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Abstract A method for ranking the vertices of a graph based on Kirchhoff’s
laws for determining the potentials of an electrical network is proposed.
The graph is represented as an electrical network, where the edge weights
are interpreted as electrical conductivities. Then the current is sequentially
supplied to all vertices and each time the ranks of the vertices are determined
in accordance with their potentials. It is also proposed to take into account
the weights of the graph vertices, which allows you to include additional
information in the analysis.
Keywords: graph, centrality measure, ranking procedure, Kirchhoff’s cir-
cuit laws, transportation network, electrical circuit model.

1. Introduction

The concept of vertex centrality is of fundamental importance in the study of
the structural properties of a graph. This metric is used in the analysis of social,
information and transport networks. Kirchhoff’s law can be used to determine cen-
trality, while the graph is considered as an electrical circuit with ideal elements,
where the vertices are the nodes of the circuit, and the weights of the edges are
interpreted as electrical conductivity (Brandes, 2005, Newman, 2005). In a number
of papers, centrality is determined on the basis of currents flowing through a vertex
(Avrachenkov et al., 2013, Avrachenkov et al., 2015). According to Kirchhoff’s law,
the values of absolute potentials can be found for graph vertices. Previously a rank-
ing procedure based on these values, with a sequential supply of a unit of electric
current to each node of the circuit was proposed (Mazalov and Khitraya, 2023).
Thus, a tournament table of graph vertices is formed, which makes it possible to
determine which vertices are the most important for the system under considera-
tion. For the final ranking, it is proposed to apply the methods of a voting theory
(Kondratev and Mazalov, 2020), in particular, the Borda rule. In this case, the cen-
tral vertex will be the vertex with the highest rank.

Since, according to Ohm’s law, with an increase in the magnitude of the current
supplied to the system, the potential values change proportionally, this approach
can be modified for graphs with known vertex weights. In this case, a current is
supplied to each vertex, the value of which depends on the weight of the vertex.
The sum of the potential values obtained by successively supplying current to all
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nodes of the circuit can be used to rank the vertices in this particular case, which
can be interpreted as the total work of charge transfer in the circuit.

2. Electrical Circuit Model

During the analysis of the real system graph models, it often happens that the
graph vertex ranking, carried out only taking into account the topology of the graph,
leads to incorrect results. For example, when analyzing a transport system graph,
a large number of closely spaced vertices connected by short edges leads to high
ranks of such vertices (Mazalov and Khitraya, 2021). Although such vertices may
correspond to sparsely populated areas of the so-called "private sector". In this
regard, it is useful to include additional characteristics of the graph vertices, for
example, the vertex weight, which can be interpreted as the number of inhabitants
living near the graph node.

Paper by Mazalov and Khitraya (2023) considers an undirected graph with un-
weighted vertices. Here we will consider an undirected graph G = (V,E,W,P ),
where V is the set of vertices, E is the set of edges, W is the edge weight ma-
trix and P is the diagonal matrix of vertex weights. Suppose that each vertex
vi, i = 1, . . . , n of the graph G is connected to the artificially added vertex vn+1 by
an edge of weight δ (fig. 1). Denote this graph G′.

Fig. 1. Graph G′ with an artificially added vertex vn+1

The Laplace matrix for the graph G′ is as follows

L(G′) =


d1 + δ −w12 −w13 . . . −w1n −δ
−w21 d2 + δ −w23 . . . −w2n −δ

...
...

...
. . .

...
...

−wn1 −wn2 −wn3 . . . dn + δ −δ
−δ −δ −δ . . . −δ δn

 ,

where wij are the edge weights, di =
n∑

j=1

wij are the vertex degrees. But the L

matrix is degenerate, so we have to remove the row and the column, corresponding
to the vn+1 for the further calculations. Let’s denote this matrix as L̃(G′) :
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L̃(G′) =


d1 + δ −w12 −w13 . . . −w1n

−w21 d2 + δ −w23 . . . −w2n

...
...

...
. . .

...
−wn1 −wn2 −wn3 . . . dn + δ

 .

Let a unit of electric current be supplied to some node vk (k = 1, . . . , n) of
the circuit which is grounded in the node vn+1. According to Kirchhoff’s rules, the
absolute potentials of the circuit nodes are the solution of the equation system

φk = L̃−1(G′)bk, where bk(i) =

{
1, i = k,

0, otherwise
.

The absolute potential at the vertex vn+1 is assumed to be zero.
If we consider a system in which the current pk is supplied to the vertex vk, the

values of absolute potentials can be calculated as elements of the matrix Φ, where
the column k contains the values of the vertex potentials obtained by applying
current to the node vk:

Φ = L̃−1(G′)P.

It is known that the potential difference between two points of an electric field,
multiplied by the magnitude of the charge, is equal to the work required to move
the charge between these two points. Since the artificially added vertex vn+1 has
zero potential, the values obtained in the Φ matrix can be interpreted as the work of
moving the charges to the node vn+1. Multiplying the matrix of absolute potentials
by the unit column vector 1, we obtain the vector of sums of the vertices potentials

whose ith component ai =
n∑

k=1

φik. The value of ai expresses the total work on

the transfer of electric charges from the vi node to the vn+1 node when current is
sequentially applied to all graph nodes. The value of the current supplied to the
vertex vk is pk, k = 1, . . . , n. The greater the value of ai received, the more work
is done for the node vi, and, accordingly, the more important the vertex is for the
graph. Based on the obtained total work values, the graph vertices can be ranked.

Example 1. Consider a star graph S (fig. 2) with an edge weight matrix W
whose elements are inverse to the lengths of the edges between the corresponding
vertices.

W =


0 1

100
1

200
1

300
1

400
1

500
1

100 0 0 0 0 0
1

200 0 0 0 0 0
1

300 0 0 0 0 0
1

400 0 0 0 0 0
1

500 0 0 0 0 0


Assuming that the graph vertices are connected to the artificially added vertex,

where the circuit is grounded, by edges with weights δ = 0.0002, we first calcu-
late the absolute potentials values without taking into account the weights of the
vertices, based on the graph topology, as was suggested by Mazalov and Khitraya
(2023).
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Fig. 2. Graph S.

The absolute potential matrix φ, where the values located in the kth column
correspond to the values of the vector φk, has the form:

φ =


874.07 856.93 840.45 824.59 809.33 794.61
856.93 938.17 823.97 808.43 793.46 779.03
840.45 823.97 1000.44 792.88 778.20 764.05
824.59 808.43 792.88 1060.94 763.55 749.63
809.32 793.46 778.20 763.52 1119.75 735.75
794.61 779.03 764.05 749.63 735.75 1176.92

 .

Based on the potential values, we will rank the vertices with a sequential current
supply to the circuit nodes. Table 1 is the tournament table of the graph vertices.

Table 1. Tournament table.

№ k = 1 k = 2 k = 3 k = 4 k = 6 k = 7
∑

1 1 2 2 2 2 2 11
2 2 1 3 3 3 3 15
3 3 3 1 4 4 4 19
4 4 4 4 1 5 5 23
5 5 5 5 5 1 6 27
6 6 6 6 6 6 1 31

The smallest sum of ranks indicates that the vertex is best located on the paths
in the graph, i.e. is central. The vertex located in the center of the star, as expected,
received the best rank, the vertex farthest from the center (v6) received the worst
rank.

If we additionally introduce the vertex weight matrix P so that the vertex in
the center has the smallest weight, and the most distant vertex v6 has the largest
weight, we get the matrix Φ.
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P =


100 0 0 0 0 0
0 200 0 0 0 0
0 0 400 0 0 0
0 0 0 600 0 0
0 0 0 0 800 0
0 0 0 0 0 1000



Φ =


87407.34 171386.93 336182.06 494758.5 647461.75 794612.14
85693.47 187634.25 329590.26 485057.36 634766.42 779031.51
84045.52 164795.13 400175.06 475729.33 622559.37 764050.14
82459.75 161685.79 317152.89 636564.63 610812.97 749634.1
80932.72 158691.6 311279.69 458109.73 895797.91 735751.98
79461.21 155806.3 305620.05 449780.46 588601.59 1176920.13


Then the total work vector a is

a = (2531808.72, 2501773.25, 2511354.54, 2558310.11, 2640563.63, 2756189.75),

which corresponds to the ranks (4, 6, 5, 3, 2, 1). The greatest work is done for the v6
vertex, which indicates its importance in the system, despite its remoteness from
the star center. At the same time, the vertex v1 did not receive the worst rank; its
favorable location in the graph compensates for the low weight of the vertex.

3. Special Cases

3.1. Clique
A clique is a subset of vertices of an undirected graph such that every two

distinct vertices in the clique are adjacent.

Proposition 1. For a clique Cn of n vertices with a vertex weight matrix P

P =


p1 0 0 . . . 0 0
0 p2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pn−1 0
0 0 0 . . . 0 pn

 ,

the elements of the vector a are calculated as

ai =
1

δ(n+ δ)

pi(1 + δ) +
∑
j ̸=i

pj

 .

Proof. The Laplace matrix for Cn:

L̃(Cn) =


n− 1 + δ −1 −1 . . . −1
−1 n− 1 + δ −1 . . . −1
−1 −1 n− 1 + δ . . . −1
... −1 −1

. . . −1
−1 −1 −1 . . . n− 1 + δ

 .
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Then the inverse matrix L̃−1(Cn) :

L̃−1(Cn) =
1

δ(n+ δ)


1 + δ 1 1 . . . 1
1 1 + δ 1 . . . 1
1 1 1 + δ . . . 1
...

...
...

. . .
...

1 1 1 . . . 1 + δ

 .

Hence the matrix Φ takes the form

Φ =
1

δ(n+ δ)


p1(1 + δ) p2 p3 . . . pn

p1 p2(1 + δ) p3 . . . pn
p1 p2 p3(1 + δ) . . . pn
...

...
...

. . .
...

p1 p2 p3 . . . pn(1 + δ)

 .

Summing up the elements in each row of the matrix, we obtain expressions from
the statement.

3.2. Star graph

In graph theory a star is a tree with one internal node and several leaves.

Proposition 2. Elements of the total work vector for a star graph Sn (fig. 3) with n
vertices with edges of unit weight and a matrix of vertex weights P can be calculated
as follows

a1 =
1

δ(n+ δ)

p1(1 + δ) +

n∑
j=2

pj

 ,

ai =
1

δ(1 + δ)(n+ δ)

p1(1 + δ) + pi(1 + nδ + δ2) +
∑
j ̸=1,i

pj

 .

1

2 3

. . .

n− 1

n

Fig. 3. Star graph Sn
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Proof. For a star graph with unit weights, the Laplace matrix

L̃(Sn) =


n− 1 + δ −1 −1 . . . −1
−1 1 + δ 0 . . . 0
−1 0 1 + δ . . . 0
... 0 0

. . . 0
−1 0 0 . . . 1 + δ

 .

Calculate the inverse matrix

L̃−1(Sn) =
1

δ(1 + δ)(n+ δ)


(1 + δ)2 (1 + δ) (1 + δ) . . . (1 + δ)
(1 + δ) (1 + nδ + δ2) 1 . . . 1
(1 + δ) 1 (1 + nδ + δ2) . . . 1

...
...

...
. . .

...
(1 + δ) 1 1 . . . (1 + nδ + δ2)

 .

Multiplication by the diagonal matrix P on the right leads to the multiplication
of the ith column by the element pi. So the row sums will give the stated expressions.

In particular, for a matrix P of the form

P =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 p

 ,

the elements of a vector are

a1 =
n− 1 + p+ δ

δ(n+ δ)
,

ai =
δ2 + δ(n+ 1) + p+ n− 1

δ(1 + δ)(n+ δ)
, i = 2, ..., n− 1,

an =
pδ2 + δ(pn+ 1) + k + n− 1

δ(1 + δ)(n+ δ)
.

3.3. Bipartite graph
A bipartite graph (or bigraph) is a graph whose vertices can be divided into two

disjoint and independent sets V1 and V2, that is, every edge connects a vertex in V1

to one in V2. Vertex sets V1 and V2 are usually called the parts of the graph.

Proposition 3. For a complete bipartite graph Km,n−m (fig. 4) with n vertices
(n > 2m), where the vertices are divided into two disjoint sets V1 and V2 so that
|V1| = m and |V2| = n−m, with edge weights equal to one, the elements of the total
work vector can be calculated by the following formulas

ai =

(n−m)tr(P ) + (nδ + δ2)pi + δ
n∑

j=m+1

pj

δ(n−m+ δ)(n+ δ)
, i ∈ [1,m];

ai =

mtr(P ) + (nδ + δ2)pi + δ
n∑

j=1

pj

δ(n−m+ δ)(n+ δ)
, i ∈ [m+ 1, n],
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where tr(P ) is the trace of the matrix P .

1

. . .

m

m + 1

m + 2

. . .

n− 1

n

Fig. 4. Bipartite graph Km,n−m

Proof. The Laplace matrix can be represented in block form

L̃(Km,n−m) =

(
(n−m+ δ)Em | −1m×n−m
−1n−m×m | (m+ δ)En−m

)
,

where E is the identity matrix and 1 is the matrix of ones.

L̃−1(Km,n−m) = Dm,n−m

(
(l1 − l2)Em + l21m×m l31m×n−m

l31m×n−m (l4 − l5)En−m + l51n−m×n−m

)
,

Dm,n−m =
1

δ(m+ δ)(n−m+ δ)(n+ δ)
,

l1 = (m+ δ)(n−m+ nδ + δ2), l2 = (n−m)(m+ δ), l3 = (m+ δ)(n−m+ δ),

l4 = (n−m+ δ)(m+ nδ + δ2), l5 = m(n−m+ δ).

4. Experiments

4.1. St.Petersburg Subway graph
Consider the St. Petersburg subway. It consists of 72 stations, the length of the

lines is 124.8 km. Passenger traffic – more than 2.53 million passengers daily. Fig. 5
shows a graph built on the basis of a subway scheme.
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Fig. 5. St. Petersburg subway graph

Let’s first calculate the vertices ranks according just to the edge weights. Since
information about the distances between stations is not freely available, the recip-
rocal of the time required for movement between pairs of neighboring stations was
chosen as the edge weights. Fig. 6 shows the heatmap of the subway stations. The
darkest and, accordingly, the most central nodes are close to the city center and the
least central vertices are on the periphery. The number of each node corresponds to
the received rank. The highest ranks were obtained for the stations Vladimirskaya,
Dostoevskaya, Spasskaya, Sadovaya, Sennaya, Ligovsky Prospekt. The worst ranks
are observed on the red line: stations Akademicheskaya, Grazhdansky Prospekt,
Devyatkino.

But if we want to understand at which station, e.g., it is profitable to place ads,
you can add the passenger traffic information1 as the vertex weights. By choosing
different data as vertex weights, we can analyze the vertex centrality from different
perspective. In this case, the peripheral stations get higher ranks, which means that
they are more interesting to advertise (fig. 7). Here, the node that received the
highest rank is Ploshchad Vosstaniya (when ranking taking into account only the
weights of the edges, this station had a rank of 9). It is worth noting that some
terminal stations that had the worst ranks became significant in this approach,
since the flow at these stations is quite high.

4.2. Petrozavodsk road network
Consider a graph built on the basis of the transport system of Petrozavodsk

(fig. 8). The vertices of the graph correspond to road intersections where car traf-
fic is possible. This graph contains 1531 vertices and 2081 edges. The process of
constructing this graph is described in the article by Ermolin et al., 2022.

The weights of the vertices correspond to the number of inhabitants living in
the immediate vicinity of the road intersection corresponding to the graph vertex.
The graph edge weights are equal to the reciprocal lengths of the corresponding
road sections. Fig. 9 shows a heatmap of the vertices ranks in the city’s transport

1http://kommet.ru/stats



96 Vitalia A. Khitraya

Fig. 6. St.Petersburg subway graph with weighted edges

Fig. 7. St.Petersburg subway graph with weighted edges and vertices

network. The darkest vertices of the graph on the heat map correspond to new areas
with dense buildings.
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Fig. 8. Transport network graph

Fig. 9. Transport network graph heatmap.

5. Conclusion

The paper proposes a new approach to calculating the centrality value of graph
vertices, which makes it possible to consider both edge weights and vertex weights.
The approach is based on the calculation of the total work required to transfer the
charge between the nodes of the electric circuit corresponding to the graph vertices.
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Expressions are given for calculating the elements of the total work vector in a
number of special cases (for a clique, a star graph, and a complete bipartite graph).
The proposed method was tested on the St. Petersburg subway graph and the graph
of the Petrozavodsk transport network.

In further developing the proposed approach, it may be useful to study the
model taking into account the overloading of the electrical circuit, the introduction
of restrictions on the current supplied.
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