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Abstract Game dynamics theory, as any field of science, the consistency
between theory and experiment is essential. In the past 10 years, important
progress has been made in the merging of the theory and experiment in this
field, in which dynamics cycle is the presentation. However, the achievement
failed to eliminate the constraints of the Euclidean two-dimensional cycle.
This paper uses a classic four-strategy game to study the dynamic structure
(non-Euclidean superplane cycle). The consistency is in significant between
the three ways: (1) analytical results from evolutionary dynamics equations,
(2) agent-based simulation results from learning models and (3) laboratory
results from human subjects game experiments. The consistency suggests
that, the game dynamic structure could be quantitatively predictable, ob-
servable, and controllable in general.
Keywords: game theory; laboratory game experiment; eigenvector; eigen-
mode; dynamics system theory.

1. Introduction

1.1. The background
In a discipline of science, the consistency between theory and experiment is

essential. The two fundamental aspects of such consistency are accuracy and re-
ality. As a scientific discipline, game theory, which attempts to explain strategy
interactions among human subjects, is not an exception. We introduce the current
conditions about the consistency of game theory as following.

Game statics theory, also called classical game theory, is the mainstream of
game theory and centered around the concept — Nash equilibrium — established in
1950. Until 1987, human-subject game experiments (O’Neill, 1987) provided the first
illustration that laboratory human strategy behavior can be accurately captured
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using this concept. Since then, this game has been extensively repeated in various
experimental settings (Binmore et al., 2001; Okano, 2013). Based on this central
concept, human subject behavior game theory and experiments have become a
fruitful branch of academia (Camerer, 2003). As a result, game statics theory has
been widely applied in real-life policy designs (mechanism design) to achieve certain
social and economic objectives.

Game dynamics theory, which is based on evolutionary game theory, has been
less developed over the last 50 years. In the past ten years, important progress has
been made in the merging of theory and experiment (Cason et al., 2014; Wang
et al., 2014; Xu et al., 2014; Cason et al., 2021). However, theoretical inferences
and experimental measurements have failed to eliminate the constraints of two-
dimensional Euclidean space (e.g., the theoretical expectation is two-dimensional
(Cason et al., 2010; Xu et al., 2014; Cason et al., 2014; Wang et al., 2014) or
measured in two-dimensions (Cason et al., 2021)). There is little evidence to bridge
the gap between experiments and the theory of high-dimensional game dynamics.

Recently, it is found that the eigenmode (invariant manifold) plays a crucial role
in human subject game experiments (Wang and Yao, 2020). In O’Neill game exper-
iments, which state a space with eight dimensions (O’Neill, 1987; Binmore et al.,
2001; Okano, 2013), the dynamic pattern in the experiments can be accurately inter-
preted using the eigenmode of the game dynamics equations (Wang and Yao, 2020).
Guided by the replicator dynamics equations for the O’Neill game, the authors ap-
plied a complex eigenvector structure to interpret the dynamic structures in long-
existing human game experiment data. The logic chain, which is rooted in the
nonlinear dynamics theory (see Chapter 6 in Roussel, 2019), is as follows:

– For a given game, the game dynamics system can be expressed as a velocity
vector field as (Sandholm, 2010; Friedman and Sinervo, 2016)

ẋ = f(x), (1)

in which x ∈ RN and N is the dimension of the strategy space;
– The Nash equilibrium is a singular point of the vector field (a point where
ẋ = 0). In linear approximation, near the singular point, the dynamics can be
expressed as (Sandholm, 2010; Friedman and Sinervo, 2016)

ẋ = Jx,

in which J is the Jacobian (character matrix) at the singular point;
– Suppose that ξi is the eigenvector associated with the eigenvalue λi of the

diagonalizable J ; and suppose that an initial condition can be expressed as
x(0) =

∑N
i=1 aiξi. Then, the evolution trajectory can be expressed as

x(t) =

N∑
i=1

eλitaiξi. (2)

Here, the eigenvector ξi describes an eigen mode, which is a normal mode in an
oscillating system (which may have many components), wherein all parts of the
components are oscillating with the same frequency λi;

– If the system exists as an invariant manifold (eigen mode, a persist periodic obit,
and a persist loop), the manifold could be captured by a complex eigenvectors.
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For a given complex eigenvector, disregarding the dimension of the game, there
exists a measurement (constructed as an eigencycle set in theory and as angular
momentum in experiment time series) to identify the invariant manifold. Here,
the eigenvectors play the cruel role;

– Such that, a high dimension game dynamics structure is expected to be theo-
retically predictable and experimentally measurable.

By this logic chain, the fine dynamic structure in the existing data (O’Neill, 1987;
Binmore et al., 2001; Okano, 2013) has been reported (Wang and Yao, 2020).

1.2. Motivation and the game selection
This research seeks to show that the dynamic behavior in human subject game

experiments and game dynamics theory is consistent. Regarding the motivation and
game selection of this study, we consider the following points:

1. In the long-existing data (O’Neill, 1987; Binmore et al., 2001; Okano, 2013) of
the O’Neill game experiments, the high dimensional dynamics pattern meets the
theory incredibly well; however, the evidence is unique (Wang and Yao, 2020)1.
Is this consistency only a coincidence? We seek to solve this puzzle.

2. Regarding the game dynamics cyclic pattern, existing theoretical inferences and
experimental measurements have not eliminated the constraints of the Euclidean
two-dimensional space thus far (see Discussion 3.).

3. In game dynamics theory (Friedman and Sinervo, 2016; Sandholm, 2010), to
obtain a superplane cycle, the game state space must have three independent
variables. The candidate game is a one population four-strategy game, two pop-
ulation 2 + 3 strategy, or three population 2 + 2 + 2 game. For simplicity and
no loss of generality, we choose a symmetric four-strategy game.

Therefore, we limited ourselves to a superplane cyclic game to investigate consis-
tency between theory and experiments in the dynamic structure.

There exists a class of four-strategy games which being superplane cyclic in
theory in textbooks (Hofbauer et al., 1998; Sandholm, 2010). Exemple figures can
be seen in section ’9.2.2 Continuation of Attractors for Parameterized Games’ in
Sandholm, 2010. The payoff matrix is presented in Table 1. We denote the payoff

Table 1. The four-strategy matrix

s1 s2 s3 s4
s1 0 0 0 a
s2 1 0 0 0
s3 0 1 0 0
s4 0 0 1 0

matrix by A. The elements of matrix A(1, 4) are a. We define a as a positive number
and control a to test whether the dynamic structure is predictable and controllable.

1After our experiment, an independent experiment reports (Yao, 2021) similar results
as those found in the existing O’Neill game experiments (Wang and Yao, 2020). In this
experiment, which is a one population five-strategy symmetric game with a unique pair of
complex eigenvectors (eigen mode), the dynamics structure is also significantly consistent
with the expectation of evolutionary dynamics theory (Yao, 2021)
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In the state space (denoted by S), one by one, we assign (x1, x2, x3, x4) ∈ S
as the strategy probability of the strategy (s1, s2, s3, s4) used in the population.
Subsequently, at any time (t), the social state of the dynamic system must be a
point in the four-dimensional space S(x1, x2, x3, x4). In this four-dimensional space,
we can verify that the unique mixed-strategy Nash equilibrium is:

x∗ = (x∗1, x
∗
2, x

∗
3, x

∗
4) =

1

3a+ 1

(
a, a, a, 1

)
. (3)

These are the basic aspects of a game.
In Section 2, we report the results in three ways: (1) We deduce the theoretical

expectation from the eigensystem analysis; (2) we introduce the results of agent-
based simulations; and (3) we introduce the results from the human subject game
experiments. We then verify whether the theory and experiments are consistent. We
conclude the study in Section 4.

2. Results

2.1. Results from dynamics models
The eigen mode of the evolutionary dynamics To investigate dynamic be-
havior in a laboratory experiment game, we begin by using replicator dynamics
equations (Taylor and Jonker, 1978):

ẋi = xi(Ui − U), (4)

where xi is the ith strategy player probability in the population where the ith strat-
egy player is included, and ẋi denotes the evolution velocity of probability. Ui is the
payoff for the ith strategy player, and U is the average payoff for the full popula-
tion. This is a time-invariant, dynamic system. Suppose that the motion of strategy
vector x is close to equilibrium and the linear approximation of dynamic system
is validated. Then, we can obtain the eigensystem from the Jacobian (character
matrix) (Sandholm, 2010; Friedman and Sinervo, 2016).

The Jacobian at the unique mixed-strategy Nash equilibrium of the dynamics
in Eq. (4) can be calculated as follow:

J =
a

(3a+ 1)2


−2 a −2 a −a− 1 2 a2

a+ 1 −2 a −a− 1 −a (a+ 1)
−2 a a+ 1 −a− 1 −a (a+ 1)
−2 −2 2 −a− 1

 .

By the Jacobian, we can calculate the eigenvalues λ and their related eigenvector
v’s components (η1, η2, η3, η4) explicitly. The eigenvalues λ are

λ =
−a

3 a+ 1


i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 1

 . (5)

In dynamics system theory, this game is neutral because the maximum of the real
part of the eigenvalues is 0. That is, in the replicator dynamics hypothesis, there
exists a pair of purely imaginary eigenvalues; therefore, we will have center invariant
manifolds associated with these eigenvalues.
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Having the eigenvalue, we obtain the following related eigenvectors:

v =


1
4 (a− 1 + 3ai + i) 1

4 (a− 1− 3ai− i) 0 1
− 1

2 (a+ 1) − 1
2 (a+ 1) a 0

1
4 (a− 1− 3ai− i) 1

4 (a− 1 + 3ai + i) 0 1
1 1 1 0

 (6)

Note that there exists a pair of conjunction complex eigenvalues, and naturally,
their associated eigenvectors are pairs of conjunction complex eigenvectors. These
complex eigenvectors determine the dynamic structure of the game. Using the ex-
plicit expression of the eigenvector shown in Eq. (6), the eigencycle can be obtained
as follows.

The eigencycle and rotation axis Following the report (Wang and Yao, 2020),
for an N -dimensional dynamics system, an eigencycle is constructed by two compo-
nents (ηm, ηn) within a normalized eigenvector vi = (η1, ..., ηm, ..., ηn, ...ηN )T . The
eigencycle, denoted as σ(mn), is defined as follows:

σ(mn) = π · ||ηm|| · ||ηn|| · sin (arg(ηm)− arg(ηn)) , (7)

where superscript (mn) is the index of the two-dimensional subspace, while m and
n are the abscissa values and ordinate dimensions, respectively. ||ηm|| and arg(ηm)
indicate the amplitudes and a phase angle of η. σ(mn) determines the direction of
the eigencycle and the amplitude of the eigencycle. According to this formula, the
eigenvalues of the eigenvectors in Eqs. (6) are

σ =



1
2 (a+ 1) − 1

2 (a+ 1) 0 0
β −β 0 0
−1 1 0 0

1
2 (a+ 1) − 1

2 (a+ 1) 0 0
0 0 0 0
1 −1 0 0

 , (8)

where β = 5 a2+2a+1
6 a+2

[
sin
(
arg
(
a−1
4 − 3 a+1

4 i
)
− arg

(
a−1
4 + 3 a+1

4 i
)) ]

. Notably, (1)
for the eigencycle values, referring to a real eigenvalue, is zero because arg(ηm) is
equal to arg(ηn). In other words, the related eigenvector components showed no
phase differences. (2) The pair of the eigencycle set, which is associated with a
pair of complex conjunction eigenvectors, has opposite values. Interestingly, if we
disregard the value a, the following relationship holds:

σ24 = 0, (9)
σ14 = −σ34, (10)
σ12 = σ23. (11)

In section 2.2. on the results from human subject experiments, these relationships
(independent of the a relationship or the a-invariant relationship) are tested statis-
tically (see Figure 3).

Referring to the report (Wang and Yao, 2020), we interpret the eigencycle and
parameter selection for this study as follows:
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– Number of eigencycle: The number of the independent eigencycle in this
study is 6. Based on its definition, for an N -dimensional system, there are
N(N − 1)/2 independent eigencycles corresponding to a given N -component
normalized eigenvector, as there exist a total of N2 pairwise combinations of
each component in an N -dimensional eigenvector. Considering that the N self-
combinations of (ηm, ηm) are trivial (σ(mm) = 0), and (ηn, ηm) and (ηm, ηn) are
simply the reversed (σ(mn) = −σ(nm)), only N(N−1)/2 independent combina-
tions remain. Further, N = 4; hence, the number of the eigencycle is 6.

– Eigencycle set: In this study case, there is only one independent eigencycle
set (see the first column in the eigenvector matrix σ), as there is only one pair
of conjunction complex eigenvalues (see the first and second diagonal elements
of the eigenvalue matrix in λ). The associated complex eigenvector is a pair
of conjunction complex vectors (see first and second column of the eigenvector
matrix in v). The eigencycle set is defined to represent the set of N(N − 1)/2
eigencycle elements. The superscript (mn) is the index of the two-dimensional
subspace where the elements (eigencycles) of the set are located. (mn) is defined
as {{m,n} ∈ {1, 2, ..., n} ∩ (m < n)}. The assignment order is m from 1 to N
first, and then n from 2 to N .

– The parameter selection: As per the definition of the eigencycle, changing a
in the game matrix A will change the values of the six eigencycles. The results
are shown in Figure 1. We choose the parameters we do for the following rea-
sons: (1) To properly verify the real human subject experiments, the parameter
needs to be simple and understandable. (2) Various parameters require various
treatments, and the theoretical expectations will require significant differences
between the various treatments. As a result, we choose a = [1/4, 4] as the two
treatments as the focus of our investigation.

– Geometric presentation: Figure 2 illustrates the ideal cyclic motion of the
replicator dynamics (see Eq. (4)) for the game (see Table 1) with a = [1/4, 4]
near the Nash equilibrium. The geometric presentation of an eigencycle is sim-
ilar to (1:1)-Lissajous diagrams. In the (1:1)-Lissajous diagram, the amplitude
of two components can be arbitrary, but the amplitude of two components of
an eigencycle in a dynamic system at equilibrium is fixed and not arbitrary ow-
ing to the natural constrain of the eigenvector components. At the same time,
the eigencycle only depends on the internal components ηm and ηn, which be-
long to the unique complex eigenvector. Following the reference (Roussel, 2019),
the cycle can be regarded as the projection of the eigen-trajectory in the two-
dimensional Euclidean spaces.

The rotation axis can be used as a measurement for a four-strategy game because
the constraint condition of the state space of a one population game is

∑4
i=1 xi = 1.

Therefore, the trajectory of dynamic processes can be fully presented by three-
dimensional variables (x1, x2, x3). In this study, the rotation axis is a vector, de-
fined as the vector of the angular momentum. In other words, the rotation axis
vector components are defined as exactly equal to the angular momentum vector
components. An explanation of the definition of the measurement, as well as of the
calculation approach for the theoretical results, is shown in Appendix 4.5.

Using the procedure illustrated from Eq. (4) to Eq. (8), we can calculate the
Eigencycle values and the axis direction of a given dynamic equation system. In
addition to the replicator dynamics, which are labeled as [T1], we select the MS-
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Fig. 1. Theoretical prediction of the eigencycle value referring to a. For symmetric vis-
ibility, the horizon axis is scaled with the natural log function. These curves represent
the eigencycles values of the replicator dynamics shown in Eq. (4) for the four-strategy
(symmetric one population) game with the payoff matrix shown in Table 1. The left-most
and right-most dashed lines indicate the a = [1/4] and a = [4] conditions (treatment) that
we shall investigate in theory and experiments, respectively

replicator dynamics (labeled as [T2], and also called adaptive replicator dynamics)
and logit dynamics (also called noise best response dynamics). In logit dynamics,
to illustrate the dynamics pattern referring to the noise level, we select three noise
parameters ([0.001, 0.05, 300]) that are labeled as [T3, T4, T5].

In summary, the theoretical expectations can be calculated for the five dynamic
models (and parameters). The theoretical expectations for the Eigencycle set are
shown in Table 2 in the rows labeled as [T1, T2, T3, T4, T5]. The rotation axis vector
components of the theoretical expectations are listed in Table 3 in the rows labeled
[T1, T2, T3, T4, T5].

2.2. Results from human subject experiment
We conducted a laboratory game experiment with human subjects to investi-

gate the game dynamics structure. Two treatments were used in the experiment.
The parameters of a in the games were 1/4 and 4, respectively. Eight sessions were
conducted for each treatment. Each session includes a game repeated over 1,000 pe-
riods, with each lasting about 2.5 to 3 hours. The average payment for each subject
was RMB 150. Each session included six subjects. The game matching protocol was
random; in every period, the counterpart of a subject was randomly selected from
one of the other five subjects, which is the same as (Wang et al., 2014). The details
of the experimental protocol are provided in Appendix 4.2.

There were 8,000 rounds of time series for each of the two treatments. We use
the time series to measure the eigencycles and rotation axis direction for each of
the two treatments a = [1/4, 4].

– For the eigencycle set, the results of the human subject game experiments are
shown in Table 2 in the row labeled [E].

– For the rotation axis vector components, the results are shown in Table 3 in the
row labeled [E].
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Fig. 2. The geometric presentation of the eigencycle values σmn of the six two-dimensional
subspace. Results come from the replicator dynamics (see Eq. (4)) for the game (see
Table 1), in which left panel a = [1/4] and right panel a = [4]. The symbol × (blue in
electronic version) indicates the cycle is clockwise with negative value, and the symbol
+ (red in electronic version) indicates the cycle is counter-clockwise with positive value.
The relative value of the areas of the six cycles is the relative value of the six eigencycles.
The angular momentum Lmn measures the subspaces in the time series of the experiment
and should be proportional to the σmn value (the proof has been shown in the report
(Wang and Yao, 2020))

– As a response to the strict relationship of the independence of a shown in Eq.
(10) and Eq. (11), we show the relationship from the data in Figure 3. Obviously,
the relationships hold, with significance.

– As a response to the strict relationship of the independence of a shown in Eq. (9),
the statistical results show that the prediction cannot be rejected by data (ttest,
p=0.6029, sample size N=8 in a = 1/4 treatment; ttest, p=0.2239, sample size
N=8 in a = 4 treatment).

Fig. 3. The relationship of the independence of a between the observations. Scatter exper-
iment eigencycle values shown in the left panel support the relationship predicted in Eq.
(10), wherein the square indicates the a = 1/4 treatment and the cross indicates the a = 4
treatment. The scatter experiment eigencycle values shown in the right panel support the
relationship predicted in Eq. (11), wherein the cycle indicates the a = 1/4 treatment and
the diamond indicates the a = 4 treatment. Notice that, as each treatment includes eight
repeated sessions, each scattering has eight samples
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2.3. Results from agent-based simulation

To investigate the dynamic structure, we hope to obtain results from agent-
based reinforcement learning models. We use the agent-based evolutionary dynamics
(ABED) simulator (Izquierdo et al., 2019), which is widely used to study evolution-
ary game dynamics. The platform integrates various learning rules and matching
rules, covering the mainstream dynamics model of evolutionary dynamics. This is
an ideal platform to simulate the dynamics process for various models.

Table 2. The eigencycles of theory (T ), human experiment (E) and simulation (S)

σ12 σ13 σ14 σ23 σ24 σ34

E: Human Exp.
a=1/4 0.0046 0.0021 -0.0067 0.0042 0.0004 0.0063
a= 4 0.0070 -0.0024 -0.0047 0.0076 -0.0006 0.0053

S1: Replicator
a= 1/4 0.0004 0.0002 -0.0006 0.0004 0 0.0006
a= 4 0.0002 -0.0001 -0.0001 0.0002 0 0.0001

S2: MSReplicator
a= 1/4 0.0565 0.0073 -0.0639 0.0560 0.0005 0.0633
a= 4 0.0728 -0.0212 -0.0516 0.0723 0.0005 0.0511

S3: Logit[0.001]
a= 1/4 0.0023 0.0009 -0.0032 0.0026 -0.0003 0.0035
a= 4 0.0091 -0.0047 -0.0044 0.0089 0.0002 0.0042

S4: Logit[0.05]
a= 1/4 0.0021 0.0008 -0.0030 0.0025 -0.0003 0.0033
a= 4 0.0081 -0.0042 -0.0039 0.0079 0.0001 0.0037

S5: Logit[300]
a= 1/4 0.1735 -0.8947 0.7212 -0.7455 0.919 -1.6402
a= 4 1.5904 -0.4227 -1.1677 0.1526 1.4378 -0.2701

T1 Replicator
a= 1/4 0.4659 0.2795 -0.7454 0.4659 0 0.7454
a= 4 0.8653 -0.5192 -0.3461 0.8653 0 0.3461

T2 MSReplicator
a= 1/4 0.4659 0.2795 -0.7454 0.4659 0 0.7454
a= 4 0.8653 -0.5192 -0.3461 0.8653 0 0.3461

T3 Logit[0.001]
a= 1/4 0.4648 0.2809 -0.7457 0.4658 -0.0010 0.7467
a= 4 0.8662 -0.5202 -0.3461 0.8658 0.0004 0.3457

T4 Logit[0.05]
a= 1/4 0.4133 0.3160 -0.7292 0.4796 -0.0663 0.7957
a= 4 0.9072 -0.5527 -0.3547 0.8790 0.0284 0.3263

T5 Logit[300]
a= 1/4 0.5282 0.1730 -0.7012 0.7576 -0.2294 0.9306
a= 4 0.9455 -0.3220 -0.6234 0.7331 0.2123 0.4111

As mentioned above, there are five models (the replicator dynamics, which are
labeled as S1; MS-replicator dynamics, which are labeled as S2; and the three noise
parameter [0.001, 0.05, 300] logit dynamics models, labeled as S3, S4, and S5, re-
spectively) for the two (a− [1/4, 4]) treatments. Therefore, we used ten independent
simulation protocols. For each protocol, there were 105 rounds of time-series. We
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Table 3. The rotation axis vector components of theory (T ), human experiment (E) and
simulation (S)

Treatment a=1/4 a=4
Axis 1 3 2 1 3 2

Analytical
T1: Replicator -0.0212 -0.0212 0.0127 -0.0847 -0.0847 -0.0508
T2: MSReplicator -0.1483 -0.1483 0.089 -0.2754 -0.2754 -0.1653
T3: Logit[0.001] -0.0001 -0.0001 0.0001 -0.0004 -0.0004 -0.0002
T4: Logit[0.05] -0.2038 -0.1756 0.1342 -0.7953 -0.8209 -0.5
T5: Logit[300] -0.0001 -0.0001 0 -0.0001 -0.0002 -0.0001
Simulation
S1: Replicator -0.0004 -0.0004 0.0002 -0.0002 -0.0002 -0.0001
S2: MSReplicator -0.056 -0.0565 0.0073 -0.0723 -0.0728 -0.0212
S3: Logit[0.001] -0.0026 -0.0023 0.0009 -0.0089 -0.0091 -0.0047
S4: Logit[0.05] -246.2 -214.5 81.87 -790.9 -805.9 -417.8
S5: Logit[300] 0.7455 -0.1735 -0.8947 -0.1526 -1.5904 -0.4227
Human Exp.
E: mean -0.0042 -0.0046 0.0021 -0.0076 -0.007 -0.0024

used the time series to measure the eigenvalues and direction of the rotation axis.
The details of the simulation protocols are provided in Appendix 4.3..

Label the agent-based simulation with the protocol following the replicator dy-
namics setting as (S1), the MS replicator dynamics setting as (S2), and the logit
dynamics setting with noise parameter [0.001, 0.05, 300] as (S3, S4, S5); the results
are reported from the time series.

– For the eigencycle set, the results of the simulation are shown in Table 2 in the
rows labeled [S1, S2, S3, S4, S5].

– For the rotation axis vector components, the results are shown in Table 3 in the
rows labeled [S1, S2, S3, S4, S5].

2.4. Consistency of theory and experiment

The consistency of the dynamic structure between the experiment, theory, and
simulation were the central questions in this study. To answer this question, we
identified the dynamic structure by the eigencycle (the result is shown in 2) and
the direction of the rotation axis (the result is shown in 3). We now calculate the
correlation coefficients of the observations (the eigencycle set and direction of the
rotation axis) of the experiment, theory, and simulation to report the statistical
results on the consistency.

– Regarding the eigencycle measurement, the consistency between the theory and
experiment is significant. The supporting data with explanation are as follows.
• The data of the eigencycle set of the experiment, the five-theory model, and

five-agent based models simulation are shown in Table 2. We calculate the
correlation coefficients for the two treatments a = [1/4, 4], respectively. For
a = [1/4], the results are reported in Table 4; and for a = [4], the results
are reported in Table 5. For visibility, we strike out coefficients smaller than
0.900.
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• It is obvious that, except for extremely high noise conditions S5 and T5
(noise parameter is 300) of the logit dynamics model, the experiment and
theory and simulation are significantly consistent (ρ > 0.900, N = 6). Im-
portantly, the experiment results can be soundly interpreted by the models
in the a = [1/4] treatment (see the first column in Table 4) and in the a = [4]
treatment (see the first column in Table 5). The consistency of theory and
experiment is supported with strong significance (ρ > 0.950, N = 6).

• Figure 4 illustrates the relationship of the normalized theoretical and the
normalized experimental eigencycles for the two (a = [1/4, 4]) treatments.
By ordinary linear regression, the match between the theory and experiment
is significant (p = 0.000 for a = [1/4] treatment, p = 0.003 for a = [4]
treatment, the sample size of each treatment N = 6).

Fig. 4. Relationship of the normalized theoretical and the normalized experimental eigen-
cycles for the two (a = [1/4, 4]) treatments. The normalized theoretical eigencycles results
come from the replicator dynamics model T1. In the normalization, the six components
are divided by the root of the sum of their square. For T2, T3, T4 and S1, S2, S3, S4, the
relationship is similar

– Regarding the measurement of the rotation direction axis vector components,
the march between the theory and experiment is significant. The supporting
data are as follows:
• The rotation direction axis vector components of the experiment, the five-

theory model, and five-agent based models simulation are shown in Table 3.
We calculate the correlation coefficients for the two treatments a = [1/4, 4],
respectively. For a = [1/4], the results are reported in Table 8; and for
a = [4], the results are reported in Table 9. For visibility, we strike out
coefficients smaller than 0.900.
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• It is obvious that, except for extremely high noise conditions [S5, T5] (noise
parameter is 300) of the logit dynamics model, all the theory and simulation
are consistent. Importantly, the experiment results can be well interpreted
by the models in the a = [1/4] treatment (see the first column in Table 8)
and in the a = [4] treatment (see the first column in Table 9) in section 4.6.
of the Appendix.

In summary, these two measurements provide the same conclusion that, in gen-
eral, the game dynamics structure can be captured significantly by the game dy-
namics model in human subject game experiments.

Table 4. The correlation coefficients of the eigencycles of theory (T ), human experiment
(E), and simulation (S) for a = [1/4]

E S1 S2 S3 S4 S5 T1 T2 T3 T4 T5

E 1
S1 0.998 1
S2 0.980 0.979 1
S3 0.990 0.995 0.986 1
S4 0.988 0.993 0.986 1.000 1
S5 -0.697 -0.733 -0.640 -0.751 -0.755 1
T1 0.997 0.999 0.969 0.991 0.990 -0.748 1
T2 0.997 0.999 0.969 0.991 0.990 -0.748 1.000 1
T3 0.997 0.999 0.969 0.991 0.989 -0.749 1.000 1.000 1
T4 0.987 0.993 0.955 0.989 0.988 -0.804 0.996 0.996 0.996 1
T5 0.953 0.966 0.967 0.986 0.988 -0.801 0.960 0.960 0.960 0.968 1

Table 5. The correlation coefficients of eigencycles of theory (T ), human experiment (E),
and simulation (S) for a = [4]

E S1 S2 S3 S4 S5 T1 T2 T3 T4 T5

E 1
S1 0.980 1
S2 0.997 0.976 1
S3 0.973 0.999 0.971 1
S4 0.973 0.999 0.970 1.000 1
S5 0.482 0.552 0.546 0.568 0.566 1
T1 0.953 0.994 0.947 0.996 0.996 0.547 1
T2 0.953 0.994 0.947 0.996 0.996 0.547 1.000 1
T3 0.953 0.994 0.947 0.996 0.996 0.548 1.000 1.000 1
T4 0.944 0.991 0.940 0.994 0.995 0.570 0.999 0.999 0.999 1
T5 0.954 0.968 0.972 0.969 0.968 0.720 0.949 0.949 0.949 0.950 1

3. Discussion

This report illustrates that the dynamic behaviors in the human subject game
experiment and the game dynamics theory are consistent. The main contributions
of this study are as follows: (1) The non-Euclidean superplane cycle is confirmed for
the first time. (2) The report (Wang and Yao, 2020) of the findings from the O’Neill
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game (O’Neill, 1987; Binmore et al., 2001; Okano, 2013) is not a coincidence, but
also validates in the four-strategy game experiment case. (3) The characteristics of
the game dynamic cycle can be predictable, observable, and controllable in a human
game experiment.

Fig. 5. Matrix scatter plot of a sample evolutionary trajectory projected to the two-
dimensional subspace of the state space. The trajectory (time series) is generated by the
replicator dynamics equations with a random initial condition. It is obvious that, in the
so-called cycle, the closed period orbit is not in a Euclidean plane. In both treatments,
in the (x2, x4)-subspace, the projections of the orbit are not straight-lined segments, but
curved segments. The left and right panels are of treatment a = [1/4, 4], respectively

On related works. To our knowledge, the match of the theory and experiment
has not eliminated the constraints of the Euclidean two-dimensional space thus far.
The past ten years have seen quantitative matching between theory and experi-
ment on game dynamics, but of all published works, the theoretical expectations
are actuarial of the Euclidean two-dimension (Cason et al., 2010; Xu et al., 2014;
Cason et al., 2014; Wang et al., 2014). Even in four-strategy games experiments
(Cason et al., 2010; Van Huyck et al., 1999), the concerned cycles are in the Eu-
clidean plane. In the price dynamics cycle investigation, the price as a strategy is
continuous; however, the theoretical expectation and experimental measurement are
projected onto the Euclidean two-dimensional plane for verification (Cason et al.,
2021)).

The game selected in this study is a superplane (or twisted plane) and not an
ordinary two-dimensional Euclidean plane. This can be seen in Figure 5, wherein
the projection of the persistent cycle is not a straight-lined segment but a curved
one. Both a = [1/4, 4] treatments have the same performance. Therefore, we call
this cycle a superplane cycle.

On further work. In the human subject experiment, there exists a structural
difference between the experimental strategy distribution, which deviates from the-
oretical expectation show in Eq. (3). This is a puzzle. The details of the distribution
deviation observed in the experiments can be the thesis (Zhou, 2021). Second, the
axis or direction of rotation under different parameters can only be qualitatively
differentiated using angular momentum. Identifying the curve rate of the segment
(which is the theoretical expectation shown in Figure (5)) in this experiment was
unclear. Together, these issues are related to the consequences of the evolution tra-
jectory on the distribution of a game. Naturally, as a metaphor, further investigation
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into real strategy interaction systems would make game dynamics more accurate,
understandable, and applicable.

On dynamics structure control. We realize the control of the dynamics
structure by controlling the parameter a. This is different from the existing litera-
ture (Cason et al., 2010; Xu et al., 2014; Cason et al., 2014; Wang et al., 2014),
wherein the object of control is the eigenvalue for various stabilities. In this study,
the object of control was the eigenvector. We control the cycle structure by con-
trolling the payoff matrix element a. To our knowledge, this report provides a new
realization of the game mechanism design for dynamic structures. Control-by-design
is a critical issue not only in engineering but also in game theory, namely, mechanism
design.

Considering that the dynamic structure (eigenvector, invariant manifold, and
eigenmode) is associated with the business cycle in macroeconomics and microeco-
nomics (Schoonbeek, 1987; Iyetomi et al., 2020), the control of a dynamic struc-
ture is not a trivial issue. During this study, we noticed that using the five-strategy
game (Wang and Yao, 2020) experiments as the benchmark and the pole assign-
ment approach in modern game theory (which is a state-dependent closed-loop
feedback design), the control of the dynamic structure was proved to be significant
(Wang, 2022). Noticeably, when we change the control variable a of the game, the
dynamic structure changes along with the equilibrium of the game as well. Alterna-
tively, in a closed-loop feedback control (Wang, 2022), when the dynamic structure
changes, the equilibrium does not change. At the same time, no additional financing
is required during the control process.

4. Appendix

The methods used in this study include the following: (1) five-game dynamic
system equations, (2) agent-based simulation of evolutionary game dynamics, and
(3) laboratory human subject game experiment. Simultaneously, in the measure-
ment, we used (1) the direction of the axis of rotation and (2) the eigencycle. In
this section, we describe these methods in detail.

4.1. The five-game dynamics models
There are five models (dynamic system equations) with the parameters applied

to illustrate the match between theory and experiments. They are the (1) replicator
dynamics, labeled as [T1] in the main text; (2) MS-replicator dynamics, which are
labeled as [T2] in the main text; and (3) logit dynamics (also called noise best
response dynamics). In logit models, we select three noise parameters ([0.001, 0.05,
300]), which are labeled [T3, T4, T5] in the main text. The dynamic equations are
presented as follows:

– Replicator Dynamics
ẋi = xi(Ui − U), (12)

where ẋi is the velocity of the proportion growth of the population using ith
strategy, Ui is the payoff of an agent in the population using ith strategy, and
U indicates the mean payoff of the population. In the main text, this model is
denoted as [T1]. For one population symmetric game with payoff matrix A, we
have

Ui =

N∑
j=1

Aijxj (13)
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and

U =

N∑
i=1

xiUi. (14)

– MS replicator dynamics are the adjusted replicator dynamics.

ẋi =
xi(Ui − U)

U
, (15)

where ẋi is the velocity of the population using i, Ui is the payoff of an agent
in the population i, and U indicates the mean payoff in the population. For the
algorithm for Ui and U , see Eq. (13) and Eq. (14). In the main text, this model
is denoted as [T2].

– Logit dynamics is the noise best response model.

ẋi =
exp(λUi)∑N
j=1 exp(λUj)

− xi, (16)

where λ is the noise parameter, ẋi is the velocity of the population using i, and
Ui is the payoff of an agent in the population i. For the algorithm for Ui, see Eq.
(13). In the main text, [T3, T4, T5] relates to the λ = [0.001, 0.05, 300] condition,
respectively.

4.2. Human subject game experiment protocol
The experiment was approved by the Experimental Social Science Laboratory of

Zhejiang University. The data for the controlled treatment (a = [1/4, 4]-Treatment)
are from the experiment conducted from November to December 2020. The authors
confirm that this experiment was performed in accordance with the approved social
experiment guidelines and regulations, which follow the regulation of the experi-
mental economics protocol (Camerer, 2003).

In total, 96 undergraduate and graduate students of Zhejiang University volun-
teered to serve as the human subjects of this experiment. Students were recruited
openly through a web registration system.

The 96 human subjects (also called players) were distributed into 16 popula-
tions of equal sizes, with N = 6. The six players of each population carried one
experimental session (see the session organization table). During the game process,
the players sat separately in a classroom laboratory, each facing a computer screen.
They were not allowed to communicate with each other during the experimental
session. Written instructions were handed out to each player and the rules of the
experiment were explained orally by an experimental instructor. The rules of the
experimental session were as follows:

1. Each player plays the four-strategy game repeatedly with the same other five
players.

2. Each player earns virtual points during the experimental session according to
the payoff matrix shown in the written instruction.

3. In each game round, each player competes with one player and the other five
players as the opponent.

4. Each player has to make a choice among the four candidate actions“, “x1”“,”
“x2”“,” “x3”“,” and “x4”.” If this time runs out, the player has to make a choice
immediately. After a choice has been made, it cannot be changed.
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Fig. 6. The screenshot of the user interface in human subject game experiment. The left
panel is an example. The subject ID is T001, whose history information is at the 999th

round in the top. The current round’s strategy options are at the bottom. The right panel
is the English translation of the left

Table 6. The experiment session organization

a=1/4 a=4
SessionID Date Subjects Period SessionID Date Subjects Period
01121A251 20201121 6 1000 01122A441 20201122 6 1000
01121A252 20201121 6 1000 01122A442 20201122 6 1000
01122A253 20201122 6 1000 01128A443 20201128 6 1000
01122A254 20201122 6 1000 01128A444 20201128 6 1000
01128A255 20201128 6 1000 01129A445 20201129 6 1000
01129A256 20201129 6 1000 01129A446 20201129 6 1000
01219A258 20201219 6 1000 01219A448 20201219 6 1000
01227A250 20201227 6 1000 01228A449 20201228 6 1000

During the experimental session, each player’s computer screen displayed an
information window and a decision window. The window on the left side of the
computer screen is the information window. The upper panel of this information
window shows the current game round, the time limit (40 s in controlled (a =
[1/4, 4]-Treatment)) for making a choice, and the time left to make a choice. The
upper panel turns green at the start of each game round. After all players have made
their decisions, the lower panel of the information window shows the player’s own
choice, opponent strategy, and payoff in this game round on the screen. The player’s
accumulated payoff is also shown. The players were asked to record their choices
for each round on the record sheet in some rounds for checking. Each session lasts
2.5–3 hours, with more than 1,000 period records per session. For each a = [1/4, 4]
treatment, eight sessions were repeated. Thus, we had 8,000 records in the time
series for each treatment.

The window on the right side of the computer screen is the decision window. It
is activated only after all players in the group have made their choices. The upper
panel of this decision window lists the current game round, while the lower panel
lists the four candidate actions “(“x1”“,” “x2”“,” “x3”“”,” and “x4”) horizontally from
left to right. The player can choose by clicking on the corresponding action names.

The reward for each player is determined by the rank, which is determined by
the total number of earning points in the experimental sessions. From the highest
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to the lowest, each player is paid RMB 275, RMB 225, RMB 175, RMB 125, RMB
75, and RMB 25 in the controlled treatments.

4.3. Agent-based evolutionary dynamics simulation protocol
Reinforcement learning theory is a branch of gaming theory. Agent-based evo-

lutionary dynamics simulation is an approach for understanding the consequences
of reinforcement learning theory. The computer simulation method to evaluate the
consistency of the theory and experiment is introduced as follows.

1. Select simulation platform. We use abed simulator (Izquierdo et al., 2019),
which is widely used in the field to study evolutionary game dynamics. The
platform has integrated various learning rules and matching rules and has cov-
ered the mainstream dynamics model of evolutionary dynamics, which is an
ideal platform to simulate the dynamic process. The platform is a long-running,
repeated game setting in finite populations.

2. Setting parameters. The parameter settings for the five simulations are listed
in Table 7. The authors carefully classified (approximate) equivalence between
the dynamic evolutionary equations and parameter settings for simulation. For
example, for the replicator dynamics model, the simulation is under imitative
protocols in which candidates are agents; meanwhile, the decision method is a
pairwise comparison of the strategy payoff. Complete matching was performed.
These settings follow the user guide of the platform, which the system performs
as replicator dynamics, as shown in Eq. (4), for a large population (1,000 agents)
and a low reversion probability (1%) limit.

3. Conducting the simulation. In our case study, for each of the five models and
each of the treatments investigated, we ran a 1M period simulation. The time
cost for each run of the simulation of a given parameter set was approximately
30 min on a desktop personal computer with a CPU of 8 GHz and a memory
of 16 GB.

4. Analysis of the time series. The main outcome of the simulator is the time
series. The time series, including the strategy density and their payoffs, can be
the output from the platform. These can be used to evaluate the performance
of the controller-by-design, for example, fluctuation as well as the efficiency,
profits, or social welfare evolution over time.

4.4. Angular momentum as the measurement
According to the theoretical eigencycle set decomposition approach, we can per-

form cyclic angular momentum measurements in each of the two-dimensional sub-
space, indicated by the eigencycle Ω(mn). Angular momentum L

(mn)
E (Wang et al.,

2017) can be expressed by the following formula:

Lmn
E =

1

N − 1

N−1∑
t=1

(x(t)−O)× (x(t+1)− x(t)) . (17)

– L
(mn)
E represents the average value of the accumulated angular momentum over

time; the subscript mn indexes the two-dimensional (xm, xn) subspace;
– N is the length of the experimental time series, that is, the total number of

repetitions of the repeated game experiments;
– O is the projection of the Nash equilibrium at the subspace Ω(m,n);
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Table 7. The parameter setting for the five models’ simulations

Parameter Replicator [S1] MS-Replicator [S2] Logit [S3, S4, S5]

payoff-matrix [[ 0 0 0 4 ] as left as left
[ 1 0 0 0 ]
[ 0 1 0 0 ]
[ 0 0 1 0 ]]

n-of-agents 1000 1000 1000
random-initial-condition? FALSE FALSE FALSE

initial-condition [250 250 250 250] [250 250 250 250] [250 250 250 250]
candidate-selection imitative imitative imitative

n-of-candidates 2 2 2
decision-method pairwise- positive- logit

difference proportional
complete-matching? TRUE TRUE TRUE

n-of-trials 999 999 999
single-sample? TRUE TRUE TRUE

tie-breaker uniform uniform uniform
log-noise-level 0 0 0.001 S3

0 0 0.05 S4

0 0 300 S5

use-prob-revision? TRUE TRUE TRUE
prob-revision 0.2 0.2 0.2

n-of-revisions-per-tick 500 500 500
prob-mutation 0.002 0.002 0.002

trials-with- replacement? FALSE FALSE FALSE
self-matching? FALSE FALSE FALSE

imitatees-with- replacement? FALSE FALSE FALSE
consider-imitating-self? FALSE FALSE FALSE

plot-every-?-secs 2 2 2
duration-of-recent 10 10 10

show-recent-history? TRUE TRUE TRUE
show-complete-history? TRUE TRUE TRUE

– x(t) is a two-dimensional vector at time t which can be expressed as (xm(t), xn(t)),
and x(t+ 1) is at time t+ 1;

– × represents the cross product between two two-dimensional vectors.

This measurement can also be called the signed area of the the triangle∆[O,x(t),x(t+1)]

in the (m,n) two-dimensional subspace. For each transition from x(t) to x(t + 1)
referring to O, The angular momentum was twice that of the signed area of the tri-
angle. We suggest using the concept of angular momentum as follows: as it contains
mass as a parameter, which may be compatible with the population size N as a
variable in further investigations of game dynamics.

4.5. Rotation axis as the measurement
The axis of rotation is the direction of the three-dimensional angular momen-

tum. Considering
∑4

i=1 xi = 1, we ignore x4 and let (x1, x2, x3) be an independent
variable. Thus, this turns out to be a three-dimensional issue. The angular momen-
tum is the area swept by a vector per unit time. In the case of a two-dimensional
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motion, the direction was perpendicular to the two-dimensional plane. To better
observe the direction of the axis in the three-dimensional space, the first-, third-,
and second-dimensional components of the eigenvectors are selected for calculation,
and the obtained angular momentum is a three-dimensional vector. Selecting com-
ponents 1, 3, and 2 for the theoretical calculation corresponds to the simulation
data analysis and graphical analysis. Strategy 1 was set as the x-axis, Strategy 3 as
the y-axis, and Strategy 2 as the z-axis. The formula for the theoretical calculation
of angular momentum is as follows: (Zhou, 2021):

L =
1

T

∫ T

0

ℜ(x(t))×ℜ(v(t)) dt, (18)

where x(t) is the strategy vector x at time t, v(t) is the instantaneous speed of
observation x(t), ℜ is the real part, × is the cross-multiplication, and L is the mean
angular momentum between times [0, T ]. The theoretical analytical results of the
axis of rotation use eigenvector components to calculate angular momentum. For
each model, an arbitrarily small (e.g., 10−5) deviates from the Nash equilibrium
and selects T −→ ∞. It is easy to prove that this measurement is equivalent to
the angular momentum measurement in Eq. (17), which can be applied to the
measurements with simulation and experimental time series.

4.6. Additional statistic test
This section provides supplementary information on the statistical results for

the main text in Section 2.4., which shows the consistency of the theory and the
experiment by the measurement of the rotation direction axis vector component.

– Table 8 shows the correlation coefficients of the rotation axis for a = [1/4];
– Table 9 shows the correlation coefficients of the rotation axis for a = [4].

As shown in Table 3 in the main text, E indicates the human subject experiment;
Ti (i ∈ [1, 2, ..., 5]) indicates the five theoretical models; Si (i ∈ [1, 2, ..., 5]) indi-
cates the five-agent based simulation, respectively; for visibility, we strike out the
coefficients that have relatively smaller values. This supports the results shown in
the main text that, except for the models with extremely high noise parameters
([S5, T5]), the theory and experiment are consistent.

Table 8. The correlation coefficients of the rotation axis for a = [1/4]

T1 T2 T3 T4 T5 S1 S2 S3 S4 S5 E

T1 1
T2 1.000 1
T3 1.000 1.000 1
T4 0.997 0.997 0.997 1
T5 1.000 1.000 1.000 0.997 1
S1 1.000 1.000 1.000 0.997 1.000 1
S2 1.000 1.000 1.000 0.997 1.000 1.000 1
S3 0.997 0.997 0.997 1.000 0.997 0.997 0.996 1
S4 0.996 0.996 0.996 1.000 0.996 0.996 0.996 1.000 1
S5 -0.829 -0.829 -0.829 -0.869 -0.829 -0.829 -0.825 -0.870 -0.875 1
E 0.999 0.999 0.999 0.992 0.999 0.999 0.999 0.991 0.990 -0.798 1
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Table 9. The correlation coefficients of the rotation axis for a = [4]

T1 T2 T3 T4 T5 S1 S2 S3 S4 S5 E

T1 1
T2 1.000 1
T3 1.000 1.000 1
T4 0.997 0.997 0.997 1
T5 0.500 0.500 0.500 0.561 1
S1 1.000 1.000 1.000 0.997 0.500 1
S2 1.000 1.000 1.000 0.998 0.507 1.000 1
S3 0.999 0.999 0.999 1.000 0.534 0.999 0.999 1
S4 0.999 0.999 0.999 0.999 0.529 0.999 1.000 1.000 1
S5 0.339 0.339 0.339 0.406 0.984 0.339 0.347 0.377 0.371 1
E 0.994 0.994 0.994 0.984 0.406 0.994 0.993 0.989 0.990 0.238 1
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