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Abstract We consider timing games, the payoff functions of which have
additional break lines outside the unit square diagonal. A special case of
such games are games with piecewise constant payoff functions. Solving these
games is reduced to solving a pair of integral equations for the distribution
functions of equalizing strategies. The proposed solution methods can be
used in the study of random walks on a segment in a variable environment.
Keywords: timing game, game on the unit square, random walks.

1. Introduction

Games on the unit square form the most important class of zero-sum games. This
is the first class of games considered immediately after matrix games. However,
when working with games on the unit square, researchers encountered a number
of technical difficulties. In particular, in some games with continuous kernels, the
spectra of optimal strategies are finite, while in others with analytic kernels, the
spectra of optimal strategies turn out to be Cantor sets. On the other hand, games
with discontinuous payoff functions may do not have optimal mixed strategies.

Among the mathematical models leading to antagonistic games, duel games
occupy an important place. These games are models in which a player’s payoff sig-
nificantly depends on how much earlier than his opponent he performed his action.
Timing games (duels) emerged in the 1940s in the works of Blackwell and several
other researchers at RAND Corporation (Blackwell and Girshick, 1954). The suc-
cess in solving these games was primarily due to the presence of a discontinuity on
the diagonal of the square. However, outside the diagonal of the square, the payoff
function is differentiable. It was proven that optimal mixed strategies of players can
be found from the solution of integral equations, and in some cases, the density of
distributions can be represented in analytical form. The definition and examples
of the solution to such games can be found in (Karlin, 1959), and for nonzero-sum
games in (Garnaev, 2000).

In this paper, we significantly expand the class of timing games and show that,
despite the additional break lines of the payoff function, it is possible to find so-
lutions to games from this class using integral equations. A essential difference of
the proposed approach is that the equations are compiled not for the distribution
densities, but for the distribution functions of optimal strategies. This method was
discussed by the author in the previous work (Lutsenko, 2022).

In recent years, almost no works devoted to games on the unit square have been
published. But nevertheless at the last conference the author examined games in
which the payoff function depends on the difference of arguments-strategies. It also
showed a close connection between a prior estimation games and random walks on
a segment. Thus, the long-standing and successful mathematical apparatus can be
used in solving these games (Feller, 1971, Zacks, 1971). Thanks to this connection,
https://doi.org/10.21638/11701/spbu31.2023.11



Generalized Integral Equations for Timing Games 183

it is easy to explain the success in solving games on the unit square and to con-
struct solutions to new games in analytical form. Note that when expanding the
class of timing games, a new connection arises with random walks in a variable
environment. Several other well-known games will be included: games with no so-
lution (Sion and Wolf, 1957), Silverman’s games (Heuer and Leopold-Wildburger),
and others. For some of them, the solution is obtained in analytical form but using
other methods. On the other hand, for games with discontinuous payoff functions
there are no solution existence theorems, and this fact significantly complicates the
construction of solutions.

With the expansion of the traditional class of games of timing, some games
with piecewise-constant payoff functions appear. For example, the "advertising cam-
paign" game. In Part 2., this and other examples show the difficulties that can arise
when solving games with discontinuous kernels.

Part 3. lists standard tools and methods for solving games on the unit square.
Part 4. is devoted to solving timing games.

2. Delayed Shooting in Worsening Weather

In this part of the work we will list those games that were not previously included
in the set of timing games, but will be included in the wider set of games built in
this work. The games listed below have been studied by many authors, and special
methods have been developed to solve them. The delayed shooting game was one of
the first examples of the game on the unit square. Let us describe the corresponding
mathematical model.

Example 1 (Delayed shooting). (Dreser, 1961) Player 2 places the rocket on a hidden
launch pad, where it must remain for the duration of ∆ time. Player 1 can only hit
the rocket while it is on that launch pad. Let y ∈ [0; 1] be a moment of placing the
rocket on the launch pad and x ∈ [0; 1] be the moment of attack, then the payoff
function of player 1 has the following form

h(x, y) = 1[0;∆)(x− y),

where 1A(t) is characteristic function of set A.

Despite the simplicity of the winning function in the considered game, many re-
searchers have worked with this game.

For instance, (Sion and Wolf, 1957) showed that a small change of the payoff
function on the break line leads to the fact that the game will not have a solution.
On the other hand, (Vorob’ev, 1984) constructed a solution to a wide class of games
with threshold payoff functions.

For a number of estimation problems, a priori estimation games were defined,
that is, games in which the payoff function depends on the difference of the argument-
strategies. For these games, an abstract algebraic solution method has been devel-
oped, which allows one to construct solutions in an analytical form (Lutsenko, 1990,
Lutsenko, 1990, Lutsenko, 1993). Therefore, if a timing game also turns out to be
a apriori estimation game, then the appropriate tools can be used to solve it.

Games with piecewise constant payoff functions are closely related to matrix
games. However, in the case of incommensurability of the lengths of the segments,
games arise whose optimal strategies have a countable everywhere dense spectrum.
A good example of such a game would be the following game.
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Example 2 (advertising campaign game). (Lutsenko, 2022) Two political parties or-
ganize an electoral (advertising) campaign during the period [0;1] independently
of each other. Suppose that the duration of the advertising campaign for the first
party is ∆1, and for the second party ∆2. We consider a party’s campaign to be
unsuccessful if the opponent’s campaign has not yet ended at the time it started.
Let x, y be the moments in time when the parties planned to start their campaigns.
Let a2 be the gain of player 1, if the time of the second campaign start is at the
time of the first campaign, that is, if y ∈ [x;x+∆1) and let a3 be the win of player
1, in the opposite case, that is, if x ∈ [y; y+∆2). Denote by a1 the win of player 1 if
player 2 runs his campaign after player 1’s campaign, that is, at y ∈ [x+∆1; 1] and
by a4 the win of player 1 if player 1 runs his campaign after player 2’s campaign,
that is, at x ∈ (y+∆2; 1]. Thus, the payoff function of the game is h(x, y) = k(x−y)
where

k(t) = a11[−1; −∆1](t) + a21(−∆1; 0](t) + a31( 0; ∆2](t) + a41(∆2; 1](t),

a3 < min(a1, a4) ≤ max(a1, a4) < a2.

The solution to this game comes down to solving the renewal equation, and, there-
fore, to researching a random walk on a segment with two absorbing screens.

An example of a game whose solution can be obtained using the methods devel-
oped in this work is the following game.

Example 3 (Delayed shooting in worsening weather). Let us assume that the players
from example 1 are subject to external influences (weather, organizational) that
change the payoff function for player 1. We can take the following payoff function

h(x, y) = φ1(x)φ2(y)1[0;∆)(x− y),

We assume that on the segment both functions are continuous, the function φ1(x)
is decreasing, the function φ2(x) is increasing.

A special case of such a game with a payoff function

h(x, y) = ea(y−x)1[0;∆)(x− y)

was studied by the author (Lutsenko, 1986) for all a > 0 and ∆ > 0. There you can
also find its solution in analytical form.

3. Games on the Unit Square

Definition 1. An antagonistic game (a two persons zero sum game) is a triple Γ =
⟨X,Y, h⟩, in which X,Y are the sets of strategies of players 1 and 2, respectively, and
h is the payoff function of the first player. In this game, two players independently
choose: the first strategy x from X, and the second strategy y from Y . As a result,
the first player wins h(x, y) from the second. The game Γ is called the game on the
unit square if X = Y = I = [0; 1].

Definition 2. An ordered triple ⟨x∗, y∗, v⟩ is called a solution to the antagonistic
game Γ = ⟨X,Y, h⟩ if for any x ∈ X, y ∈ Y the following inequalities hold

h(x, y∗) ≤ v ≤ h(x∗, y). (1)
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In these inequalities, the strategies x∗, y∗ are called the optimal strategies of players
1 and 2, the pair (x∗, y∗) is the saddle point of the function h, the number v =
h(x∗, y∗) – the value of the game Γ .

3.1. Mixed Strategies and Game Extension

Let Ξ be the set of measures on the interval I = [0; 1]. Each measure ξ ∈ Ξ
can be represented either as a non-negative countably additive function of the sets
ξ(A), A ∈ I, or by its distribution function Fξ(x) = ξ([0;x]), or using the generalized
distribution density function µξ(x). Moreover, the following equalities are true

ξ([0;x]) =

∫
[0,x]

µξ(x)dx =

∫
[0,x]

dFξ(x) = Fξ(x). (2)

In this representation, the distribution function Fξ(x) turns out to be a non-
negative, non-decreasing, and right-continuous function. The generalized distribu-
tion density is sometimes found using the equality µξ(x) = F ′ξ(x)

Therefore, it is possible to establish the one-to-one correspondence between dif-
ferent forms of representing the measure on a segment.

Definition 3. A mixed extension of an antagonistic game is an antagonistic game
Γ̄ = ⟨X̄, Ȳ , h⟩ in which the sets X̄, Ȳ are spaces of probability measures on the
corresponding sets, and the payoff function is given by the formula

h(µ, ν) =

∫ ∫
X×Y

h(x, y)µ(x)ν(y)dxdy =

∫ ∫
X×Y

h(x, y)dF (x)dG(y).

The elements of the sets X̄, Ȳ are called the mixed strategies of the players.

In the Russian tradition, another definition of the distribution function of the
random variable ξ is assumed, namely F (x) = Pr(ξ < x). With this definition, the
distribution function turns out to be left-continuous. In this work, we will construct
distribution functions that are continuous both on the right and on the left.

It is easy to show that an ordered triple ⟨µ∗, ν∗, v⟩ is a solution to the game if
and only if for all x ∈ X, y ∈ Y the following inequalities hold

h(x, ν∗) ≤ v ≤ h(µ∗, y) (3)

where h(x, ν∗) = h(δx, ν
∗), h(µ∗, y) = h(µ∗, δy), and δx, δy are densities of degener-

ate distributions with supports in the points x and y, respectively.

Theorem 1 (Ville, 1938). If the payoff function of a game on the unit square is
continuous, then the game has a value and the players have optimal mixed strategies.

Theorem 2 (Gliksberg, 1950). If the payoff function h of a game on the unit
square is upper continuous, then the game has the value v, and player 1 has an
optimal mixed strategy, and player 2 have the mixed ε-optimal strategies.
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3.2. Properties of the Game Extension

Here are some definitions that we will use when solving games on the unit square.

Definition 4. In the game Γ̄ = ⟨X̄, Ȳ , h⟩ a mixed strategy µ is said to equalize
on the set Y if h(µ, y) = c on Y for some c and a mixed strategy ν is said to be
equalize on the set X if h(x, ν) = c on X for some c.

We use the following notation: 1A(t) is the characteristic function of the set A and
10(t) is Heaviside step function, or the characteristic function interval [0; +∞).

Let us list some important properties of mixed strategies, which we will use
when solving games.

– If for some probability measures µ, ν and numbers v1, v2 the equalities h(µ, y) =
v1, h(x, ν) = v2, x, y ∈ I are satisfied, then v1 = v2 = v and the triple ⟨µ, ν, v⟩
is a solution of the game Γ (h).

– If the triplet ⟨µ, ν, v⟩ makes a solution of the game Γ (h), then the triplet
⟨µ, ν, av + b⟩ makes a solution of the game Γ (h1) with the payoff function
h1 = ah+ b, a > 0.

– If the generalized densities µ, ν of probability measures, and the triple ⟨µ, ν, v⟩
is a solution of the game Γ (h), then
• the triple ⟨µ(1−x), ν(y), v⟩ is the solution of the game Γ (h1) with the payoff

function h1(x, y) = h(1− x, y);
• the triplet ⟨µ(x), ν(1 − y), v⟩ is the solution of the game Γ (h2) with the

payoff function h2(x, y) = h(x, 1− y).
– If F (x) is the distribution function of optimal mixed strategy of player 1 in the

game Γ (h), then F1(x) = 1−F (x) is the distribution function of optimal mixed
strategy of player 1 in the game Γ (h1), with h1(x, y) = k(1 − x, y). Note that
if the function F (x) is continuous on the right, then the function F1(x) will be
continuous on the left.

4. Timing Games

Definition 5. A game on the unit square Γ (h) = ⟨I; I;h⟩, I = [0; 1] is called a
timing game (type 1) if its payoff function h(x, y) does not decrease by y on intervals
[0;x), (x; 1] for all x ∈ I and does not increase by x on intervals [0; y), (y; 1] for all
y ∈ I (see Fig 1.).

The following theorem is one of the variants of the theorems on the type of
optimal strategies in timing games. A proof of it can be found in (Karlin, 1959).

Theorem 3. If the payoff function h(x, y) of the timing game

1. increases by y on intervals [0;x), (x; 1] for all x ∈ I and decreases by x on
intervals [0; y), (y; 1] for all y ∈ I,

2. can be extended to continuous functions on the upper y ≥ x and lower y ≤ x
triangles of the unit square and has continuous second partial derivatives there,

3. the value of the function h(0, 0) lies between h(0+ 0, 0) and h(0, 0+ 0), and the
value of h(1, 1) lies between h(1− 0, 1) and h(1, 1 + 0),
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Fig. 1. Payoff function h of a timing game

then the game Γ (h) has a solution ⟨µ; ν; v⟩ in mixed strategies which distribution
densities of optimal strategies are

µ∗ = α0δ0 + f · 1(0, a) + α1δ1; ν
∗ = β0δ0 + g · 1(0, a) + β1δ1

for some a ∈ [0; 1]. The continuous functions f, g can be found from solving of
Fredholm integral equations.

Let’s expand the set of timing games.

Definition 6. A game on the unit square Γ (h) = ⟨I; I;h⟩, I = [0; 1] is called a
timing game (type 2) if its payoff function h(x, y) does not increase in y on the
intervals [0;x), (x; 1] for all x ∈ I and does not decrease in x on the intervals
[0; y), (y; 1] for all y ∈ I

Thus, the Advertising company game turns out to be a timing game of type 2.

Note 1. If in the game on the unit square with the payoff function h(x, y) replace
the variables by the formulas x → 1 − x; y → 1 − y, then the timing game of
type 1 will turn into the timing game of type 2 and vice versa. Because of the above
properties of optimal mixed strategies, we can easily obtain the solution of the game
with moment choice of type 1 to the game of type 2 and vice versa.

4.1. Solution of the timing game
In the future, we will assume that the payoff function h in the timing game

(type 1) Γ (h) has the following properties.

(i) The h(x, y) function has first-kind breaks only on the finite number of strictly
increasing and disjoint continuous curves.

(ii) For each point (x∗, y∗) that lies on the break line of the function h(x, y), the
following equals are satisfied

lim
x→x∗− 0

h(x, y∗) = lim
y→y∗+0

h(x∗, y) = h(x∗, y∗)

(iii) On the diagonal of the square, the payoff function h has a break, and the function

z(x) = h(x, x)− h(x, x− 0) = h(x, x)− h(x+ 0, x)

continuous and positive for x ∈ I
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Condition (i) is significantly weaker than the condition traditionally imposed on
the payoff function h (see Theorem3). Condition (ii) specifies one-sided continuity
on the break lines and diagonal of the square. Condition (iii) describes the break of
the payoff function on the diagonal of the square. It is somewhat weaker than those
considered by (Karlin, 1959), but enough to describe duels. In our case, player 1
has an advantage over the second player if they begin to act simultaneously. This
is not significant for practical applications, but it makes it much easier to solve the
game.

In this paragraph, we reduce the solution of the game Γ (h) to solving a pair
of integral equations regarding the distribution functions of optimal mixed player
strategies.

Theorem 4. If the payoff function h in the timing game Γ (h) satisfies the condi-
tions (i), (ii), (iii) and the functions

h1(x, y) = 10(x− y)− h(x, y)/z(x) (4)
h2(x, y) = 10(x− y)− h(x, y)/z(y) (5)

satisfy inequalities,
0 ≤ h1(x, y), h2(x, y) ≤M < 1 (6)

then the game Γ (h) has a value, and the players have optimal equalizing strate-
gies that can be found from solving integral equations regarding their distribution
functions.

Note 2. If the payoff function h of the game Γ (h) satisfies the conditions (i), (ii),
(iii), is positive in the upper triangle (y ≥ x) and negative in the lower triangle
(y < x), then the condition 6 of the theorem will be fully fulfilled.

Note 3. Since the payoff function h satisfies the conditions, the functions h1, h2 are
continuous on the left by x for all y ∈ [0; 1], and continuous on the right by y for
all x ∈ [0; 1], respectively. In addition, the function h1 does not decrease at y on
the unit segment for all x ∈ [0; 1] and the function h2 does not decrease at x on
the unit segment for all y ∈ [0; 1].

Proof. We are looking for the equalizing strategy of the second player ν with the
distribution function G and the number v2 such that equality

h(x, ν) =

∫
[0; 1]

h(x, y)dG(y) = v210(x)

runs on all x ∈ [0; 1]. Replace the function h using the equality (5). As a result, we
have the following representation of the payoff function.

h(x, ν) =

∫
[0; 1]

10(x− y)z(y)dG(y)−
∫
[0; 1]

h2(x, y)z(y)dG(y)

Let’s compose the Fredholm integral equation with respect to the function

G̃(x) =

∫
[0; x]

z(y)dG(y),
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is a distribution function of some measure on the segment. As a result, we get

G̃(x)−
∫
[0; 1]

h2(x, y)dG̃(y) = v21[0; 1](x)

An operator form of the equation is

(E −B)G̃ = v21[0; 1], (7)

where

(EG̃)(x) =

∫
[0; 1]

10(x− y)dG̃(y); (BG̃)(x) =

∫
[0; 1]

h2(x, y)dG̃(y).

Thus, the linear operators E,B are defined on the set of measures on the unit
segment Ξ. The integrative function h2(x, y) is non-decreasing and continuous on
the right by x, for all y ∈ [0; 1], and also h2(x, y) ≤M < 1 for all x, y ∈ I.

Therefore, the function (BG̃)(x) is non-decreasing, non-negative, continuous on
the right on the line [0; 1] and therefore BG̃ ∈ Ξ. On the right side of the equation
(7) is written the distribution function of the degenerate measure with the support
at 0. Taking into account the conditions of the theorem, the following inequalities
can be proved

(BnG̃)(1) =

∫
[0; 1]

h2(1, y)d(B
n−1G̃)(y) ≤

≤M

∫
[0; 1]

d(Bn−1G̃)(y) = M(Bn−1G̃)(1) ≤MnG̃(1).

Finally, the solution of the equation (7) can be written as the sum of the series

G̃(x) = v2 · (E +B + · · ·+Bn + . . . )1[0; 1](x)

which converges uniformly to the distribution G̃ ∈ Ξ, since its members are ma-
jorized by members of the converging number series

v2
∑
n

Mn.

The distribution function G of the probability measure can be obtained by the
formula

G(y) =

∫
[0; y]

dG̃(x)

z(x)
,

and the number v2 from the normalization condition G(1) = 1.
Now let’s move on to building the optimal strategy of player 1. We are look for

an equalizing strategy µ of player 1, that is, such a probabilistic measure for which
the following equality is fulfilled

h(µ, y) = v11[0; 1](y) for all y ∈ [0; 1]

or
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∫
[0; 1]

h(x, y)µ(x)dx = v11[0; 1](y).

We write the integrative function h in accordance with the condition (4). In the
obtained equality, we replace the variables: x → 1 − x; y → 1 − y. We get the
following equality∫

[0; 1]

[z(1− x)10(y − x)− z(1− x)h1(1− x, 1− y)]µ(1− x)dx = v11[0; 1](y).

Denote by µ1(x) = µ(1−x), z1(x) = z(1−x), and by F1(x) the probability measure
distribution function with density µ1. Let’s define the function

F̃1(y) =

∫
[0; y]

z1(x)dF1(x)

Let’s write down the Fredholm equation

F̃1(y)−
∫
[0; 1]

h1(1− x, 1− y)dF̃1(x) = v11[0; 1](y)

In operator form, the Fredholm equation will take the following form

(E −A)F̃1 = v11[0; 1] (8)

The solution to the equation (8) can be written as a series sum

F̃1(y) = v1(E +A+ · · ·+An + . . . )1[0; 1](y)

with
(AF1)(y) =

∫
[0; 1]

h1(1− x, 1− y)dF̃1(x), F (x) = 1− F1(1− x)

Finally, the solution of the game Γ will be the triple ⟨F,G, v⟩, where v = v1 = v2.
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