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Abstract In the present study, we consolidate the forty-five industrial sec-
tors delineated in the U.S. input-output tables, as disseminated by the
OECD, into three overarching sectors: advanced manufacturing, modern ser-
vices, and a residual category termed ’others.’ We adopt gross fixed capital
formation as a proxy for the proportion of net profit allocated to invest-
ment, positing that the investment requisite for augmenting output is com-
mensurate with the requisite capital intensity. This framework enables us
to forecast the trajectory of total output and GDP, taking into account the
interplay of multiple determinants. In addressing the inherent linear control
dynamics of the input-output model, we apply classical control theory to
regulate the advanced manufacturing sector. By deriving control equations
that accommodate multifactorial influences, we substantiate the efficacy of
this control mechanism through rigorous numerical analysis. Moreover, we
reconceptualize the dynamic input-output system as a game-theoretic model
characterized by a saddle-point equilibrium. By leveraging the saddle-point
equilibrium strategy, we pioneer an innovative approach to resolving the
complexities of dynamic input-output analysis. This methodological innova-
tion not only enhances the precision of our predictions but also contributes a
novel perspective to the literature on economic modeling and control theory.
Keywords: dynamic input-output model, program control, saddle point
equilibrium strategy, differential game.

1. Introduction

The application of static input-output models and the theory of dynamic input-
output models are the main focuses of current input-output research. Few re-
searchers have employed dynamic input-output models in conjunction with game
theory to investigate the optimal control of an unbalanced economy.

In the era of the digital economy, it is crucial to consider the time component
in the input-output table and to be able to control the parameters to achieve the
desired goals. In particular, in the case of unbalanced input-output, providing opti-
mal control under the influence of multiple factors can help enterprises to optimize
their benefits. Similarly, the government can alter tax policy based on the predicted
result of the input-output table to guide resource allocation and encourage the
development of each sector.

Leontief (1956) proposed the dynamic inverse model, laying the foundation of
dynamic input-output modeling. Miller (2009) included the time factor in the input-
output analysis. Smirnov (2021) considered government consumption as the fourth
quadrant of the input-output table in the input-output equilibrium equation, and
defined total output as the derivative of time. In this paper, based on (Miller, 2009)
and (Smirnov, 2021), we remove Taxes fewer subsidies on intermediate and final
https://doi.org/10.21638/11701/spbu31.2023.04
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domestic products, which correspond directly to each sector, as the fourth quadrant
according to the input-output table published by OECD. The time series is utilized
to forecast current economic trends in the United States.

Given the linear control characteristic in the dynamic input-output model, we
combine the classical program control theory proposed by Tamasyan (2008) and
based on the viewpoint of the advanced manufacturing industry, i.e., the indus-
try that utilizes the emerging technology as the fundamental means, proposed by
Singhry (2016), Mourtzis et al. (2018) and Jin et al. (2017), we classify what sectors
are included in the advanced manufacturing industry. The equations for the control
of multifactor influence are obtained after applying complete control to the ad-
vanced manufacturing industry in the U.S. The effectiveness of the program control
is verified by numerical computation.

Qu and Huang (1999) described optimal production strategies for consumption
tracking in dynamic input-output systems. Kang et al. (1992) discussed the dy-
namic input-output optimal control model. And Mao (1992) indicated the dynamic
input-output optimal control model with constraints. Based on the dynamic input-
output model proposed by Leontief, we study the optimal policy design problem
of the continuous dynamic input-output model. The dynamic input-output system
is abstracted as a saddle-point equilibrium game model in the current paper using
ideas from Qu, Kang, and Mao. The saddle-point equilibrium strategy is used to de-
sign a new method for solving the dynamic input-output problem, which provides
a basis for decision-making by macroeconomic policymakers. The current paper
also uses the saddle-point equilibrium strategy to design a new method for solving
the dynamic input-output problem, which provides a basis for decision-making by
macroeconomic policymakers.

2. Dynamic Input-output Modeling of a Balanced Economy

2.1. Relationship between input-output table

The input-output tables published by the OECD cover 45 economic sectors, and
all values are represented in current dollars. For the input-output table, the rows
upward represent the destination of the allocated uses of the product of a sector,
the sum of which equals total output Xi; the columns upward represent the various
inputs to the production of the product, and the sum of the values of these inputs
is the total inputs, i.e., Xj . Each element of the matrix Q = {xij}45ij=1 represents,
from the row-wise view, the amount of i product allocated to the production of j
product, and from the column-wise direction, the amount of i product consumed in
the production of j product. The row vector Ej represents the value added in each
j sector. It contains labor wages Wj , net production taxes ONTj , and net profits
Prhj . TF denotes Taxes less subsidies on intermediate and final imported products
(TXS−IMP −FNL). TD denotes Taxes fewer subsidies on intermediate and final
domestic products (TXS − INT − FNL). The column vector Y denotes the final
expenditure on output in the industrial sector, which includes Gross Fixed Cap-
ital Formation(GFCF ), Changes in inventories(III), Direct purchases abroad by
residents (imports), Direct purchases abroad, Exports (cross border), and Imports
(cross border).

Fig. 1 has the following equilibrium relations.
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Fig. 1. Schematic diagram of OECD input-output table

Xj =

n∑
i=1

xij + TFj + TDj + Ej =

n∑
j=1

xij + Yi = Xi, (1)

where i, j = 1, . . . , 45.
GDP is the sum of the value added Ej and TXS − INT − FNL, that is,

GDP =

n∑
j=1

Ej +

m∑
j=1

TDj =

n∑
i=1

Yi +

m∑
j=m−n

TFj +

m∑
j=m−n

TDj , (2)

where n = 45,m = 54.
Similarly, we can obtain:

aij =
xij − Ej − TDj

Xj
, tdj =

TDj

Xi
. (3)

aij denotes the quantity consumed by sector i per unit of output in sector j, i.e.,
the direct consumption coefficient. tdj denotes the sum of taxes fewer subsidies on
intermediate and final domestic products in sector j as a share of total output Xi.

rwj =
Wj

Ej
, rtj =

ONTj

Ej
, apj =

n∑
j=1

aij . (4)

rwj represents sector j’s labor wages as a share of its value added, rtj represents
sector j’s taxes on production as a share of its value added, and apj is the total
share of intermediate consumption in sector j in sector i’s annual output Xi.

Yri =
Yi

GDP
, Ej = (1− apj)Xj , td =

∑m
j=m−n TDj

GDP
. (5)

Yri denotes the Yi share of GDP for final consumption in sector i, and td indi-
cates the GDP share of the sum of taxes fewer subsidies on intermediate and final
domestic products in sector m corresponding to final consumption to m− n.

By combining Eqs. (1)–(5), we can obtain the equation for GDP as affected by
each relative variable:

GDP =

n∑
j=1

Ej +

m∑
j=1

TDj = (1− apj)X + td ·GDP. (6)
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2.2. Dynamic Input-output Modeling
The characteristic properties of the necessary state variables, which provide the

basis for simulating the anticipated evolution of the dynamic economy, are listed in
the equation above. The economic sector is taken into account while creating the
input-output table, and to treat it like a dynamic system, we must first create a set
of differential equations that describe the course of economic development.

Definition 1 (Smirnov, 2021). At a constant level of technology, the change in
total output Xt over time is defined as its derivative at time t, that is Ẋ(t) = dx(t)

dt ,
where,Xt = (X1(t), . . . , Xn(t)) is a vector of accrual-based outputs of the economic
sector in terms of inputs at time t. The vector Ẋ(t) describes the acceleration of
production in all sectors of the economy.

At the same level of technology and initial output X0, the relative increase in
output △X

X0
requires a proportional increase in the comparative gross fixed asset

formation △GFCF
GFCF0

and the change in inventories △III
III0

, where GFCF0 and III0 are
the initial gross fixed asset formation and the initial inventory change, respectively.
The amount of investment Cp required to increase output is proportional to the
requisite acceleration Ẋi(t). As a result, when combined with the definition 1, the
ratio that defines the amount of investment in each sector of the economy will take
the following form:

Cpi(t) = Fei · Ẋi(t), (7)

where the Fei value represents the capital density of each sector of the economy.
It is the coefficient of proportionality between the growth of output Ẋi(t) and the
amount of investment Cpi(t) required to ensure it.

Fei indicates the output per unit time ∆Xi

∆t = Xi(T2)−Xi(T1)
T2−T1

. Consequently, Fei
leads to an acceleration in the production of goods and services. Its value to each
manufacturer is determined by the ratio, i.e:

Fei =
Cpi(t)
∆Xi

∆t

=
Cpi(t) (T2 − T1)

Xi (T2)−Xi (T1)
=

Cpi(t) (T2 − T1)

Xi (T1)
(

Xi(T2)
Xi(T1)

− 1
) . (8)

For the input-output tables published by the OECD, capital intensity can be
written as:

Fei(t) =
Cpi(t)

Xi(t+ 1)−Xi(t)
. (9)

Fen+1(t) =
Cp(t)

GDP (t+ 1)−GDP (t)
. (10)

In an input-output model, the construction of differential equations is related to
the sources of investment. In general, the generators of investment include GFCF ,
III, government expenditures imports, and exports. However, for investment, we
usually consider only two factors, GFCF and III, because they are sources of
investment based on internal demand.

Based on the formula (7), we regard the investment as part of the net profit,
which is written as:
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Cpi = rnj · Prhj , j = 1, . . . , n, (11)

where rnj denotes the share of net profit used for investment.
The formula (11) can be written as follows:

Cpi = GFCFj + IIIj , (12)

rn =
Cp

GDP
, (13)

where rn denotes the volume of investment Cp as a share of GDP.
Based on (3), (4), (5), (7), we can obtain the set of dynamic differential equations

describing the economic development of each sector considered.

Ẋ =
rnj · (1− apj − tdj) (1− rwj − rtj)

Fei

 n∑
j=1

aij ·Xj + Yrj ·GDP

 , (14)

GḊP =
rn

Fen+1

 n∑
j=1

(1− apj)Xj + td ·GDP

 . (15)

In vector form, the system (14),(15) is shown below:

Ẋ = DX, D = MQ̃ (16)

where,

Q̃ =


x11 x12 · · · x1n Y r1
x21 x22 · · · x2n Y r2
... I

. . .
...

...
xn1 xn1 · · · xnn Y rn

1− ap1 1− ap2 · · · 1− apn td

 ,

M =



α1

Fe1
0 · · · 0 0

0 α2

Fe2
· · · 0 0

...
...

. . .
...

...
0 0 · · · αn

Fen
0

0 0 · · · 0 td
Fen+1

 ,

αj = rnj (1− rwj − rtj) (1− tdj − apj), j = 1, · · · , n.
Considering the direct consumption coefficient apj can better estimate the pro-

duction cost and resource utilization, considering the wage rate rwj can assist in
analyzing the relationship between production cost and output, and considering the
net production tax rtj can more accurately calculate the production cost and profit,
the model can help us to more accurately predict the total output as well as the
GDP by considering all of these factors, which is helpful to the government and the
enterprises to formulate the economic policy and strategic planning.
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2.3. Input-output Analysis in the United States

For the U.S. input-output tables 2000-2018, the current paper utilized R Pro-
gramming Language and Python to calculate capital intensity and control for errors
between total output and actual total output, as detailed in (Dan, 2023).

We aggregated 45 sectors into three major categories, namely advanced manufac-
turing, abbreviated as AMI (comprising 12 sectors), modern services, abbreviated
as MSI (comprising 12 sectors), and other industries (23 sectors). Based on Eqs.
(14), (15), we used linear regression to predict capital intensity under inflation,
denoted as Fei, Fen+1. Additionally, we employed time series analysis to forecast
GDP and the total output of the three aggregated sectors from 2019 to 2024.

According to Fig. 2, the year 2007 required the highest capital expenditure per
unit of total output for both advanced manufacturing and modern services, while
the years 2001 and 2008 saw the lowest capital expenditure per unit of total output
for these sectors. The minimal capital required for advanced manufacturing in 2001
reflects the sector’s sluggish development during that period. The financial crisis
of 2007-2008 is also one of the key reasons for the notably low capital expenditure
in modern services in 2008. From the projections, considering inflation, the capital
intensity for advanced manufacturing is consistently higher than that for modern
services and other industries.

According to Fig. 3, from the historical data, the unit capital expenditure re-
quired to increase the unit of GDP was the highest in 2007, and the unit capital
expenditure required to increase the unit of GDP was the lowest in 2008. For the
2019-2024 forecast, the lowest unit capital expenditure is required to increase unit
GDP in 2022.

Fig. 2. Predicted values of capital density Fei under real GDP

According to Fig. 4, nominal GDP is consistent with forecast GDP from 2000
to 2018. At this stage, the official U.S. GDP was released only until 2021. For our
forecasts of 215,906,93 , 224, 878, 63, 233,095,49 and 240, 621, 01 million for the
years 2019, 2020, 2021, 2022, respectively, the variances are: 0.97%, 6.34%, 0.04%
and 1.84%. The projected nominal GDP for 2023 and 2024 will be $ 247, 513, 36
and $ 253, 825, 81 million respectively.

According to Fig. 5, historical data from 2000 to 2018 shows that the actual val-
ues are consistent with the predicted values. Overall, the total output of the modern
services industry has always been higher than that of advanced Manufacturing. No-
tably, the year 2008 serves as an inflection point for both sectors, with the financial
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Fig. 3. Predicted values of capital density Fen+1 under real GDP

Fig. 4. Nominal GDP and predicted GDP

crisis being an evident and significant cause. In the forecast for 2019-2024, the total
output for modern services industry is predicted to rise, while the total output for
advanced manufacturing industry is expected to decline. This trend further con-
firms that, in developed countries, the modern services industry contributes more
significantly to the economy.

Fig. 5. Total outputs and predicted total inputs of the 3 sectors

3. Equilibrium Economic Program Control

The control system:

Ẋ(t) = DX(t) +Qu+ f(t), (17)
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where
X = (x1, . . . , xn)

T ∈ Rn - state vector, T- transposition,
u = (u1, . . . , ur)

T ∈ Rr- control vector,
P(t), Q(t) are (n× n) and (n× r) matrices with continuous components,
f(t) - n-dimensional continuous vector function - a disturbance.

This is a particular case of continuous one when D = constant, Q = constant.
The general solution of the Cauchy form of system (17) is:

x (t, 0, x0) = Y (t)

[
x0 +

∫ t

0

Y −1(τ)(Q(τ)u(τ) + f(τ))dτ

]
. (18)

Let two points x0, x1 and interval t ∈ [0, T ] are given. It is necessary to find an
admissible control u(t) such that

x (T,x0,u(·)) = x1. (19)

The pair x0, x1 is said to be controllable on interval t ∈ [0, T ] if there exists an
admissible control that is a solution of equation (18).

3.1. Program control algorithm
1○ Check the complete controllable of the system.

Stationary systems: the Kalman criterion. rang
[
Q,DQ, . . . ,Dn−1Q

]
= n.

Nonstationary systems: Sufficient conditions for complete controllability.
rangS (t∗) = n.

2○ Calculate the fundamental matrix Y(t) of the homogeneous system ẋ =
D(t)x.

3○ Construct the matrix B(t) = Y−1(t)Q(t).
4○ Calculate the Gramian A(T ) =

∫ T

0
B(τ)BT (τ)dτ .

5○ Calculate the vector η = Y−1(T )x1 − x0 −
∫ T

0
Y−1(τ)f(τ)dτ .

6○ Solve the system A(T )c = η.
7○ Solve the integral equation

∫ T

0
B(τ)v(τ)dτ = 0

or take v(t) ≡ 0.
8○ Form the program control u(t) = BT (t)c+ v(t).

3.2. The United States input-output program control
Informed by the computational analysis presented in Section 2.3, we have ac-

quired data (n = 4) for the United States during 2017-2018. We set control for the
advanced manufacturing industry to obtain the following non-homogeneous equa-
tion.

Ẋ =


0.0195 0.0013 0.0031 0.0047
0.0081 0.0155 0.0098 0.0151
0.0240 0.0067 0.0114 0.0336
0.0375 0.0379 0.0315 0.0011

X +


1
0
0
0

u,

x0 =


3823518.3
11922242.2
18063252.8
19541523.1

 , x1 =


4164850

12656899.5
19074639.5
20611103.4


To assess the system’s complete controllability, we implement program control

targeting a specific coordinate pair {x0, x1} within the interval [0, 1]. Here, x0 and
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x1 represent the total output of the advanced manufacturing industry, the modern
service industry, others, as well as the GDP for the years 2017 and 2018, respectively.

D =


0.0195 0.0013 0.0031 0.0047
0.0081 0.0155 0.0098 0.0151
0.0240 0.0067 0.0114 0.0336
0.0375 0.0379 0.0315 0.0011

 , Q =


1
0
0
0

 , f(t) =


0
0
0
0

 ,

T = 1. x0 =


3823518.3
11922242.2
18063252.8
19541523.1

 , x1 =


4164850

12656899.5
19074639.5
20611103.4

 .

Initially, the system’s complete controllability is verified using the Kalman cri-
terion for stationary systems, which necessitates a non-zero determinant of the
controllability matrix (det D ̸= 0 ).

Rank(Q,DQ,D2Q,D3Q) =


1 0.0195 0.00064143 0.00002
0 0.0081 0.00108495 0.00006
0 0.024 0.00108495 0.00010
0 0.0375 0.00182829 0.00013

 = 4.

Therefore, it is completely controllable.
Due to the intricate nature of the computational formulae involved, intermediate

steps are omitted for brevity. Consequently, the control input u(t) is presented di-
rectly. For practical purposes, the constant e is approximated by 2.7183, facilitating
a numerical solution to the control problem.

u(t) = [[1.6118×1018×((−0.7006×2.71830.003t+0.0113×2.71830.015t+0.3318×
2.71830.059t+0.3574/2.7180.03t)×(−0.2937×2.7180.003t)+· · ·+(0.6445/2.71830.03t)×
(0.4216×2.7180.003t+0.0018×2.71830.015t+0.3076×2.71830.059t+0.269/2.7180.03t)×
(· · ·+ 0.218× 2.71830.015t + 0.217× 2.71830.059t + 0.076/2.71830.03t)))]].

To evaluate the effectiveness of the proposed control strategy, Table 1 delineates
the discrepancies between the aggregated outputs of the advanced manufacturing
industry, modern service industry, and other sectors, as influenced by the control
variables, in comparison to the actual GDP of the United States for the year 2018.

Figure 6 reveals significant amplitude of fluctuations in the trajectory of key
economic indicators under the proposed control scheme. The control mechanism
we have constructed here is merely the initial step towards achieving the ultimate
objective. In future work, we will consider a discrete form of control functions in
order to smooth out fluctuations in the program mode.

Table 1. The error rate between the control total output and the actual total output

Year 2018 actual total output 2018 controlled total output Error rate
AMI 4164850 4165722.87 0.02%
MSI 12656899.5 12667558.54 0.08%
Others 19074639.5 19085804.38 0.05%
GDP 20611103.4 20620479.56 0.04%



70 Zhao Guo, Dan Wang

Fig. 6. The control process of total output and GDP among 3 sectors in 2017-2018

4. Input-output Model of Saddle Point Equilibrium Strategy

Drawing upon the Leontief input-output relational framework, we can delineate
a general dynamic input-output model. The input-output processes of individual
sectors are conceptualized as dynamic economic activities, which determine that
the output levels of each sector, as well as the final consumption products, are
functions of time, denoted by t. This temporal dimension introduces a dynamic
perspective to the traditionally static input-output analysis, allowing for a more
nuanced understanding of the economic interdependencies and their evolution over
time.

X(t) = AX(t) +BẊ(t) + Y (t), (20)

where, t ∈ [t∗, t
∗](product planning period), n dimension vectors X(t) and Y (t) re-

spectively is the output vector and the final consumption product vector (excluding
the investment part). The n time-invariant matrix A is the direct consumption co-
efficient matrix, whose elements satisfy

∑
aij < 1 and 0 ⩽ aij < 1, i, j = 1, 2, · · · , n.

Ẋ(t) is the rate of change in investments in each sector. The n time-invariant matrix
B is the investment coefficient matrix.

Building on the foundational work of Mao, 1992, our study takes a holistic ap-
proach to addressing the stochastic uncertainties inherent in the national economy.
We delve into the formulation of a continuous dynamic input-output model that op-
erates under the most adverse conditions of ambiguity. By incorporating concepts
from game theory, we frame the model as a linear quadratic differential game, where
the control strategy of the first player, denoted by Ẋ(t), is juxtaposed against the
uncertain factor-represented by the stochastic variable z(t) — which serves as the
control strategy for the second player.

Our analysis is geared towards identifying the optimal control strategy for the
dynamic input-output system. This is achieved by rigorously deriving the saddle
point equilibrium strategy, which encapsulates the most favorable course of action
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for both players under the given conditions of uncertainty. The resolution of this
equilibrium strategy provides valuable insights into the optimization of the dynamic
input-output system in the face of stochastic disturbances.

4.1. The game model of dynamic input-output system
Owing to the intricate nature of real economic activities, formula (20) is insuf-

ficient to accurately capture genuine economic laws. Consequently, we propose an
amendment to the model by introducing a random factor, denoted as variable z(t),
to account for uncertain factors in social and economic activities. This results in
the formulation of a new model represented by formula (21).

X(t) = AX(t) +BẊ(t) + Y (t) + z(t). (21)

The investment growth rates Ẋ(t) of each sector determine the changes in their
output capabilities, and by adjusting them, the final consumption product vector
Y (t) can be controlled. Therefore, the continuous dynamic input-output model (21)
can be transformed into the following state-space representation.{

Ẋ(t) = u(t)
Y (t) = (I −A)X(t)−Bu(t)− z(t)

(22)

Among them, t ∈ [t∗, t
∗]. I is the identity matrix of order n. u(t) ∈ Rn is the

decision-making control variable of player 1, z(t) ∈ Rn is the "natural" decision-
making control variable of player 2, output level vector X(t) is the state variable
of the system, and final consumption product vector Y (t) is the output variable of
the system.

We use the n dimensional column vector G(t) to represent the social demand
vector for products, assuming it is a known continuous function vector. When the
national economy is in a dynamic equilibrium, the social demand vector G(t) is equal
to the system output vector Y (t). However, it is difficult to eliminate the supply-
demand imbalance. At this time, on the one hand, we hope to make the performance
index J(u, z) obtain a minimum value by adjusting the control variable u(t). On
the other hand, it is hoped that under the worst interference of the random factor
z(t), the performance index J(u, z) takes the maximum value, where,

J(u, z) = 1
2

∫ t∗

t∗
[Y (t)−G(t)]TP [Y (t)−G(t)] + uT(t)Ru(t)dt, (23)

where, P and R are positive definite matrices of order n respectively.
Their practical significance is to distinguish between the difference between the

number of final consumer products provided by each sector and the social demand,
and the difference in the primary and secondary degrees required by the changes in
the output capacity of each sector. At this point, a complete dynamic input-output
system game model is formed. In the following chapters, we will use the method of
solving the saddle point equilibrium strategy to solve this problem.

4.2. Optimal control construction
The above model is a normal linear quadratic differential game model. Next, we

use the result of Deissenberg to solve it, and construct the Hamilton function of the
system (23) as follows:

H(X,u, Z, θ, t) =
1

2
[Y (t)−G(t)]TP [Y (t)−G(t)] +

1

2
uTRu+ θTu. (24)
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Then,

∂H

∂u
=
(
R+BTPB

)
u−BTP (I −A)X + λ+BTPG(t) +BTPz,

∂H

∂z
= Pz − P (I −A)X + PG(t) + PBu,

∂H

∂X
= (I −A)TP (I −A)x− (I −A)TPBu− (I −A)TPz − (I −A)TPG(t).

According to the minimum principle, the optimal control of the system (23)
u∗(t), z∗(t) and the optimal trajectory X∗(t) and the corresponding co-state variable
θ∗(t) satisfy:

Ẋ = u,X (t0) = X0,

θ̇ = −(I −A)TP (I −A)X + (I −A)TPBu+ (I −A)TPz + (I −A)TPG(t),

θ (t∗) = 0,

u = −R−1θ,
z = (I −A)X −BR−1θ −G(t).

(25)
Let:

θ(t) = S(t)X(t) + v(t). (26)

Then after proper calculation, S(t) and v(t) respectively satisfy the following
matrix Riccati differential equation:

Ṡ(t) + (I −A)TPBR−1S(t) + S(t)R−1BTPT(I −A)− S(t)R−1S(t) = 0,

S (t∗) = 0.

v̇(t) + (I −A)TPBR−1r(t) + v(t)R−1BTPT(I −A)− S(t)R−1v(t) = 0,

v (t∗) = 0.

(27)

Substituting equation (26) into equation (25), the optimal control law of the
system is:

u∗(t) =−R−1S(t)X(t)−R−1v(t),

z∗(t) =
[
I −BR−1S(t)

]
X(t)−BR−1v(t)−G(t),

(28)

where, S(t) and v(t) are uniquely determined by equation (27).
Hence, this section uses the saddle point equilibrium theory in the differential

game to study the multi-sector dynamic input-output problem in macroeconomic
decision-making and designs the realization method of the control strategy.

5. Conclusion

The present study commences with the formulation of a dynamic input-output
model, building upon the framework established by the OECD. Using the United
States as a case study, the model, in conjunction with the least squares method, is
employed to forecast capital intensity amidst inflationary conditions. For the U.S.
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input-output tables, time series analysis is utilized to project the trajectory of the
maximum aggregate total output as well as the GDP for the period spanning 2019
to 2024. Our findings indicate that the contribution of modern services to the U.S.
GDP surpasses that of advanced manufacturing. In light of this, we recommend
that the United States should relax trade restrictions and proactively engage in
international economic and technological collaborations to foster robust economic
growth.

Furthermore, the study integrates classical program control theory with a lin-
ear non chi-square differential equation that encompasses advanced manufacturing,
modern services, other sectors, and GDP. By applying control to the aggregated
advanced manufacturing sector in the United States for the years 2017 to 2018,
we derive equations that account for the control of multiple influencing factors and
validate the effectiveness of program control through numerical analysis.

As a final point, we explore the optimal strategy design for the continuous variant
based on the dynamic input-output model proposed by Leontief. The dynamic input-
output system is conceptualized as a saddle-point equilibrium game model, and the
saddle-point equilibrium strategy is adopted to devise an innovative approach for
resolving dynamic input-output challenges.
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