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Abstract We built and investigated a two-level dynamic game theoretic
model of control of the state promotion of innovative electronic courses in
universities based on Cournot oligopoly. A federal state is the Principal, and
universities competing a la Cournot are agents. The agents invest in the
development of new electronic educative courses that is considered as their
innovative investments. The Principal gives subsidies to the agents for the
promotion of innovations. The agents play a dynamic game in normal form
that results in a Nash equilibrium, and the Principal solves an inverse Stack-
elberg game (a Germeier game of the type I2¢). We investigated different
types of strategies: (1) uniform strategies for all agents; (2) type-dependent
(agent efficiency-dependent) strategies; (3) action-dependent strategies. For
a specific form of the model functions we found a solution in explicit form,
and in the general case we used a method of qualitatively representative
scenarios in simulation modeling. We analyzed the results by means of the
individual and collective relative efficiency indices.

Keywords: Cournot oligopoly, inverse dynamic Stackelberg games, simula-
tion modeling, university management.

1. Introduction

A problem of promotion of innovations is very actual and is discussed in liter-
ature. A concept of innovation funnel is considered in (Bonazzi and Zilber, 2014,
Hakkarainen, 2014). A review of the mathematical models of economics with in-
novations is presented in (Makarov, 2009). In (Cellini and Lambertini 2002) they
analyzed a dynamic oligopoly where firms invest to increase product differentiation.
They compare the steady state solutions under the open-loop and the closed-loop
Nash equilibrium. The authors’ approach to the dynamic game theoretic modeling
of the promotion of innovations in universities is proposed in (Malsagov et al., 2020,
Kaluza et al., 2010). In this paper we emphasize a comparative analysis of the solu-
tions that correspond to a selfish agents behavior, their hierarchical organization and
cooperation (Ougolnitsky, 2022). For a quantitative evaluation of the different ways
of organization we use individual and collective indices of the relative efficiency. As
differs from (Kaluza et al., 2010), we pay the principal attention to different types of
subsidies for the promotion of innovations in universities. A method of qualitatively
representative scenarios in simulation modeling (Ougolnitsky and Usov, 2018) is
used together with known numerical methods.

2. Problem Formulation

We consider a difference inverse Stackelberg game of the type Principal - agents.
However, the equation of dynamics is a differential one. Agents are universities
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competing a la Cournot: they develop electronic educative courses for sale. Re-
sources allocated for this development are considered as innovative investments.
The Principal is the federal state or its representative bodies (for example, Ministry
of Education). The Principal exerts on the agents an economic influence (impulsion)
by subsidies.

The model in the case of n agents has the following form:
- the Principal’s payoff functional:

Jo = Zdt (th — Z I(xit)sit(a:t)> + 6Ty — max (1)
t=1

i€EN
- Principal’s budget constraints:

si(we) =05 D sjlmy) < Sy t=1,2,...,Tyi € N={1,2,..,n} (2)
JEN
- agents’ payoff functionals:

2
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2 (n— + B I(xjt)rj) Sl @

T
Ji =Y _6"((D - oTy)ay —
t=1

I(zit)sit(x)) — max

agents’ control constraints
0<zy <Tmaz; 1=1,2,....n; t=1,2,..,T 4)

an equation of dynamics

Yt+1 = Yt + Z kixie —my; y(0) = yo (5)
ieEN

Here Jy, J; - are payoffs of the Principal and the agents respectively; i € N; s;;(x¢)-
a subsidy from the Principal to the i-th agent; S; — an annual Principal’s budget;
T - an output volume of the innovative product by the i-th agent in the moment of
time ¢; Ty = > @irs T = (@14, Tag, o Tnt); 75 - an agent’s type that characterizes
an efficiency of his technologies; D, x, ZTmaz > 0; a,8 > 0 - model parameters;
d € (0,1) a discount factor; ¢;- constant agent’s cost; I(x;;) - indicator function;

I(zy) =0, ifxy =0 and I(z;y) =1, if z; # 0;

y: — a general innovative level of the education system (a number of the used
innovative products); m — a coefficient of decreasing of this level in the case when
new innovative products are not developed; k; - an impact coefficient for the i-th
product; yo- an initial value of the innovative level; T - a length of the game.

Thus, the model (1)—(5) is a difference inverse Stackelberg game (a Germeier
game I'y; ) that is similar to a continuous version described in (Malsagov et al., 2020).

The Principal chooses her open-loop strategies with a feedback on control s;;
and reports them to the agents. Given the Principal’s control mechanism, the agents
choose their actions x;; so that to attain a Nash equilibrium in their game in normal
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form (3)—(4). The Nash equilibrium is treated as the agents’ best response to the
Principal’s strategy. As the Principal anticipates the agents’ best response, she
chooses her strategies so that to solve the problem (1)—(2), (5) on the set of Nash
equilibria in the game (3)—(4). If there are several Nash equilibria then the Principal
uses the guaranteed result principle. The Principal’s € -optimal strategy together
with any best response of the agents form a solution in the inverse Stackelberg game
(Germeier game I).
Notice that the agents in the model (1)—(5) are myopic, i.e. their payoff func-

tionals may be rewritten as

T

Ji = Z 6" it
t=1

2
Lit

2 (Tz‘ + Z?:l;j;éi I(Ijt)rj)
and their optimal values do not depend on the state value, or on the solution of a
differential equation (5). Therefore we can pass from an optimization problem for

the functional (3) for the i-th agent to the optimization problem for T' functions in
the form

Jit = (D — o)z — —cil(zy) + I(xi)si(xe)

Jiy —max;t=1,2,....T (6)

Each function (6) is maximized by the variable x; at a fixed moment of time ¢
subject to the constraints (4). Thus, each agent solves T optimization problems

(6),(4).

3. Nash Equilibrium

Consider a case of the indifferent Principal without her own objectives. Assume
that the Principal’s strategies are linear functions of the agent’s actions: s;; =
sit(wit) = vy ©=1,2,...,n . Then we receive a game of n agents (4)—(6) where
a Nash equilibrium is built. For the i-th agent a maximal payoff is attained when
xz;+ = 0, and then it is equal to zero, or when x;; > 0 . Let us consider the latter
case. Using a necessary first order condition

0Jit
0zt

in the case of symmetrical agents

=0;:=1,2,...,n,

Ci =06 Tig =Ty Tt = T3 Ve = s Ji=J5 Ju=Jii=1,2,...,n

we receive an equation for determination of their stationary controls

8Jt Tt
O0xy ante (r+pBn—1r) 7 =0 (7)
Notice that 027
1
t
= 2an—— <.
0x? an (r+pBm-—1)r) <0

Therefore, a solution of the equation (7) determines a maximum point, and if
x¢ > 0 then an optimal control of the agent is given by the formula

o _ (D)4 1))

P14 2anr(1 + B(n — 1))
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In this case the agent’s payoff is equal to

st (D + %) (r +7B(n — 1)) D+ _
J = Z (14 2anr(1+ B(n—1)))? <(D+%C)an+2r(1+ﬁ(n_1))>

T
> otA,
t=1

Thus, equilibrium strategies and payoffs of the agents are determined by the for-
mulas

zf =0, if 29<0 or A; <0 and z} =z, otherwise (8)

T
= Z Jy; Jp = max (0, 5tAt)

Therefore, the following proposition is proved.

Proposition 1. Formulas (8) determine a maximum point of the payoff functions
(6) and payoffs of n symmetrical agents in a Nash equilibrium in the case of an
indifferent Principal.

4. Cooperation of the Principal with Agents

In the case of cooperation of the Principal with n agents they form a grand
coalition and solve together an optimal control problem with a payoff functional in
the form

T 2
J;.
J¢ = g o | xz + E — QT¢)Tip — - a —cil(zy)
t=1 i€N (7%‘ + B 1 I@ﬁ)ﬁ’)

+6Tyr — max (9)

The maximum is searched by n functions (z;;);_; subject to the constraints (4) and
equation of dynamics (5). The game is reduced to an optimal control problem.

If controls of all agents are equal to zero: z;; = 0;¢ = 1,2, ...,n then the coali-
tional payoff is equal to 67y (1 —m)7.

Otherwise, for determination of the maximum in (9) a discrete Pontryagin max-
imum principle is used (Boltyanskii, 1978). An integrand in (9) is convex, the equa-
tion of dynamics is linear by the control variables that belong to a convex closed
set. Therefore, for the solution of the problem (4),(5),(9) we can use a discrete Pon-
tryagin maximum principle (Boltyanskii, 1978). A Hamilton function of the grand
coalition has the form:

2

xre

Ht (yt, )\H_l,xt) = (St Xft + (D — Olft)ft Z ot
1EN 2(T,+BZJ lgyézrﬂ)

+ 41 <Z kixy + (1 - m)yt> ,

iEN

—C
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where A\;11 is a conjugate variable. From the necessary condition of extremum we
receive the system of n equations i =1,2,...,n

ﬁHt _ Tt
=6 x+D—2am; — T + A1k =0 10
B (X T Z <7"i + B 51 7‘j>> t+1 (10)

i€EN

and for determination of the conjugate variable - a simple initial value problem
At = (1 - m))\t+1; Ar = 5T7

therefore,
)\t = (1 — m)T_t(ST.

In general case the system of equations (10) is solved numerically. For n=2 the
system takes the form

(9Ht Tt
=t D -2 - Air1k1 = 0;
D1 <X + a(x1y + xar) 1t By + At1k1 ;
8Ht T2t
=6 D -2 — = ) 4+ Ag1k2 = 0.
Do (X+ (1 + 22r) ot B + Apg1ko
Its solution gives
0 = A — B )
Y20+ 14 1/(2a(ry + Bra))’
0 A2t - B2t

T2 T o0 ¥ 1+ 1/(2a(rs + fr1))
where

At =x+ D+ ko(1— m)T_t_l(ST_t; Asy =x+D+ k(1 - m)T_t_l(ST_t;

1 Xx+D  ki(1—m)T-t=15T—t
By =12 .
1 <a+r2+ﬁr1>< 20 2 ’
1 X+D k(1 —m)T—t=15T—t
By =(2 .
2 <a+7“1+,6’r2>( 2 * 2

The found pair of points (29, 29,) is a maximum point of the Hamilton function for
positive controls x14, x9¢. Really,

0% H, ( 1 ) 0% H, 1
=020+ — | =E<0; =020+ — | =F<0;
oz3, r1 4+ Py 0z3, ro + A1
2
H
L=—2o«5t:G<0; A=EF-G*>0; E<O.
021,024

Therefore, a maximum of the Hamilton function subject to the control constraints
(4) is attained in one of the vector points

(295, 2%); (21, 0); (0,23,); (0),0); (11)

(x(l)taxmaz); (xmamaxgt; (xmam;xmam)

and the following proposition is proved.
Proposition 2. Formulas (11) determine a point of maximum of the Hamilton
function in the case of cooperation of the Principal with two agents.
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5. Solution of the Inverse Stackelberg Game (Germeier Game I5;)

From the point of view of the Principal her interaction with agents is described
by an inverse Stackelberg game (Germeier game I;). An algorithm of solution of
this game is based on the approach proposed in (Ugolnitskii and Usov, 2014, 2016).

1. A strategy of punishment by the Principal of the agents who refuse to coop-
erate with her is calculated:

i ({sittiz) = arg _max  Ji({si}icy, {wit}iz);

ZTit<Tmazx

{shi}i—y =arg 5”20;21{_122 .25, Ji({sit=1, {zu} i)

If an agent refuses to cooperate then his guaranteed payoff is equal to (1 = 1,2, ..., n)

Li = Ji({si = Azl Vo) =

i Ji({si} 1 vl
0SSt man 5220 3oin 1SSt isithimy, {@itkiz)

and is determined by the formula similar to (8) when s;; = 0;i = 1,2,...,n;t =
1,2,...,T.

2. An optimal control problem (1), (2), (4), (5) is solved with conditions

T T\ i _
L; < Ji({sit}t:b{xit}t:l), 1=1,2,...,n. (12)

A maximum is searched by two grid functions {sit}zg)l, {a:,t}:l,g)l . Denote a so-
lution of this optimal control problem by {sZ}L | {«E}T | | where {sZ}T | is a
strategy of reward of the i-th agent when he chooses {zZ}L ;.

3. The Principal reports to each agent a strategy with a feedback on his action:

Sit = sﬁ, if wy= xﬁ and s; = sg, otherwise

The condition (12) provides that for the agents a reward strategy is more profitable
than a punishment strategy. Thus, the solution has the form ({sZ}7,, {=Z}1 ).

A solution of the inverse Stackelberg game (Germeier game I, ) is built numeri-
cally by means of the method of qualitatively representative scenarios in simulation
modeling (QRS SM method) (Ougolnitsky and Usov, 2018).

The QRS SM method is based on the idea that for evaluation of the consequences
of control impacts on a dynamic system it is sufficient to consider a small number
of control scenarios that reflect qualitatively different variants of the impact.

Assume that

=581 x...x8, xX1 x...xX,.

Here

i=1
are the sets of feasible controls of the Principal and agents.
Definition (Ougolnitsky and Usov, 2018). A set

QRS = SQRS o x QRS _ S?RSxSQQRSx,,,xST?RSxXlQRSxXQQRSX...XXERS =
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{(8,2) = (81,80} X1y, Tn); 8; € SZ-QRS € S;;x; € XZ-QRS € X;}

is a QRS set in a Stackelberg game with precision A If:
(a) for any two elements (s, ), (s,2)7) € QRS |J0i) - Jéj)| > A;
(b) for any element (s,z)() ¢ QRS there is an element (s,2)) € QRS such that
A < A

An algorithm of solution of the inverse Stackelberg game (Germeier game Iy, )
by means of the QRS SM method has the following form.

1. An initial set QRS has the form (k = 0)

QRS(k) - (SQRS)(k) « (XQRS)UC);

(SQRS)(k) _ (S?RS)(I@) « (SQQRS)(}C) % (SSRS)(IC)

(XQRS)(k) _ (XlQRS)(k) % (XQQRS)(k) % ...(X,,?RS)(k);

S k k k S k k k
(SPE5) B = {17507 5} (X2 E) = {25250}

K2

5(1k) =0; Sgk) = Smaz/2; s:(jk) = Smaxz; xgk) =0; ﬂfék) = Timaz/2; xék) = Tmaz;
where values Sqz, Tmaz are big enough and are chosen specifically for each control
system.
2. The set QRS™) contains 32N elements. All of them are checked for satisfaction
of both conditions in the mentioned definition of a QRS set. If it is necessary then
an initial set QRS® is reduced or extended by new elements.
3. A strategy of punishment of the agent who refuses to cooperate with the Princi-
pal is found. First, by enumeration of the strategies from the set (X®%S )(k) Nash
equilibria for a given Principal’s control NEQFS((S@ES)(F)) are found. Then a
guaranteed payoff of the i-th agent who refuses to cooperate with the Principal is
calculated:

Lf = max min  J; (s, ;).
1, €NEQRS ((SQRS)(M) 5;€(SART) (k)
4. By the complete enumeration of the qualitatively representative strategies of
the Principal from (S9F%)(*) and the agents from (X@f%)(*) a maximum in the
problem (1), (2), (4) with conditions J; > L¥(i = 1,2, ...,n) is found.
The values that provide the maximum form a k-th approximation to the solution
of the game. Denote them by (s%)*) (z%)(k),
5. The QRS sets of the Principal and the agents (k := k + 1) are refined in the
vicinity of the built equilibrium as follows.
if (s3)(k=1) = 5(11%1), then sgk) = sgkfl); sék) = (sgkfl) +sgk71))/2; sék) = sékil).
I (50D = 0 then s = (s 4 sl o) o)
(s5 7V s )2
If (s¥) (=1 = sgkfl), then sgk) = sgkfl); sék) = (s;kfl) +sgk71))/2; sék) = sékfl).
New sets QRS®) for the agents are built similarly.
If at an iteration we receive that (sF)(*) = (sF)(=1), (2B)#) = (zF) (=D, ; =
1,2,...,n then a solution of the game by means of the QRS SM method is built.
Otherwise, go to step 2 of the algorithm.
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6. Numerical Calculations

We considered the following types of the Principal’s strategies (her subsidies to
the agents):

(a) uniform subsidies to all agents in a fixed moment of time. If an output volume
of the innovative product for all agents is positive then Vi s; = s > 0, otherwise

(b) type-dependent (agent efficiency-dependent) strategies s;; = s;(r:); a linear
dependency is used s;(r;;) = a;7r; constants a; are to be determined;

(c) action-dependent strategies s;; = s;(x;); a linear dependency is also used
$i(xit) = O;x41; constants ; are to be determined.

All computer simulations were conducted on a personal computer with a pro-
cessor AMD Ryzen 5 3550H with operative memory 8 Gb by means of an object-
oriented programming language C++. An average time of one computer simulation
for determination a QRS set is less than one second.

An analysis of the received results was based on the following indicators:

(1) a total discounted payoff of the Principal;
(2) values of the individual and collective relative efficiency indices (Ougolnitsky,
2022).

The collective relative efficiency indices demonstrate a need in a hierarchical
control in a dynamic system. The closer are their values to one, the better the
system is coordinated, and a hierarchical control by the Principal is less actual.

In the computer simulations we varied the following parameter values:
. x from 0.01 to 3;
. D from 5 to 100;
. A from 0.001 to 0.1 year/mln.rub.;
. 71,2 from 0.5 to 50 thousand rub./year;
. ¢1,2 from 50 to 1000 mln.rub./year;
. B from 0.01 to 0.6;
7. m from 0.0001 to 0.11/year;
8. k1,2 from 0.001 to 0.051/year;
9. yo from 30 to 500 mln.rub./year;
10. Sy from 100 to 500 mln.rub./year.

Input data for numerical calculations are presented in Table 1. The results of

calculations for these data and T' = 6;n = 2 for different control scenarios are

SO W N

given in Table 2. The upper index in the values Jék)7 Jl(k), Jék) stands for a type
of scenario, namely: (a) - uniform subsidies; (b) - type-dependent strategies; (c) -
action-dependent strategies; J(©) denotes a payoff of the coalition of the Principal
with agents in the case of their cooperation.

For a comparative analysis of the different scenarios of the Principal’s con-
trol we used a system of the individual and collective relative efficiency indices
(Ougolnitsky, 2022). The collective relative efficiency indices correlate the values of
social welfare (a total payoff of all players) for different scenarios with the maximal
value of social welfare that is attained in the case of cooperation of all players:
SCI=%"Ji/J ¢ Here J; is a payoff of the respective agent in a specific scenario
(a),(b),(c) of the Principal’s control, and J¢ is a cooperative payoff of the grand
coalition in the case of cooperation.

The individual relative efficiency indices correlate payoffs of the agents in a
specific scenario (a),(b),(c) of the Principal’s control with their symmetrical coop-
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Table 1. Input data for numerical calculations

ND riraocr c2 yo ki k2 x o [ m

200 20 30 500 700 200 0.020.4 1 0.2 1 0.03
200 60 50 300 400 200 0.030.3 1 0.1 0.80.03
200 20 70 350 200 100 0.04 0.06 0.5 0.3 0.1 0.03
200 60 20 200 400 100 0.04 0.03 0.5 0.25 0.5 0.03
200 30 10 600 500 200 0.01 0.051 0.05 0.3 0.05
200 20 50 400 300 200 0.05 0.02 0.5 0.1 1.4 0.05
300 40 60 200 500 200 0.120.2 1 0.12 0.8 0.05
300 20 10 400 300 200 0.1 0.1 1.50.150.6 0.1

9 300 40 20 500 600 50 0.01 0.03 0.4 0.05 0.7 0.02
10 300 20 10 200 500 50 0.07 0.010.10.1 1 0.02
11 300 50 30 400 300 50 0.050.01 0.3 0.1 0.8 0.01
12 500 20 10 400 300 200 0.03 0.250.40.2 1 0.03
13 500 10 50 400 200 200 0.07 0.03 0.3 0.2 0.8 0.03
14 500 40 25 200 500 200 0.01 0.03 0.2 0.1 1.2 0.03
15 500 30 50 400 300 200 0.05 0.3 0.10.5 1.50.03
16 500 20 40 100 500 200 0.2 0.1 0.30.3 1 0.03
17 500 15 10 150 100 200 0.1 0.5 0.1 0.4 0.50.02
18 200 20 30 450 350 100 0.06 0.04 0.1 0.2 2 0.01
19 200 60 25 500 450 100 0.01 0.03 0.4 0.151 0.01
20 200 10 40 400 300 100 0.03 0.020.30.2 1 0.01
21 200 30 40 500 700 100 0.01 0.05 0.5 0.052 0.01
22 200 40 50 600 300 100 0.02 0.040.30.1 2 0.01

0~ O T W

23 200 15 20 400 600 200 0.01 0.08 0.7 0.2 1 0.02
24 100 50 40 300 400 200 0.05 0.01 0.8 0.2 2 0.02
25 100 50 15 500 600 200 0.01 0.06 0.50.1 2 0.01
26 100 30 5 500 300 200 0.05 0.080.50.1 1 0.02
27 100 5 20 400 500 200 0.03 0.06 0.5 0.2 1 0.02
28 100 10 5 300 400 200 0.02 0.050.50.1 2 0.01

29 100 20 10 400 700 100 0.070.051 0.3 1 0.01
30 100 30 10 600 500 100 0.05 0.02 0.5 0.1 1.5 0.02
31 100 10 20 500 700 100 0.05 0.01 1.5 0.05 1.2 0.01
32 100 20 30 500 400 100 0.01 0.021 0.2 1 0.01
33 50 20 25 500 400 50 0.01 0.02 0.9 0.23 1.4 0.01
3450 305 50060050 0.030.051.40.251.70.01
3550 5 10 700 400 100 0.02 0.04 1.7 0.15 1.5 0.01
36 50 5 20400 600 50 0.050.031.20.2 1.20.02
3750 105 500 400 100 0.01 0.021.50.151 0.02
38 50 20 15 500 600 100 0.05 0.01 1.5 0.15 0.5 0.01
39 50 151050040050 0.030.0561 0.1 1 0.02
40 50 10 15 700 500 50 0.01 0.03 1.2 0.15 0.7 0.02
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Table 2. Results of the numerical calculations

N J¢

Jéa) J1(a) J2(a) Jéb) Jl(b) J2(b) Joc)

Jl(c) JQC)

58756
60027 868
53185 335
54733 285
62544 378
59429 238
89206 638
88442 568
9 92185 938
10 89611 248
11 89601 408
12 146967 605
13 146306 275
14 149337 145
15 137793 631
16 143530 608

0~ O ULk W~

18 57034 548
19 56674 338
20 56674 358
21 62622 468
22 60146 408
23 57653 453
24 26546 408
25 30908 518
26 30312 493
27 27544 393
28 29975 518
29 25481 918
30 31258 643
31 32984 678
32 27306 468

33 8360 438
347944 838
35 10060 828
36 9986 578

37 10288 543
38 11842 768
39 11512 518
40 9694 328

1018 25434 24834 1260 25445 25065 1450 25475 25225

27572 27371 1380 28042 27311 1300 27612 27662
24320 24857 897 24331 25408 767 24361 25248
25605 24984 767 26076 24995 T17 25646 23375
27345 27561 610 27576 27562 810 27386 27952
27267 27540 640 27278 27961 670 27307 27961
42566 41662 1140 45525 42139 1070 42557 42059
41788 41748 1000 41518 42139

41477 41748 880
42689 42381 560
42784 41884 400
42258 42255 620
70684 70984 667
70734 71344 667
72855 71957 472

43000 42391 670
42935 41885 680
42649 42576 840

42730 42771
42825 42275
42300 42946

70735 71735 1036 70735 71735

70721 71708 707
73166 71972 577

70702 71631
72896 72348

66273 66569 1043 66294 66960 1063 66314 66560
70146 68946 930 70157 69257 1040 70188 69337
17 140595 1547 68371 68494 1660 68482 68496 1980 68412 6888

25612 25906 790
26214 26364 825
25734 26034 670
27724 27121 800
26682 27580 830
25701 25101 610
11080 10782 830
11962 11676 915
11902 12502 720
10659 10359 540
12421 12159 585

25623 26136 980
26685 26381 770
25735 26345 790
27746 27432 900
26713 27971 840
25707 25252 885
11471 10813 840
12353 11682 950
12133 12498 925
10655 10510 825
12493 12155 950

25653 26296
26255 26755
25775 26425
27765 27512
26723 27971
25742 25492
11121 11173
12003 12067
11943 12893
10700 10750
12462 12550

9184 8284 1070 9335 8285 1350 9225 8675

11601 11859 875 11832 11860 1074 11643 12250
12665 12051 830 11267 11202 1109 12704 12442
10434 10734 710 10445 10965 900 10475 11125

2491
2162
2972
3180
3509
3622
4359
3025

2788 640
1886
3845 895
2564 725
3809 610
3309 760
4659 630
3620 440

1067 2163

2501 2979 870
2091
3916
3176 2716
3580 3805 975
3066 4011
4470 4660 950

3026 3611 760

2968

1270 2203
1260 3013 4236
1009 3221

1200 3663

2532 3179

2283

2956
3550 4200
3700
4400 5050
3066 4011

83
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erative payoffs: K; = (n + 1)J;/J%;i = 0,1,2. It is supposed that all payoffs are
non-negative. The received values of relative efliciency indices are presented in Table
3.

The last row of the Table 3 contains average values of the indices. Thus, we
receive the following preference systems:

society: C' > (c) = (b) > (a);

Principal: C > (¢) > (b) > (a);

agents: (b) ~ (¢) = (a) > C;

Thus, the whole society and the Principal prefer cooperation, and the agents
(followers) prefer type-dependent or action-dependent subsidies.

Besides, the following conclusions are made.

1. A parameter y characterizes a dependency of the Principal’s payoff on a total
output volume of the innovative products. If its value increases then the Principal’s
payoff increases linearly for all types of subsidies. The agents’ payoffs do not change.

2. If demand parameters D and « increase then the agents’ payoffs increase
exponentially. The Principal’s payoff does not change.

3. If an agent’s type changes (an efficiency of his technologies increases or de-
creases) then his payoff changes slightly. For example, if the efficiency increases
twice then the payoff increases on 10% approximately. The Principal’s payoff does
not change.

4. If the agents’ costs increase then their payoffs expectably fall.

5. Remind the parameters of the equation of state dynamics: m - a coefficient of
decreasing of the innovative level; k; - an impact coefficient for the i-th product. If
these parameters change then the agents’ payoffs do not change. However, the Prin-
cipal’s payoff decreases when m increases, and increases abruptly when k; increase.
Also, it increases together with an initial value of the innovative level.

7. Conclusion

We built and investigated a two-level control system aimed at promotion of in-
novations in the universities competing a la Cournot. The system is formalized as
a difference inverse Stackelberg game (Germeier game Is; ) of the type Principal-
agents with a differential equation of dynamics. Based on a discrete Pontryagin
maximum principle, for a specific class of model functions in the case of an indif-
ferent Principal we found analytically a Nash equilibrium in the game of agents in
normal form. An algorithm of solution of the inverse Stackelberg game (Germeier
game [5;) is proposed and implemented on the base of the method of qualitatively
representative scenarios in simulation modeling. The received results allowed for
some conclusions given above. The main conclusion is that the whole society and
the Principal prefer cooperation, and the agents (followers) prefer type-dependent
or action-dependent subsidies.

Universities are often myopic that we considered in the model. That’s why a
promotion of innovations advocates for the interested Principal who provides inno-
vations by means of subsidies to the agents. The Principal’s direct payoff may be
quite small.

In the future we suppose to investigate the considered model in a cooperative
dynamic game theoretic setup with different characteristic functions and to conduct
a comparative analysis.
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Table 3. The values of relative efficiency indices for different scenarios: (a) uniform strate-

gies; (b) type-dependent strategies; (c) action-dependent strategies
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40

0.87
0.93
0.99
0.93
0.88
0.93
0.95
0.95
0.97
0.95
0.95
0.97
0.97
0.97
0.97
0.97
0.98
0.91
0.93
0.92
0.88
0.91
0.89
0.84
0.78
0.82
0.78
0.84
0.72
0.77
0.77
0.79
0.68
0.63
0.75
0.63
0.76
0.65
0.83
0.72

Average 0.86

0.05/1.3/1.27
0.04/1.38/1.87
0.02/1.31/1.4
0.02/1.4/1.4
0.02/1.31/1.32
0.01/1.38/1.39
0.02/1.43/1.40
0.02/1.41/1.42
0.03/1.39/1.38
0.01/1.43/1.4
0.01/1.42/1.41
0.01/1.44/1.45
0.01/1.45/1.44
0.01/1.46/1.45
0.01/1.44/1.45
0.01/1.47/1.44
0.03/1.46/1.47
0.03/1.35/1.36
0.02/1.38/1.39
0.02/1.36/1.38
0.02/1.33/1.31
0.02/1.33/1.35
0.02/1.34/1.31
0.05/1.25/1.22
0.05/1.16/1.13
0.05/1.18/1.21
0.04/1.16/1.13
0.05/1.24/1.21
0.11/1.08/0.99
0.06/1.11/1.09
0.06/1.15/1.11
0.05/1.15/1.19
0.16/0.89/1
0.32/0.82/0.71
0.25/0.89/1.15
0.17/0.96/0.77
0.16/1.02/1.11
0.19/0.92/0.84
0.13/1.14/1.21
0.1/0.94/1.12
0.06,/1.25/1.24

0.88
0.95
0.95
0.95
0.89
0.94
0.99
0.95
0.93
0.95
0.96
0.97
0.97
0.92
0.97
0.98
0.98
0.92
0.95
0.93
0.89
0.92
0.89
0.87
0.82
0.83
0.79
0.84
0.74
0.79
0.71
0.81
0.73
0.67
0.77
0.66
0.74
0.66
0.85
0.73
0.87

0.06/1.29/1.28
0.07/1.39/1.36
0.05/1.37/1.43
0.04/1.43/1.37
0.03/1.32/1.32
0.03/1.38/1.41
0.04/1.53/1.42
0.03/1.42/1.41
0.02/1.4/1.38

0.01/1.44/1.4

0.02/1.43/1.43
0.01/1.44/1.46
0.01/1.44/1.46
0.01/1.47/1.45
0.02/1.48/1.46
0.02/1.47/1.45
0.04/1.46/1.47
0.04/1.35/1.37
0.04/1.41/1.4

0.04/1.36/1.39
0.04/1.33/1.38
0.04/1.33/1.4

0.03/1.34/1.31
0.09/1.3/1.22

0.09/1.2/1.13

0.07/1.2/1.24

0.06/1.16/1.14
0.06/1.25/1.22
0.13/1.1/0.98

0.08/1.14/1.14
0.08/1.02/1.02
0.08/1.15/1.2

0.23/0.9/1.07

0.4/0.82/0.79

0.27/0.89/1.17
0.22/0.95/0.82
0.18/1.04/1.11
0.19/0.78,/1.02
0.16/1.16/1.21
0.14/0.94/1.12
0.07/1.27/1.26

0.88
0.94
0.95
0.91
0.9

0.94
0.96
0.96
0.93
0.96
0.96
0.98
0.97
0.98
0.97
0.98
0.99
0.93
0.95
0.95
0.9

0.92
0.89
0.87
0.81
0.85
0.81
0.87
0.76
0.8

0.8

0.82
0.79
0.72
0.85
0.72
0.85
0.72
0.9

0.81
0.89

0.07/1.3/1.29
0.06,/1.38/1.39
0.04/1.37/1.42
0.04/1.41/1.28
0.04/1.31/1.34
0.03/1.38/1.41
0.04/1.43/1.41
0.04/1.43/1.41
0.02/1.39/1.39
0.02/1.43/1.42
0.03/1.42/1.44
0.02/1.44/1.46
0.01/1.44/1.46
0.01/1.46/1.45
0.02/1.44/1.45
0.02/1.47/1.45
0.04/1.46/1.48
0.02/1.35/1.38
0.04/1.39/1.42
0.04/1.39/1.42
0.04/1.33/1.32
0.04/1.33/1.4
0.05/1.34/1.32
0.09/1.26/1.26
0.09/1.17/1.17
0.09/1.18/1.28
0.09/1.16/1.17
1.1/1.25/1.26
0.16/1.09/1.02
0.1/1.1/1.18
0.1/1.16/1.13
0.1/1.15/1.22
0.31/0.92/1.14
0.48,/0.83/0.86
0.38/0.9/1.2
0.3/0.97/0.9
0.2/1.04/1.22
0.3/0.93/0.94
0.25/1.15/1.32
0.24/0.95/1.24
0.1/1.26/1.3
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