Dynamic Cournot Oligopoly Models of the State Promotion of Innovative Electronic Courses in Universities

Vassily Yu. Kalachev, Guennady A. Ougolnitsky and Anatoly B. Usov
Southern Federal University,
8a, Milchakov St., Rostov-on-Don, 344090, Russia
vkalachev@sfedu.ru; gaugolnickiy@sfedu.ru; busov@sfedu.ru

Abstract

We built and investigated a two-level dynamic game theoretic model of control of the state promotion of innovative electronic courses in universities based on Cournot oligopoly. A federal state is the Principal, and universities competing a la Cournot are agents. The agents invest in the development of new electronic educative courses that is considered as their innovative investments. The Principal gives subsidies to the agents for the promotion of innovations. The agents play a dynamic game in normal form that results in a Nash equilibrium, and the Principal solves an inverse Stackelberg game (a Germeier game of the type $\Gamma_{2 t}$). We investigated different types of strategies: (1) uniform strategies for all agents; (2) type-dependent (agent efficiency-dependent) strategies; (3) action-dependent strategies. For a specific form of the model functions we found a solution in explicit form, and in the general case we used a method of qualitatively representative scenarios in simulation modeling. We analyzed the results by means of the individual and collective relative efficiency indices.

Keywords: Cournot oligopoly, inverse dynamic Stackelberg games, simulation modeling, university management.

1. Introduction

A problem of promotion of innovations is very actual and is discussed in literature. A concept of innovation funnel is considered in (Bonazzi and Zilber, 2014, Hakkarainen, 2014). A review of the mathematical models of economics with innovations is presented in (Makarov, 2009). In (Cellini and Lambertini 2002) they analyzed a dynamic oligopoly where firms invest to increase product differentiation. They compare the steady state solutions under the open-loop and the closed-loop Nash equilibrium. The authors' approach to the dynamic game theoretic modeling of the promotion of innovations in universities is proposed in (Malsagov et al., 2020, Kaluza et al., 2010). In this paper we emphasize a comparative analysis of the solutions that correspond to a selfish agents behavior, their hierarchical organization and cooperation (Ougolnitsky, 2022). For a quantitative evaluation of the different ways of organization we use individual and collective indices of the relative efficiency. As differs from (Kaluza et al., 2010), we pay the principal attention to different types of subsidies for the promotion of innovations in universities. A method of qualitatively representative scenarios in simulation modeling (Ougolnitsky and Usov, 2018) is used together with known numerical methods.

2. Problem Formulation

We consider a difference inverse Stackelberg game of the type Principal - agents. However, the equation of dynamics is a differential one. Agents are universities
https://doi.org/10.21638/11701/spbu31.2023.05
competing a la Cournot: they develop electronic educative courses for sale. Resources allocated for this development are considered as innovative investments. The Principal is the federal state or its representative bodies (for example, Ministry of Education). The Principal exerts on the agents an economic influence (impulsion) by subsidies.

The model in the case of n agents has the following form:

- the Principal's payoff functional:

$$
\begin{equation*}
J_{0}=\sum_{t=1}^{T} \delta^{t}\left(\chi \bar{x}_{t}-\sum_{i \in N} I\left(x_{i t}\right) s_{i t}\left(x_{t}\right)\right)+\delta^{T} y_{T} \rightarrow \max \tag{1}
\end{equation*}
$$

- Principal's budget constraints:

$$
\begin{equation*}
s_{i t}\left(x_{t}\right) \geq 0 ; \quad \sum_{j \in N} s_{j t}\left(x_{t}\right) \leq S_{t} ; \quad t=1,2, \ldots, T ; i \in N=\{1,2, \ldots, n\} \tag{2}
\end{equation*}
$$

- agents' payoff functionals:

$$
\begin{gather*}
J_{i}=\sum_{t=1}^{T} \delta^{t}\left(\left(D-\alpha \bar{x}_{t}\right) x_{i t}-\frac{x_{i t}^{2}}{2\left(r_{i}+\beta \sum_{j=1 ; j \neq i}^{n} I\left(x_{j t}\right) r_{j}\right)}-c_{i} I\left(x_{i t}\right)+\right. \tag{3}\\
\left.I\left(x_{i t}\right) s_{i t}\left(x_{t}\right)\right) \rightarrow \max
\end{gather*}
$$

- agents' control constraints

$$
\begin{equation*}
0 \leq x_{i t} \leq x_{\max } ; \quad i=1,2, \ldots, n ; \quad t=1,2, \ldots, T \tag{4}
\end{equation*}
$$

- an equation of dynamics

$$
\begin{equation*}
y_{t+1}=y_{t}+\sum_{i \in N} k_{i} x_{i t}-m y_{t} ; \quad y(0)=y_{0} \tag{5}
\end{equation*}
$$

Here J_{0}, J_{i} - are payoffs of the Principal and the agents respectively; $i \in N ; s_{i t}\left(x_{t}\right)$ a subsidy from the Principal to the i-th agent; S_{t} - an annual Principal's budget; $x_{i t}$ - an output volume of the innovative product by the i-th agent in the moment of time $t ; \bar{x}_{t}=\sum_{i=1}^{n} x_{i t} ; x_{t}=\left(x_{1 t}, x_{2 t}, \ldots, x_{n t}\right) ; r_{i}$ - an agent's type that characterizes an efficiency of his technologies; $D, \chi, x_{\max }>0 ; \alpha, \beta \geq 0$ - model parameters; $\delta \in(0,1)$ a discount factor; c_{i} - constant agent's cost; $I\left(x_{i t}\right)$ - indicator function;

$$
I\left(x_{i t}\right)=0, \quad \text { if } x_{i t}=0 \text { and } I\left(x_{i t}\right)=1, \text { if } x_{i t} \neq 0
$$

y_{t} - a general innovative level of the education system (a number of the used innovative products); $m-$ a coefficient of decreasing of this level in the case when new innovative products are not developed; k_{i} - an impact coefficient for the i-th product; $y_{0^{-}}$an initial value of the innovative level; T - a length of the game.

Thus, the model (1)-(5) is a difference inverse Stackelberg game (a Germeier game $\Gamma_{2 t}$) that is similar to a continuous version described in (Malsagov et al., 2020).

The Principal chooses her open-loop strategies with a feedback on control $s_{i t}$ and reports them to the agents. Given the Principal's control mechanism, the agents choose their actions $x_{i t}$ so that to attain a Nash equilibrium in their game in normal
form (3)-(4). The Nash equilibrium is treated as the agents' best response to the Principal's strategy. As the Principal anticipates the agents' best response, she chooses her strategies so that to solve the problem (1)-(2), (5) on the set of Nash equilibria in the game (3)-(4). If there are several Nash equilibria then the Principal uses the guaranteed result principle. The Principal's ϵ-optimal strategy together with any best response of the agents form a solution in the inverse Stackelberg game (Germeier game $\Gamma_{2 t}$).

Notice that the agents in the model (1)-(5) are myopic, i.e. their payoff functionals may be rewritten as

$$
\begin{gathered}
J_{i}=\sum_{t=1}^{T} \delta^{t} J_{i t} \\
J_{i t}=\left(D-\alpha \bar{x}_{t}\right) x_{i t}-\frac{x_{i t}^{2}}{2\left(r_{i}+\beta \sum_{j=1 ; j \neq i}^{n} I\left(x_{j t}\right) r_{j}\right)}-c_{i} I\left(x_{i t}\right)+I\left(x_{i t}\right) s_{i t}\left(x_{t}\right)
\end{gathered}
$$

and their optimal values do not depend on the state value, or on the solution of a differential equation (5). Therefore we can pass from an optimization problem for the functional (3) for the i-th agent to the optimization problem for T functions in the form

$$
\begin{equation*}
J_{i t} \rightarrow \max ; t=1,2, \ldots, T \tag{6}
\end{equation*}
$$

Each function (6) is maximized by the variable x_{t} at a fixed moment of time t subject to the constraints (4). Thus, each agent solves T optimization problems (6),(4).

3. Nash Equilibrium

Consider a case of the indifferent Principal without her own objectives. Assume that the Principal's strategies are linear functions of the agent's actions: $s_{i t}=$ $s_{i t}\left(x_{i t}\right)=\gamma_{i t} x_{i t} ; i=1,2, \ldots, n$. Then we receive a game of n agents (4)-(6) where a Nash equilibrium is built. For the i-th agent a maximal payoff is attained when $x_{i t}=0$, and then it is equal to zero, or when $x_{i t}>0$. Let us consider the latter case. Using a necessary first order condition

$$
\frac{\partial J_{i t}}{\partial x_{i t}}=0 ; i=1,2, \ldots, n
$$

in the case of symmetrical agents

$$
c_{i}=c ; x_{i t}=x_{t} ; r_{i t}=r_{t} ; \gamma_{i t}=\gamma_{t} ; J_{i}=J ; \quad J_{i t}=J_{t} ; i=1,2, \ldots, n
$$

we receive an equation for determination of their stationary controls

$$
\begin{equation*}
\frac{\partial J_{t}}{\partial x_{t}}=D-2 \alpha n x_{t}-\frac{x_{t}}{(r+\beta(n-1) r)}+\gamma_{t}=0 \tag{7}
\end{equation*}
$$

Notice that

$$
\frac{\partial^{2} J_{t}}{\partial x_{t}^{2}}=-2 \alpha n-\frac{1}{(r+\beta(n-1) r)}<0
$$

Therefore, a solution of the equation (7) determines a maximum point, and if $x_{t}>0$ then an optimal control of the agent is given by the formula

$$
x_{t}^{0}=\frac{\left(D+\gamma_{t}\right) r(1+\beta(n-1))}{1+2 \alpha n r(1+\beta(n-1))}
$$

In this case the agent's payoff is equal to

$$
\begin{gathered}
J=\sum_{t=1}^{T} \delta^{t} \frac{\left(D+\gamma_{t}\right)(r+r \beta(n-1))^{2}}{(1+2 \alpha n r(1+\beta(n-1)))^{2}}\left(\left(D+\gamma_{t}-c\right) \alpha n+\frac{D+\gamma_{t}}{2 r(1+\beta(n-1))}\right)= \\
\sum_{t=1}^{T} \delta^{t} A_{t}
\end{gathered}
$$

Thus, equilibrium strategies and payoffs of the agents are determined by the formulas

$$
\begin{gather*}
x_{t}^{*}=0, \quad \text { if } x_{t}^{0} \leq 0 \text { or } A_{t}<0 \text { and } x_{t}^{*}=x_{t}^{0} \text {, otherwise } \tag{8}\\
J^{*}=\sum_{t=1}^{T} J_{t} ; \quad J_{t}=\max \left(0, \delta^{t} A_{t}\right)
\end{gather*}
$$

Therefore, the following proposition is proved.
Proposition 1. Formulas (8) determine a maximum point of the payoff functions (6) and payoffs of n symmetrical agents in a Nash equilibrium in the case of an indifferent Principal.

4. Cooperation of the Principal with Agents

In the case of cooperation of the Principal with n agents they form a grand coalition and solve together an optimal control problem with a payoff functional in the form

$$
\begin{align*}
& J^{C}=\sum_{t=1}^{T} \delta^{t}\left(\chi \bar{x}_{t}+\sum_{i \in N}\left(\left(D-\alpha \bar{x}_{t}\right) x_{i t}-\frac{x_{i t}^{2}}{2\left(r_{i}+\beta \sum_{j=1 ; j \neq i}^{n} I\left(x_{j t}\right) r_{j}\right)}-c_{i} I\left(x_{i t}\right)\right)\right) \\
&+\delta^{T} y_{T} \rightarrow \max \tag{9}
\end{align*}
$$

The maximum is searched by n functions $\left(x_{i t}\right)_{i=1}^{n}$ subject to the constraints (4) and equation of dynamics (5). The game is reduced to an optimal control problem.

If controls of all agents are equal to zero: $x_{i t}=0 ; i=1,2, \ldots, n$ then the coalitional payoff is equal to $\delta^{T} y_{0}(1-m)^{T}$.

Otherwise, for determination of the maximum in (9) a discrete Pontryagin maximum principle is used (Boltyanskii, 1978). An integrand in (9) is convex, the equation of dynamics is linear by the control variables that belong to a convex closed set. Therefore, for the solution of the problem (4),(5),(9) we can use a discrete Pontryagin maximum principle (Boltyanskii, 1978). A Hamilton function of the grand coalition has the form:

$$
\begin{aligned}
& H_{t}\left(y_{t}, \lambda_{t+1}, x_{t}\right)=\delta^{t}\left(\chi \bar{x}_{t}+\left(D-\alpha \bar{x}_{t}\right) \bar{x}_{t}-\sum_{i \in N}\left(\frac{x_{i t}^{2}}{2\left(r_{i}+\beta \sum_{j=1 ; j \neq i}^{n} r_{j}\right)}-c_{i}\right)\right) \\
& \quad+\lambda_{t+1}\left(\sum_{i \in N} k_{i} x_{i t}+(1-m) y_{t}\right)
\end{aligned}
$$

where λ_{t+1} is a conjugate variable. From the necessary condition of extremum we receive the system of n equations $i=1,2, \ldots, n$

$$
\begin{equation*}
\frac{\partial H_{t}}{\partial x_{i t}}=\delta^{t}\left(\chi+D-2 \alpha \bar{x}_{t}-\sum_{i \in N}\left(\frac{x_{i t}}{r_{i}+\beta \sum_{j=1 ; j \neq i}^{n} r_{j}}\right)\right)+\lambda_{t+1} k_{i}=0 \tag{10}
\end{equation*}
$$

and for determination of the conjugate variable - a simple initial value problem

$$
\lambda_{t}=(1-m) \lambda_{t+1} ; \quad \lambda_{T}=\delta^{T}
$$

therefore,

$$
\lambda_{t}=(1-m)^{T-t} \delta^{T}
$$

In general case the system of equations (10) is solved numerically. For $n=2$ the system takes the form

$$
\begin{aligned}
& \frac{\partial H_{t}}{\partial x_{1 t}}=\delta^{t}\left(\chi+D-2 \alpha\left(x_{1 t}+x_{2 t}\right)-\frac{x_{1 t}}{r_{1}+\beta r_{2}}\right)+\lambda_{t+1} k_{1}=0 \\
& \frac{\partial H_{t}}{\partial x_{2 t}}=\delta^{t}\left(\chi+D-2 \alpha\left(x_{1 t}+x_{2 t}\right)-\frac{x_{2 t}}{r_{2}+\beta r_{1}}\right)+\lambda_{t+1} k_{2}=0
\end{aligned}
$$

Its solution gives

$$
\begin{aligned}
& x_{1 t}^{0}=\frac{A_{1 t}-B_{1 t}}{2 \alpha+1+1 /\left(2 \alpha\left(r_{1}+\beta r_{2}\right)\right)} \\
& x_{2 t}^{0}=\frac{A_{2 t}-B_{2 t}}{2 \alpha+1+1 /\left(2 \alpha\left(r_{2}+\beta r_{1}\right)\right)}
\end{aligned}
$$

where

$$
\begin{gathered}
A_{1 t}=\chi+D+k_{2}(1-m)^{T-t-1} \delta^{T-t} ; A_{2 t}=\chi+D+k_{1}(1-m)^{T-t-1} \delta^{T-t} \\
B_{1 t}=\left(2 \alpha+\frac{1}{r_{2}+\beta r_{1}}\right)\left(\frac{\chi+D}{2 \alpha}+\frac{k_{1}(1-m)^{T-t-1} \delta^{T-t}}{2 \alpha}\right) \\
B_{2 t}=\left(2 \alpha+\frac{1}{r_{1}+\beta r_{2}}\right)\left(\frac{\chi+D}{2 \alpha}+\frac{k_{2}(1-m)^{T-t-1} \delta^{T-t}}{2 \alpha}\right)
\end{gathered}
$$

The found pair of points $\left(x_{1 t}^{0}, x_{2 t}^{0}\right)$ is a maximum point of the Hamilton function for positive controls $x_{1 t}, x_{2 t}$. Really,

$$
\begin{gathered}
\frac{\partial^{2} H_{t}}{\partial x_{1 t}^{2}}=-\delta^{t}\left(2 \alpha+\frac{1}{r_{1}+\beta r_{2}}\right)=E<0 ; \quad \frac{\partial^{2} H_{t}}{\partial x_{2 t}^{2}}=-\delta^{t}\left(2 \alpha+\frac{1}{r_{2}+\beta r_{1}}\right)=F<0 \\
\frac{\partial^{2} H_{t}}{\partial x_{1 t} \partial x_{2 t}}=-2 \alpha \delta^{t}=G<0 ; \quad \Delta=E F-G^{2}>0 ; \quad E<0
\end{gathered}
$$

Therefore, a maximum of the Hamilton function subject to the control constraints (4) is attained in one of the vector points

$$
\begin{gather*}
\left.\left(x_{1 t}^{0}, x_{2 t}^{0}\right) ;\left(x_{1 t}^{0}, 0\right) ;\left(0, x_{2 t}^{0}\right) ;(0), 0\right) \tag{11}\\
\left(x_{1 t}^{0}, x_{\max }\right) ;\left(x_{\max }, x_{2 t}^{0} ;\left(x_{\max }, x_{\max }\right)\right.
\end{gather*}
$$

and the following proposition is proved.
Proposition 2. Formulas (11) determine a point of maximum of the Hamilton function in the case of cooperation of the Principal with two agents.

5. Solution of the Inverse Stackelberg Game (Germeier Game $\Gamma_{2 t}$)

From the point of view of the Principal her interaction with agents is described by an inverse Stackelberg game (Germeier game $\Gamma_{2 t}$). An algorithm of solution of this game is based on the approach proposed in (Ugolnitskii and Usov, 2014, 2016).

1. A strategy of punishment by the Principal of the agents who refuse to cooperate with her is calculated:

$$
\begin{aligned}
& x_{i t}^{P}\left(\left\{s_{i t}^{P}\right\}_{t=1}^{T}\right)=\arg \max _{0 \leq x_{i t} \leq x_{\max }} J_{i}\left(\left\{s_{i t}\right\}_{t=1}^{T},\left\{x_{i t}\right\}_{t=1}^{T}\right) ; \\
& \left\{s_{i t}^{P}\right\}_{t=1}^{T}=\arg \min _{s_{i t} \geq 0 ; \sum_{i \in N} s_{i t} \leq S_{t}} J_{i}\left(\left\{s_{i t}\right\}_{t=1}^{T},\left\{x_{i t}\right\}_{t=1}^{T}\right) .
\end{aligned}
$$

If an agent refuses to cooperate then his guaranteed payoff is equal to $(i=1,2, \ldots, n)$

$$
\begin{gathered}
L_{i}=J_{i}\left(\left\{s_{i t}^{P}\right\}_{t=1}^{T},\left\{x_{i t}^{P}\right\}_{t=1}^{T}\right)= \\
\max _{0 \leq x_{i t} \leq x_{\max }} s_{i t} \geq 0 ; \min _{\sum_{i \in N} s_{i t} \leq S_{t}} J_{i}\left(\left\{s_{i t}\right\}_{t=1}^{T},\left\{x_{i t}\right\}_{t=1}^{T}\right)
\end{gathered}
$$

and is determined by the formula similar to (8) when $s_{i t}=0 ; i=1,2, \ldots, n ; t=$ $1,2, \ldots, T$.
2. An optimal control problem (1), (2), (4), (5) is solved with conditions

$$
\begin{equation*}
L_{i}<J_{i}\left(\left\{s_{i t}\right\}_{t=1}^{T},\left\{x_{i t}\right\}_{t=1}^{T}\right) ; \quad i=1,2, \ldots, n \tag{12}
\end{equation*}
$$

A maximum is searched by two grid functions $\left\{s_{i t}\right\}_{i, t=1}^{n(T)},\left\{x_{i t}\right\}_{i, t=1}^{n(T)}$. Denote a solution of this optimal control problem by $\left\{s_{i t}^{R}\right\}_{t=1}^{T},\left\{x_{i t}^{R}\right\}_{t=1}^{T}$, where $\left\{s_{i t}^{R}\right\}_{t=1}^{T}$ is a strategy of reward of the i-th agent when he chooses $\left\{x_{i t}^{R}\right\}_{t=1}^{T}$.
3. The Principal reports to each agent a strategy with a feedback on his action:

$$
s_{i t}=s_{i t}^{R}, \quad \text { if } \quad x_{i t}=x_{i t}^{R} \quad \text { and } \quad s_{i t}=s_{i t}^{P}, \text { otherwise }
$$

The condition (12) provides that for the agents a reward strategy is more profitable than a punishment strategy. Thus, the solution has the form $\left(\left\{s_{i t}^{R}\right\}_{t=1}^{T},\left\{x_{i t}^{R}\right\}_{t=1}^{T}\right)$.

A solution of the inverse Stackelberg game (Germeier game $\Gamma_{2 t}$) is built numerically by means of the method of qualitatively representative scenarios in simulation modeling (QRS SM method) (Ougolnitsky and Usov, 2018).

The QRS SM method is based on the idea that for evaluation of the consequences of control impacts on a dynamic system it is sufficient to consider a small number of control scenarios that reflect qualitatively different variants of the impact.

Assume that

$$
\Omega=S_{1} \times \ldots \times S_{n} \times X_{1} \times \ldots \times X_{n}
$$

Here

$$
S_{i}=\left(s_{i} \geq 0 ; \sum_{i=1}^{n} s_{i} \leq S\right) ; X_{i}=\left(x_{i} \geq 0\right), i=1,2, \ldots, n
$$

are the sets of feasible controls of the Principal and agents.
Definition (Ougolnitsky and Usov, 2018). A set
$Q R S=S^{Q R S} \times X^{Q R S}=S_{1}^{Q R S} \times S_{2}^{Q R S} \times \ldots \times S_{n}^{Q R S} \times X_{1}^{Q R S} \times X_{2}^{Q R S} \times \ldots \times X_{n}^{Q R S}=$

$$
\left\{(s, x)=\left(s_{1}, \ldots, s_{n} ; x_{1}, \ldots, x_{n}\right) ; s_{i} \in S_{i}^{Q R S} \in S_{i} ; x_{i} \in X_{i}^{Q R S} \in X_{i}\right\}
$$

is a QRS set in a Stackelberg game with precision Δ If:
(a) for any two elements $(s, x)^{(i)},(s, x)^{(j)} \in Q R S \quad\left|J_{0}^{(i)}-J_{0}^{(j)}\right|>\Delta$;
(b) for any element $(s, x)^{(l)} \notin Q R S$ there is an element $(s, x)^{(j)} \in Q R S$ such that $\left|J_{0}^{(l)}-J_{0}^{(j)}\right| \leq \Delta$.

An algorithm of solution of the inverse Stackelberg game (Germeier game $\Gamma_{2 t}$) by means of the QRS SM method has the following form.

1. An initial set $Q R S^{(k)}$ has the form $(k=0)$

$$
\begin{gathered}
Q R S^{(k)}=\left(S^{Q R S}\right)^{(k)} \times\left(X^{Q R S}\right)^{(k)} ; \\
\left(S^{Q R S}\right)^{(k)}=\left(S_{1}^{Q R S}\right)^{(k)} \times\left(S_{2}^{Q R S}\right)^{(k)} \times \ldots\left(S_{n}^{Q R S}\right)^{(k)} ; \\
\left(X^{Q R S}\right)^{(k)}=\left(X_{1}^{Q R S}\right)^{(k)} \times\left(X_{2}^{Q R S}\right)^{(k)} \times \ldots\left(X_{n}^{Q R S}\right)^{(k)} ; \\
\left(S_{i}^{Q R S}\right)^{(k)}=\left\{s_{1}^{(k)} ; s_{2}^{(k)} ; s_{3}^{(k)}\right\} ;\left(X_{i}^{Q R S}\right)^{(k)}=\left\{x_{1}^{(k)} ; x_{2}^{(k)} ; x_{3}^{(k)}\right\} ; \\
s_{1}^{(k)}=0 ; s_{2}^{(k)}=s_{\max } / 2 ; s_{3}^{(k)}=s_{\max } ; x_{1}^{(k)}=0 ; x_{2}^{(k)}=x_{\max } / 2 ; x_{3}^{(k)}=x_{\max }
\end{gathered}
$$

where values $s_{\max }, x_{\max }$ are big enough and are chosen specifically for each control system.
2. The set $Q R S^{(k)}$ contains $3^{2 N}$ elements. All of them are checked for satisfaction of both conditions in the mentioned definition of a QRS set. If it is necessary then an initial set $Q R S^{(k)}$ is reduced or extended by new elements.
3. A strategy of punishment of the agent who refuses to cooperate with the Principal is found. First, by enumeration of the strategies from the set $\left(X^{Q R S}\right)^{(k)}$ Nash equilibria for a given Principal's control $N E^{Q R S}\left(\left(S^{Q R S}\right)^{(k)}\right)$ are found. Then a guaranteed payoff of the i-th agent who refuses to cooperate with the Principal is calculated:

$$
L_{i}^{P}=\max _{x_{i} \in N E^{Q R S}\left(\left(S^{Q R S}\right)^{(k)}\right)} \min _{s_{i} \in\left(S^{Q R S}\right)^{(k)}} J_{i}\left(s_{i}, x_{i}\right)
$$

4. By the complete enumeration of the qualitatively representative strategies of the Principal from $\left(S^{Q R S}\right)^{(k)}$ and the agents from $\left(X^{Q R S}\right)^{(k)}$ a maximum in the problem (1), (2), (4) with conditions $J_{i}>L_{i}^{p}(i=1,2, \ldots, n)$ is found.

The values that provide the maximum form a k-th approximation to the solution of the game. Denote them by $\left(s^{R}\right)^{(k)},\left(x^{R}\right)^{(k)}$.
5. The QRS sets of the Principal and the agents $(k:=k+1)$ are refined in the vicinity of the built equilibrium as follows.
if $\left(s_{i}^{*}\right)^{(k-1)}=s_{1}^{(k-1)}$, then $s_{1}^{(k)}=s_{1}^{(k-1)} ; s_{2}^{(k)}=\left(s_{1}^{(k-1)}+s_{2}^{(k-1)}\right) / 2 ; s_{3}^{(k)}=s_{2}^{(k-1)}$.
If $\left(s_{i}^{*}\right)^{(k-1)}=s_{2}^{(k-1)}$, then $s_{1}^{(k)}=\left(s_{1}^{(k-1)}+s_{2}^{(k-1)}\right) / 2 ; s_{2}^{(k)}=s_{2}^{(k-1)} ; s_{3}^{(k)}=$ $\left(s_{2}^{(k-1)}+s_{3}^{(k-1)}\right) / 2$.

If $\left(s_{i}^{*}\right)^{(k-1)}=s_{3}^{(k-1)}$, then $s_{1}^{(k)}=s_{2}^{(k-1)} ; s_{2}^{(k)}=\left(s_{2}^{(k-1)}+s_{3}^{(k-1)}\right) / 2 ; s_{3}^{(k)}=s_{3}^{(k-1)}$.
New sets $Q R S^{(k)}$ for the agents are built similarly.
If at an iteration we receive that $\left(s_{i}^{R}\right)^{(k)}=\left(s_{i}^{R}\right)^{(k-1)} ;\left(x_{i}^{R}\right)^{(k)}=\left(x_{i}^{R}\right)^{(k-1)} ; i=$ $1,2, \ldots, n$ then a solution of the game by means of the QRS SM method is built. Otherwise, go to step 2 of the algorithm.

6. Numerical Calculations

We considered the following types of the Principal's strategies (her subsidies to the agents):
(a) uniform subsidies to all agents in a fixed moment of time. If an output volume of the innovative product for all agents is positive then $\forall i \quad s_{i t}=s>0$, otherwise $\forall i \quad s_{i t}=0$;
(b) type-dependent (agent efficiency-dependent) strategies $s_{i t}=s_{i}\left(r_{i t}\right)$; a linear dependency is used $s_{i}\left(r_{i t}\right)=\alpha_{i} r_{i t}$; constants α_{i} are to be determined;
(c) action-dependent strategies $s_{i t}=s_{i}\left(x_{i t}\right)$; a linear dependency is also used $s_{i}\left(x_{i t}\right)=\theta_{i} x_{i t}$; constants θ_{i} are to be determined.

All computer simulations were conducted on a personal computer with a processor AMD Ryzen 53550 H with operative memory 8 Gb by means of an objectoriented programming language $\mathrm{C}++$. An average time of one computer simulation for determination a QRS set is less than one second.

An analysis of the received results was based on the following indicators:
(1) a total discounted payoff of the Principal;
(2) values of the individual and collective relative efficiency indices (Ougolnitsky, 2022).

The collective relative efficiency indices demonstrate a need in a hierarchical control in a dynamic system. The closer are their values to one, the better the system is coordinated, and a hierarchical control by the Principal is less actual.

In the computer simulations we varied the following parameter values:

1. χ from 0.01 to 3 ;
2. D from 5 to 100 ;
3. A from 0.001 to 0.1 year $/ \mathrm{mln}$.rub.;
4. $r_{1,2}$ from 0.5 to 50 thousand rub./year;
5. $c_{1,2}$ from 50 to $1000 \mathrm{mln} . r u b$./year;
6. β from 0.01 to 0.6 ;
7. m from 0.0001 to $0.11 /$ year;
8. $k_{1,2}$ from 0.001 to 0.051 /year;
9. y_{0} from 30 to $500 \mathrm{mln} . r u b . /$ year;
10. S_{t} from 100 to $500 \mathrm{mln} . r u b$./year.

Input data for numerical calculations are presented in Table 1. The results of calculations for these data and $T=6 ; n=2$ for different control scenarios are given in Table 2. The upper index in the values $J_{0}^{(k)}, J_{1}^{(k)}, J_{2}^{(k)}$ stands for a type of scenario, namely: (a) - uniform subsidies; (b) - type-dependent strategies; (c) -action-dependent strategies; $J^{(C)}$ denotes a payoff of the coalition of the Principal with agents in the case of their cooperation.

For a comparative analysis of the different scenarios of the Principal's control we used a system of the individual and collective relative efficiency indices (Ougolnitsky, 2022). The collective relative efficiency indices correlate the values of social welfare (a total payoff of all players) for different scenarios with the maximal value of social welfare that is attained in the case of cooperation of all players: $S C I=\sum_{i=0}^{n} J_{i} / J^{C}$. Here J_{i} is a payoff of the respective agent in a specific scenario (a),(b),(c) of the Principal's control, and J^{C} is a cooperative payoff of the grand coalition in the case of cooperation.

The individual relative efficiency indices correlate payoffs of the agents in a specific scenario (a),(b),(c) of the Principal's control with their symmetrical coop-

Table 1. Input data for numerical calculations

Table 2. Results of the numerical calculations

$N J^{c}$	$J_{0}^{(a)}$	$J_{1}^{(a)}$							
58756	1018								
260027	868	275					300		
353185	335	2432	24857	897	243	25408	767	24	48
454733	285	2560	2498	767	2607	2499	717	256	75
562544	378	2734	27561	610	2757	27562	10	273	52
659429	238	272	275	640	272	7961	70	273	61
789206	638	4256	166	1140	4552	4213	1070	4255	59
888442	568	4147	1748	880	41788	17	000	41	
992185	938	42689	2381	560	43000		670	427	71
1089611	248	4278	188	400	42935	4188	680	42825	75
1189601	408	42258	225	620	42649	257	840	42300	2946
1214696	605	7068	098	667	7073	1735	036	70735	35
13146306	275	70734	71344	667	7072	7170	707	70702	71631
14149337	145	7285	95	472	7316	19	577	728	348
1513779	631	6627	66569	1043	66	6696	06	663	60
16143530	608	70146	8946	930	7015	6925	040	70188	69337
17140595	154	683	8494	1660	6848	6849	98	684	6888
1857034	548	25612	55906	790	2562	2613	980	256	96
1956674	338	2621	636	825	26685	2638	770	2625	6755
2056674	358	2573	603	670	2573	63	790	257	6425
2162622	468	277	27121	800	2774	274	900	2776	12
2260146	408	26682	27580	830	26713	79	840	2672	7971
2357653	453	2570	510	610	2570	525	885	257	5492
2426546	408	11080	07	830	1147	08	840	111	73
2530908	518	11962	11676	915	12353	1168	950	1200	67
2630312	493	11902	250	720	12133	124	925	119	93
2727544	393	10659	10359	540	10655	1051	825	1070	0750
2829975	518	12421	12159	585	12493	121	950	12462	2550
2925481	918	9184	8284	1070	9335	8285	1350	9225	8675
3031258	643	11601	11859	875	11832	11860	1074	16	250
3132984	678	12665	12051	830	1126	112	1109	1270	12442
3227306	468	10434	10734	710	10445	10965	900	1047	25
338360	438	2491	2788	640	2501	2979	870	2532	3179
347944	838	2162	1886	1067	2163	2091	1270	2203	2283
3510060	828	2972	3845	895	2968	3916	1260	3013	4236
369986	578	3180	2564	725	3176	2716	1009	3221	2956
3710288	543	3509	3809	610	3580	3805	975	3550	4200
3811842	768	3622	3309	760	3066	4011	1200	3663	3700
3911512	518	4359	4659	630	4470	4660	950	4400	5050
409694	328	3025	3620	440	3026	3611	760	3066	4011

erative payoffs: $K_{i}=(n+1) J_{i} / J^{C} ; i=0,1,2$. It is supposed that all payoffs are non-negative. The received values of relative efficiency indices are presented in Table 3.

The last row of the Table 3 contains average values of the indices. Thus, we receive the following preference systems:
society: $C \succ(c) \succ(b) \succ(a)$;
Principal: $C \succ(c) \succ(b) \succ(a)$;
agents: $(b) \sim(c) \succ(a) \succ C$;
Thus, the whole society and the Principal prefer cooperation, and the agents (followers) prefer type-dependent or action-dependent subsidies.

Besides, the following conclusions are made.

1. A parameter χ characterizes a dependency of the Principal's payoff on a total output volume of the innovative products. If its value increases then the Principal's payoff increases linearly for all types of subsidies. The agents' payoffs do not change.
2. If demand parameters D and α increase then the agents' payoffs increase exponentially. The Principal's payoff does not change.
3. If an agent's type changes (an efficiency of his technologies increases or decreases) then his payoff changes slightly. For example, if the efficiency increases twice then the payoff increases on 10% approximately. The Principal's payoff does not change.
4. If the agents' costs increase then their payoffs expectably fall.
5. Remind the parameters of the equation of state dynamics: m - a coefficient of decreasing of the innovative level; k_{i} - an impact coefficient for the i-th product. If these parameters change then the agents' payoffs do not change. However, the Principal's payoff decreases when m increases, and increases abruptly when k_{i} increase. Also, it increases together with an initial value of the innovative level.

7. Conclusion

We built and investigated a two-level control system aimed at promotion of innovations in the universities competing a la Cournot. The system is formalized as a difference inverse Stackelberg game (Germeier game $\Gamma_{2 t}$) of the type Principalagents with a differential equation of dynamics. Based on a discrete Pontryagin maximum principle, for a specific class of model functions in the case of an indifferent Principal we found analytically a Nash equilibrium in the game of agents in normal form. An algorithm of solution of the inverse Stackelberg game (Germeier game $\Gamma_{2 t}$) is proposed and implemented on the base of the method of qualitatively representative scenarios in simulation modeling. The received results allowed for some conclusions given above. The main conclusion is that the whole society and the Principal prefer cooperation, and the agents (followers) prefer type-dependent or action-dependent subsidies.

Universities are often myopic that we considered in the model. That's why a promotion of innovations advocates for the interested Principal who provides innovations by means of subsidies to the agents. The Principal's direct payoff may be quite small.

In the future we suppose to investigate the considered model in a cooperative dynamic game theoretic setup with different characteristic functions and to conduct a comparative analysis.

Table 3. The values of relative efficiency indices for different scenarios: (a) uniform strategies; (b) type-dependent strategies; (c) action-dependent strategies

N	$S C I^{(a)}$	$K_{0}^{(a)}, K_{1}^{(a)}, K_{2}^{(a)}$	$S C I^{(b)}$	$K_{0}^{(b)}, K_{1}^{(b)}, K_{2}^{(b)}$	$S C I^{(c)}$	$K_{0}^{(c)}, K_{1}^{(c)}, K_{2}^{(c)}$
1	0.87	0.05/1.3/1.27	0.88	0.06/1.29/1.28	0.88	0.07/1.3/1.29
2	0.93	0.04/1.38/1.87	0.95	0.07/1.39/1.36	0.94	0.06/1.38/1.39
3	0.99	0.02/1.31/1.4	0.95	0.05/1.37/1.43	0.95	0.04/1.37/1.42
4	0.93	0.02/1.4/1.4	0.95	0.04/1.43/1.37	0.91	0.04/1.41/1.28
5	0.88	0.02/1.31/1.32	0.89	0.03/1.32/1.32	0.9	0.04/1.31/1.34
6	0.93	0.01/1.38/1.39	0.94	0.03/1.38/1.41	0.94	0.03/1.38/1.41
7	0.95	0.02/1.43/1.40	0.99	0.04/1.53/1.42	0.96	0.04/1.43/1.41
8	0.95	0.02/1.41/1.42	0.95	0.03/1.42/1.41	0.96	0.04/1.43/1.41
9	0.97	0.03/1.39/1.38	0.93	0.02/1.4/1.38	0.93	0.02/1.39/1.39
10	0.95	0.01/1.43/1.4	0.95	0.01/1.44/1.4	0.96	0.02/1.43/1.42
11	0.95	0.01/1.42/1.41	0.96	0.02/1.43/1.43	0.96	0.03/1.42/1.44
12	0.97	0.01/1.44/1.45	0.97	0.01/1.44/1.46	0.98	0.02/1.44/1.46
13	0.97	0.01/1.45/1.44	0.97	0.01/1.44/1.46	0.97	0.01/1.44/1.46
14	0.97	0.01/1.46/1.45	0.92	0.01/1.47/1.45	0.98	0.01/1.46/1.45
15	0.97	0.01/1.44/1.45	0.97	0.02/1.48/1.46	0.97	0.02/1.44/1.45
16	0.97	0.01/1.47/1.44	0.98	0.02/1.47/1.45	0.98	0.02/1.47/1.45
17	0.98	0.03/1.46/1.47	0.98	0.04/1.46/1.47	0.99	0.04/1.46/1.48
18	0.91	0.03/1.35/1.36	0.92	0.04/1.35/1.37	0.93	0.02/1.35/1.38
19	0.93	0.02/1.38/1.39	0.95	0.04/1.41/1.4	0.95	0.04/1.39/1.42
20	0.92	0.02/1.36/1.38	0.93	0.04/1.36/1.39	0.95	0.04/1.39/1.42
21	0.88	0.02/1.33/1.31	0.89	0.04/1.33/1.38	0.9	0.04/1.33/1.32
22	0.91	0.02/1.33/1.35	0.92	0.04/1.33/1.4	0.92	0.04/1.33/1.4
23	0.89	0.02/1.34/1.31	0.89	0.03/1.34/1.31	0.89	0.05/1.34/1.32
24	0.84	0.05/1.25/1.22	0.87	0.09/1.3/1.22	0.87	0.09/1.26/1.26
25	0.78	0.05/1.16/1.13	0.82	0.09/1.2/1.13	0.81	0.09/1.17/1.17
26	0.82	0.05/1.18/1.21	0.83	0.07/1.2/1.24	0.85	0.09/1.18/1.28
27	0.78	0.04/1.16/1.13	0.79	0.06/1.16/1.14	0.81	0.09/1.16/1.17
28	0.84	0.05/1.24/1.21	0.84	0.06/1.25/1.22	0.87	1.1/1.25/1.26
29	0.72	0.11/1.08/0.99	0.74	0.13/1.1/0.98	0.76	0.16/1.09/1.02
30	0.77	0.06/1.11/1.09	0.79	0.08/1.14/1.14	0.8	0.1/1.1/1.18
31	0.77	0.06/1.15/1.11	0.71	0.08/1.02/1.02	0.8	0.1/1.16/1.13
32	0.79	0.05/1.15/1.19	0.81	0.08/1.15/1.2	0.82	0.1/1.15/1.22
33	0.68	0.16/0.89/1	0.73	0.23/0.9/1.07	0.79	0.31/0.92/1.14
34	0.63	0.32/0.82/0.71	0.67	0.4/0.82/0.79	0.72	0.48/0.83/0.86
35	0.75	0.25/0.89/1.15	0.77	0.27/0.89/1.17	0.85	0.38/0.9/1.2
36	0.63	0.17/0.96/0.77	0.66	0.22/0.95/0.82	0.72	0.3/0.97/0.9
37	0.76	0.16/1.02/1.11	0.74	0.18/1.04/1.11	0.85	0.2/1.04/1.22
38	0.65	0.19/0.92/0.84	0.66	0.19/0.78/1.02	0.72	0.3/0.93/0.94
39	0.83	0.13/1.14/1.21	0.85	0.16/1.16/1.21	0.9	0.25/1.15/1.32
40	0.72	0.1/0.94/1.12	0.73	0.14/0.94/1.12	0.81	0.24/0.95/1.24
Average	0.86	0.06/1.25/1.24	0.87	0.07/1.27/1.26	0.89	0.1/1.26/1.3

References

Boltyanskii, V.G. (1978). Optimal Control of Discrete Time Systems.John Wiley and Sons, New York-Toronto, Ont.
Bonazzi, F. and Zilber, M. (2014). Innovation and business model: a case study about integration of innovation funnel and business model canvas. Review of Business Management, 53, 616-637.
Cellini, R. and Lambertini, L. (2002). A differential game approach to investment in product differentiation. J. of Economic Dynamics and Control, 27(1), 51-62.
Hakkarainen, K. (2014). The innovation funnel fallacy. International Journal of Innovation Science, 6(2), 63-72.
Kalachev, V.Yu., Ougolnitsky, G. A., Usov, A. B. (2022). A Difference Stackelberg Game Theoretic Model of Innovations Management in Universities. Contributions to Game Theory and Management, 15, 96-108.
Kalachev, V.Yu., Ougolnitsky, G. A., Usov, A. B. (2023). Difference Stackelberg game theoretic model of innovations in universities as Cournot oligopoly. Frontiers of Dynamic Games. Trends in Mathematics. Birkhäuser, Cham. (to appear).
Makarov, V. L. (2009). A review of the mathematical models of economics with innovations. Economics and Mathematical Methods, 45(1), 3-14.
Malsagov, M. Kh., Ougolnitsky, G. A., Usov, A. B. (2020). A Differential Stackelberg Game Theoretic Model of the Promotion of Innovations in Universities. Advances in Systems Science and Applications, 20(3), 166-177.
Ougolnitsky, G. A. and Usov, A.B. (2016). Solution algorithms for differential models of hierarchical control systems. Automation and Remote Control, 77(5), 872-880.
Ougolnitsky, G. A. and Usov, A. B. (2018). Computer Simulations as a Solution Method for Differential Games. Computer Simulations: Advances in Research and Applications. Eds. M.D. Pfeffer and E. Bachmaier., N.Y.: Nova Science Publishers, 63-106.
Ougolnitsky, G. A. (2022). An Approach to Compare Organization Modes of Active Agents and Control Methods. Control Sciences, 3, 24-33.
Ugolnitskii, G. A. and Usov, A. B. (2014). Equilibria in models of hierarchically organized dynamic systems with regard to sustainable development conditions. Automation and Remote Control, 75(6), 1055-1068.

