherwise,I −


0 w12+w21

b1
· · · w1n+wn1

b1
w21+w12

b2
0 · · · w2n+wn2

b2
...

...
. . .

...
wn1+w1n

bn
wn2+w2n

bn
· · · 0




x1

x2

...
xn

 =


a1

b1
a2

b2
...
an

bn

 . (9)

We can rewrite in this form,
x1

x2

...
xn

 =

I −


0 w12+w21

b1
· · · w1n+wn1

b1
w21+w12

b2
0 · · · w2n+wn2

b2
...

...
. . .

...
wn1+w1n

bn
wn2+w2n

bn
· · · 0



−1

a1

b1
a2

b2
...
an

bn

 . (10)

The vector of actions that is described by

X = (I − δ)−1α, (11)

if the matrix I−δ is invertible, where I is the n-square identity matrix. Provided I−δ
is invertible and the solution is ultimately nonnegative. For the player’s activity level
X to be meaningful, X must be greater than 0 and (I − δ)−1 must be nonnegative.
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i=1 ui(xi, x−i) has a second-order continuous partial derivative. Now we decide

whether the Hessian matrix H(
∑n

i=1 ui(xi, x−i)) is negative definite, if it is negative
definite, then

∑n
i=1 ui(xi, x−i)|X takes maximum value.

H(

n∑
i=1

ui(xi, x−i)) =


∂2u
∂x1

2
∂2u

∂x1x2
· · · ∂2u

∂x1xn
∂2u

∂x2x1

∂2u
∂x2

2 · · · ∂2u
∂x2x2

...
...

. . .
...

∂2u
∂xnx1

∂2u
∂xnx2

· · · ∂2u
∂xn

2

 (12)

=


−b1 w12 + w21 · · · w1n + wn1

w21 + w12 −b2 · · · w2n + wn2

...
...

. . .
...

wn1 + w1n wn2 + w2n · · · −bn

 (13)

Symmetric matrix H(
∑n

i=1 ui(xi, x−i)) is negative definite, if for all nonzero
n× 1 vector x, xTH(

∑n
i=1 ui(xi, x−i))x < 0.
[1, 0, ...0]TH(

∑n
i=1 ui)[1, 0, ...0] < 0,

[0, 1, ...0]TH(
∑n

i=1 ui)[0, 1, ...0] < 0,
...
[0, 0, ...1]TH(

∑n
i=1 ui)[0, 0, ...1] < 0.

(14)

To sum up, we have calculated the total social utility of the game, and under
the condition of maximizing the total social utility, the optimal action set of each
player is X = (I − δ)−1α.

4. The Katz-Bonacich Network Centrality Measure

4.1. Network Centrality Measure
Katz centrality calculates the relative influence of nodes in a network by mea-

suring the number of near neighbors (level 1 nodes) as well as the number of all
other nodes in the network that are connected to that node through these near
neighbors. However, connections established with distant neighbors are affected by
attenuation factor d. Each path or connection between a pair of nodes is assigned
a weight determined by d the distance between the nodes dk.

Assume that the centrality of node i comes from other nodes connected to it,
and decreases as the length of the connecting path increases. For example: if the
distance between node j and node i is 1, then the centrality i gets from j is d, if
the distance is 2, then it is d2, and so on, for parameter 0 < d < 1.

Definition 1. For each network M with adjacency matrix M = [mij ], given unit
vector 1 of size n, and d > 0 a small enough scalar, the vector of prestige of nodes
is defined as

PK2(M,d) = dM1+ d2M21+ d3M31+ . . . (15)

Elements (mij) of M are variables that mij = 1 if node i is connected to node j,
mij = 0 otherwise. The vector I as a unit vector of size n (each element of the
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vector is 1), then M1 represents the degrees of each node, and Mk1 is paths of
length k start from node i.

Another way to think about it is a direct extension of the above measure of
power or prestige. We can write the new prestige (introduced by Bonacich) as:

CeB(M,d, c) = (I − cM)−1dM1, (16)

where d > 0 and c > 0 are scalars, and c is sufficiently small so that (5.2) is well
defined.

4.2. Centrality Measure to Cooperative Solution
From (8), by substituting in this expression, put right hand side in for x, and

then do that repeatedly. We can get

X = α+ δ(α+ δ(α+ δ . . . ). (17)

The actions are related to the network structure we get higher neighbors actions,
higher own action. One way to solve for what x is going to say it is equal to this
infinite sum. This means that δ is going to have a converge in sum. So in order for
a solution we need the b to be large enough and the δ to be small enough so that
this actually converges. The sufficient condition is that the sum of each row of the
matrix δ is less than 1, and the sum of each column is also less than 1.

Section 3 measures essentially describe broad features of the network. Now we
relate a player’s action to his position in the network, as measured by Katz-Bonacich
centrality. This is a well-known sociological measure of centrality. Which allow us
to compare nodes and illustrate how a given node relates to the entire network.

What is interesting is that this relates back to centrality measures. We can
rewrite (17) in either of this forms,

X =

∞∑
k=0

δkα. (18)

The Bonacich centrality looked like a calculation that was very similar to (18).
It looked like counting pairs of different length from i’s to different j’s and then
summing over all possible path lengths according to some weight.

Let ai = a and bi = b for all i. So that the only heterogeneity in society comes
through the weights in the network of interactions, the wij ’s. And alternatively we
write Bonacich centrality (16) looked like:

CeB(w + wT ,
1

b
,
1

b
) = (I − 1

b
(w + wT ))−1

1

b
(w + wT )1, (19)

where (I − 1
b (w + wT ))−1 can be expanded and written as

(I− 1

b
(w+wT ))−1 = I+

1

b
(w+wT )+

1

b2
(w+wT )2+ · · ·+ 1

bk−1
(w+wT )k−1, (20)

k is a positive integer. So formula (19) can be rewritten as

CeB(w + wT ,
1

b
,
1

b
) = (I − 1

b
(w + wT ))−1

1

b
(w + wT )1 =

∞∑
k=0

δk+11, (21)
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I is the n-square identity matrix. 1 is the n× 1 vector of 1’s. Then we can write X
as:

X = (1+ CeB((w + wT ),
1

b
,
1

b
))
a

b
. (22)

In fact what we can say is the action that any individual taken one of these
linear quadratic games of complementarities is something which is proportional to
their Bonacich centrality. So, higher Bonacich centrality, higher actions.

We have got everybody takes an action, a
b to begin with, which is just sort of

what they would in isolation with no network. And then the extra network effect
adds in these complementarities. And how much extra action they get here depends
on their Bonacich centrality in the network. Centrality tells us relative number of
weighted influences from one node to another, then captures the complementarities.

And the equilibrium levels of actions in (11) can be written:

X = (I − 1

b
(w + wT ))−1

a

b
1. (23)

To see that (5.4) implies that

X = (I +
1

b
(w + wT ) +

1

b2
(w + wT )2 + . . . )

a

b
1. (24)

Whereas the corresponding (15) Katz Prestige-2 is

PK2((w + wT ),
1

b
) = (

1

b
(w + wT ) +

1

b2
(w + wT )2 + . . . )1. (25)

From (25), for small enough 1
b > 0, if PK2(w + wT , 1

b ) is finite then it follows
that

PK2((w + wT ),
1

b
) = (I − 1

b
(w + wT ))−1

1

b
(w + wT )1. (26)

In fact, X can be expressed as

X = (1+ PK2((w + wT ),
1

b
))
a

b
. (27)

Where PK2((w+wT ), 1
b ) is same as the Bonacich centrality CeB((w+wT ), 1

b ,
1
b ).

To ensure that X is well defined, the term 1
b has to be small enough so that the

Katz Prestige-2 measure is well-defined and nonnegative. There are various sufficient
conditions, but ensuring that the rows (or columns) of 1

b (w+wT ) each sum to less
than 1 is enough to ensure convergence.

We treated all a and b as a parameter, for example, let ai = a, bi = b, for
all i. But the Cooperative solutions is in reality all ai and bi are different values.
According to (26), we rewrite (27) in matrix form,

X = (I + (I − δ)−1δ)1α, (28)

where I is the n-square identity matrix, 1 is the n × 1 vector of 1’s. δ is n-square
matrix, let δij =

wij+wji

b (and set wii = 0), α is the n × 1 vector of a
b ’s, X is the

n× 1 vector of xi’s.
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5. Comparative Statics

Comparative statics is the analysis of the corresponding change in equilibrium
after a known change in conditions and the corresponding change when the new
equilibrium is reached after a change in variables.

Example 1. We consider the network in Figure 1. From the figure we know that

Fig. 1. Directed and Weighted Graph.

there are 7 players in total. w is 7 × 7 matrix, which is the weight of node i to j,
the network w is directed and weighted.

We set ai = a and bi = b of each node i, where ai > 0 and bi > 0, wij > 0. It
is worth noting that bi must be large enough to make δij =

wij+wji

bi
small enough.

The sufficient condition is that the sum of each row of the matrix δ is less than 1,
and the sum of each column is also less than 1.

We let all ai = 32 and bi = 25 for all nodes i, and the weight of the network in
Figure 1 is Table 1.

Table 1. Parameter Values w

0 4 2 0 0 0 0

3 0 5 0 0 0 0

2 6 0 3 0 0 0

0 0 7 0 2 0 0

0 0 0 1 0 3 5

0 0 0 0 6 0 3

0 0 0 0 5 7 0

Tables 1 is the initial parameter values we set, and the parameters a, b and w
are brought into the program for calculation, we can get the centrality in Table 2.

Table 2. Katz-Boncich Centrality (a = 32, b = 25)

PK2
1 PK2

2 PK2
3 PK2

4 PK2
5 PK2

6 PK2
7

1.752 2.722 3.435 2.393 4.161 3.862 4.009

And we can get the optimal action of each player in Table 3.
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Table 3. Cooperative Solution

x1 x2 x3 x4 x5 x6 x7

3.522 4.764 5.677 4.344 6.606 6.223 6.412

We want to know how the optimal action X is affected by the parameters a, b,
and w. We use the above initial parameters and initial X as a reference, and then
compare the changes in the optimal action after changing a or b or w. Then make
a summary.

(1) When we increase the a value of each node, and other parameters remain
unchanged. The initial a value and the changed a value are shown in Table 4.

Table 4. Increase Value of a

initial a new a

32 50

We can get new cooperative solutions in Table 5, compare them with the initial
values.

Table 5. Compare Results by Increase all a

x1 x2 x3 x4 x5 x6 x7

initial X 3.522 4.764 5.677 4.344 6.606 6.223 6.412

new X 5.504 7.444 8.871 6.787 10.322 9.723 10.018

A comparison of the initial and new cooperative solutions, show that when
other parameters remain unchanged, only increase the a value of all nodes, then the
equilibrium actions of all nodes will increase.

(2) When we decrease the a value of each node, and other parameters remain
unchanged. The initial a value and the changed a value are shown in Table 6.

Table 6. Decrease value of a

initial a new a

32 20

We can get new cooperative solutions in Table 7, compare them with the initial
values.

Table 7. Compare Results by Decrease all a

x1 x2 x3 x4 x5 x6 x7

initial X 3.522 4.764 5.677 4.344 6.606 6.223 6.412

new X 2.201 2.978 3.548 2.715 4.129 3.889 4.007
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A comparison of the initial and new cooperative solutions, show that when
other parameters remain unchanged, only decrease the a value of all nodes, then
the equilibrium actions of all nodes will decrease.

(3) Increase all values of b, other values remain unchanged.

Table 8. Increase Value of b

initial b new b

25 35

We can get the new centrality in Table 9, compare them with the initial values.

Table 9. Katz-Boncich Centrality Comparisons

PK2
1 PK2

2 PK2
3 PK2

4 PK2
5 PK2

6 PK2
7

initial 1.752 2.722 3.435 2.393 4.161 3.862 4.009

new 0.691 1.089 1.390 0.891 1.423 1.294 1.347

And we get new cooperative solutions in Table 10, compare them with the initial
values. A comparison of the initial and new cooperative solutions, show that when

Table 10. Compare Results by Increase all b

x1 x2 x3 x4 x5 x6 x7

initial X 3.522 4.764 5.677 4.344 6.606 6.223 6.412

new X 1.546 1.910 2.185 1.728 2.214 2.097 2.146

other parameters remain unchanged, only increase the b value of all nodes, then the
equilibrium actions of all nodes will decrease.

(4) Decrease all values of b, other values remain unchanged.

Table 11. Decrease Value of b

initial b new b

25 20

We can get the new centrality in Table 12, compare them with the initial values.

Table 12. Katz-Boncich Centrality Comparisons

PK2
1 PK2

2 PK2
3 PK2

4 PK2
5 PK2

6 PK2
7

initial 1.752 2.722 3.435 2.393 4.161 3.862 4.009

new 13.627 21.214 28.263 25.238 69.714 67.000 69.357

We can get new cooperative solutions in Table 13, compare them with the initial
values.
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Table 13. Compare the Results by Decrease all b

x1 x2 x3 x4 x5 x6 x7

initial X 3.522 4.764 5.677 4.344 6.606 6.223 6.412

new X 23.403 35.542 46.819 41.981 113.143 108.800 112.572

A comparison of the initial and new cooperative solutions, show that when
other parameters remain unchanged, only decrease the b value of all nodes, then
the equilibrium actions of all nodes will increase.

(5) Only change a certain wij .

Table 14. w after Change Weight

0 4 2 0 0 0 0
3 0 5 0 0 0 0
2 6 0 3(6) 0 0 0
0 0 7(9) 0 2 0 0
0 0 0 1 0 3 5
0 0 0 0 6(4) 0 3
0 0 0 0 5 7 0

In Table 14, the initial w values are outside the parentheses, and the changed
ones are in parentheses. We can get the new centrality in cooperative solutions in
Table 15, compare them with the initial values.

Table 15. Katz-Boncich Centrality Comparisons

PK2
1 PK2

2 PK2
3 PK2

4 PK2
5 PK2

6 PK2
7

initial 1.752 2.722 3.435 2.393 4.161 3.862 4.009

w34+ 2.234 3.547 5.003 3.780 4.482 4.060 4.217

w43+ 2.036 3.209 4.361 3.216 4.351 3.979 4.132

w65− 1.725 2.676 3.348 2.235 3.137 2.834 3.188

We can get new cooperative solutions in Table 16, compare them with the initial
values.

Table 16. Compare the Results by Changing Weights

X1 X2 X3 X4 X5 X6 X7

initial X 3.522 4.764 5.677 4.344 6.606 6.223 6.412

w34+ 4.139 5.820 7.684 6.118 7.017 6.477 6.678

w43+ 3.887 5.388 6.863 5.396 6.850 6.374 6.569

w65− 3.488 4.705 5.565 4.141 5.295 4.907 5.361
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A comparison of the initial and new cooperative solutions, show that when
increase a certain weight wij leaves the other parameter values unchanged. For the
cooperative solutions, increase the action of node i and node j increased significantly.

In summary, in the comparative static analysis framework, we can conclude that:
(1) if other parameters remain unchanged, only increase the a value or decrease

the b value of all nodes. For the cooperative solutions, the equilibrium actions of all
nodes will increase. Conversely, only decrease the a value or increase the b value of
all nodes, the equilibrium actions of all nodes will decrease.

(2) if increase a certain weight wij leaves the other parameter values unchanged.
For the cooperative solutions, increase the actions of node i and node j increased
significantly.

We are able to see the relationship of player activity to their position in the
network in a very intuitive way. In this example, all ai and bi are the same value,
and the interaction effect comes down to the centrality measure and the structure
of w. So a player with higher centrality means higher prestige, and the higher the
prestige, the higher the player’s activity level.

6. Conclusion

In this paper, we mainly described strategically complementary public goods
model with quadratic utilities. Using the method of finding the extreme value of n-
variable function, the solution of individual cooperation under the maximum social
utility is calculated.

For this game, we relate individual cooperative solutions to the position of the
players in the local interaction network. The cooperative actions taken by any
player are proportional to their Katz-Bonacich centrality in the complementary
linear quadratic game.

Through an example, we can get a more intuitive comparing static. If we decrease
b or increase a, then the cooperative solutions X increase, and the actions of all
players increase. If you increase the entry of w, such as wij , for the cooperative
solution, increase the action of node i and node j increased significantly.

For example, in the criminal context, the effort each criminal puts in is propor-
tional to his position in the network, as measured by Katz-Boncich centrality, and
we can identify who is the most prestige person, once removed, reduces the total
number of crimes the most.
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