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Abstract An empirically meaningful theory of dynamic games has to incor-
porate real-life phenomena. Durable strategies, which effects last for a period 
of time, are prevalent in real-life situations. Revenue generating investments, 
toxic waste disposal and purchase of durable goods are common examples of 
durable strategies. This paper first p rovides a  r eview on durable-strategies 
dynamic game theory. A practically relevant advancement – random hori-
zon durable-strategies dynamic games - yielding novel results in durable-
strategies dynamic games theory is then presented. Dynamic optimization 
theorem, game formulations and HJB equations are derived. An illustra-
tive example is provided. The theory and solution mechanism of durable-
strategies cooperative dynamic games are also discussed.
Keywords: dynamic game, durable-strategies, random horizon.

1. Introduction

Durable strategies that have effects lasting over a certain period of time are
prevalent in real-life situations. Revenue generating investments, toxic waste dis-
posal, durable goods, emission of pollutants, regulatory measures, coalition agree-
ments, diffusion of knowledge, advertisement and investments to build up physical
capital are vivid examples of the many durable strategies. Durable strategies may
affect both the decision-makers’ payoffs and the evolution of the state dynamics.

This paper first provides a review on durable-strategies dynamic game theory.
A practically relevant advancement yielding novel results in durable-strategies dy-
namic games theory is presented. In particular, random horizon, which is common
in many real-life games, is incorporated. Random horizon dynamic optimization
theorem under durable strategies is derived. game formulations and HJB equa-
tions are derived. Durable-strategies cooperative dynamic games and their solution
mechanism are examined. Dynamically stable imputation procedures are presented.
Section 2 provides the setting and solution techniques of durable-strategies dynamic
games. Section 3 presents an analysis on random horizon durable-strategies dynamic
games. Section 4 considers durable-strategies cooperative dynamic games and the
corresponding solution mechanism and dynamically stable imputation distribution
procedures.

2. Durable-strategies Dynamic Games – Setting and Solution

In this Section, we first provide a solution theorem of dynamic optimization.
Then, a general class of non-cooperative dynamic game with durable strategies and
a theorem characterizing the equilibrium game solution are provided.
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grants No. 99-01-00146 and No. 96-15-96245.
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2.1. Dynamic Optimization under Durable-strategies

Consider a general T -stage dynamic optimization problem in which there exist
non-durable strategies and durable strategies of different lag durations. They may
affect the payoff, the state dynamics or both. We use uk ∈ U ⊂ Rm to denote the
set of non-durable control strategies. We use uk = (u

(2)
k , u

(3)
k , · · · , u(ω)

k ) to denote
the set of durable control strategies, where u(ζ)k ∈ U

ζ ⊂ Rmζ for ζ ∈ {2, 3, · · · , ω}.
In particular, the strategies u(2)k are durable strategies that have effects in stages k
and k + 1. The strategies u(3)k are durable strategies that have effects within stages
k, k+1 and k+2. The strategies u(ω)

k are durable strategies that have effects within
the duration from stages k to stage k + ω − 1. The single-stage payoff received in
stage k can then be expressed as gk(xk, uk, uk;uk−), where xk ∈ X ⊂ Rm is the
state at stage k, and uk− is the set of durable controls which are executed before
stage k but still in effect in stage k.

The state dynamics is

xk+1 = fk(xk, uk, uk;uk−), x1 = x01. (1)

The payoff to be maximized becomes

T∑
k=1

gk(xk, uk, uk;uk−)δ
k
1 + qT+1(xk+1;u(T+1)−)δ

T+1
1 , (2)

where qT+1(xk+1;u(T+1)−) is the terminal payoff at stage T+1 and δk1 is the discount
factor from stage 1 to stage k.

The controls executed before the start of the operation in stage 1, that is u1− ,
are known and some or all of them can be zeros. The functions gk(xk, uk, uk;uk−),
fk(xk, uk, uk;uk−) and qT+1(xk+1;u(T+1)−) are differentiable functions.

A solution theorem for obtaining the optimal control strategies in the dynamic
optimization problem (1)–(2) can be characterized as follows.

Theorem 1 (Durable-strategies Dynamic Optimization). Let V (k, x;uk−)
be the maximal value of the payoff

T∑
t=k

gt(xt, ut, ut;ut−)δ
t
1 + qT+1(xT+1;u(T+1)−)δ

T+1
1

for problem (1)–(2) starting at stage k with state xk = x and previously executed
controls uk−, then the function V (k, x;uk−) satisfies the following system of recur-
sive equations:

V (T + 1, x;u(T+1)−) = qT+1(xT+1;u(T+1)−)δ
T+1
1 , (3)

V (k, x;uk−) = max
uk,uk

{gk(xk, uk, uk;uk−)δk1 + V [k + 1, fk(x, uk, uk;uk−);u(k+1)−]}

= max
uk,uk

{gk (xk, uk, uk;uk−)δ
k
1 + V [k + 1, fk(x, uk, uk;uk−);uk, u(k+1)− ∩ uk−]},

for k ∈ {1, 2, · · · , T}. (4)
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Proof. To prove Theorem 1, we adopt the technique of backward induction. Consider
first the last operational stage T , invoking Theorem 1 we have

V (T, x;uT−) = max
uT ,uT

{gT (xT , uT , uT ;uT−)δ
T
1 + qT+1[fT (x, uT , uT ;uT−);u(T+1)−]}

= max
uT ,uT

{gT (xT , uT , uT ;uT−)δ
T
1 + qT+1[fT (x, uT , uT ;uT−);u(T+1)− ∩ uT−]}. (5)

The maximization operator in stage T involves uT and uT only, and u(T+1)− ∩
uT− is a subset of uT−. The current state x and the previously executed controls
uT− appear in the stage T maximization problem as given parameters. If the first
order conditions of the maximization problem in (5) satisfy the implicit function
theorem, one can obtain the optimal controls uT and uT as functions of x and
uT−. Substituting these optimal controls into the function on the RHS of (5) yields
the function V (T, x;uT−), which satisfies the optimal conditions of a maximum for
given x and uT−.

Consider the second last operational stage T − 1, using V (T, x;uT−) derived
from (5) and invoking Theorem 1 we have

V (T − 1, x;u(T−1)−) = max
uT−1,uT−1

{gT−1(x, uT−1, uT−1;u(T−1)−)δ
T−1
1

+V [T, fT−1(x, uT−1, uT−1;u(T−1)−);uT−]}
= max

uT−1,uT−1

{gT−1(x, uT−1, uT−1;u(T−1)−)δ
T−1
1

+V [T, fT−1(x, uT−1, uT−1;u(T−1)−);uT−1, uT− ∩ u(T−1)−]}.(6)

The maximization operator in stage T − 1 involves uT−1 and uT−1. The current
state x and the previously executed controls u(T−1)− appear in the stage T − 1
maximization problem as given parameters. If the first order conditions of the max-
imization problem in (6) satisfy the implicit function theorem, one can obtain the
optimal controls uT−1 and uT−1 as functions of x and previously determined con-
trols u(T−1)−. Substituting these optimal controls into the function on the RHS of
(6) yields the function V (T − 1, x;u(T−1)−).

Now consider stage k ∈ {T − 2, T − 3, · · · , 2, 1}, invoking Theorem 1 we have

V (k, x;uk−) = max
uk,uk

{gk(x, uk, uk;uk−)δk1

+V [k + 1, fk(x, uk, uk;uk−);u(k+1)−]}
= max

uk,uk

{gk(x, uk, uk;uk−)δk1

+V [k + 1, fk(x, uk, uk;uk−);uk, u(k+1)−,∩uk−]}. (7)

The maximization operator involves uk and uk. Again, the current state x and
the previously executed controls uk− appear in the stage k optimization problem.
If the first order conditions of the maximization problem in (7) satisfy the implicit
function theorem, one can obtain the optimal controls uk and uk as functions of x
and uk−. Substituting these optimal controls into the function on the RHS of (7)
yields the function V (k, x;uk−) . ⊓⊔
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Theorem 1 yields a new optimization technique which can be used to solve
durable control problems with lagged strategies in the payoff and state dynamics of
the decision-maker. It is worth noting that both the current state xk and previously
executed controls uk− appear as given in the stage k optimization problem. While
the state variables xk have transition equations governing their transition from one
stage to another, the previously executed controls uk− have no such equations of
motion.

2.2. Game Formulation

Consider a T -stage n-player nonzero-sum discrete-time non-cooperative dynamic
game with durable and nondurable strategies affecting the players’ payoffs and the
state dynamics. We use uik ∈ U i ⊂ Rmi

to denote the set of non-durable control
strategies of player i. We use uik = (u

(2)i
k , u

(3)i
k , · · · , u(ω)i

k ) to denote the set of
durable strategies of player i, where u(ζ)ik ∈ U (ζ)i ⊂ Rm(ζ)i for ζ ∈ {2, 3, · · · , ωi}. In
particular, u(2)ik are non-durable strategies that have effects in stages k and k + 1.
The strategies u(3)ik are durable strategies that have effects within stage k to stage
k + 2. The strategies u(ω)i

k are durable strategies that have effects within stages
k, k + 1, · · · , k + ω − 1. The state at stage k is xk ∈ X ⊂ Rm, and the state space
is common for all players. The single-stage payoff of player i in stage k is

gik(x, uk, uk;uk−), for k ∈ {1, 2, · · · , T} and i ∈ {1, 2, · · · , n} ≡ N,

where uk = (u1k, u
2
k, . . . , u

n
k ) is the set of durable strategies of all the n players,

uk = (u1k, u
2
k, ..., u

n
k ) is the set of durable strategies of all the n players, and uk− =

(u1k−, u
2
k−, . . . , u

n
k−) is the set of strategies which are executed before stage k by all

players but still in effect in stage k.
The payoff of player i is:

T∑
k=1

gik(xk, uk, uk;uk−)δ
k
1 + qiT+1(xT+1;u(T+1)−)δ

T+1
1 , (8)

where qiT+1(xT+1;u(T+1)−) is the terminal payoff of player i.
The state dynamics is characterized by a vector of difference equations:

xk+1 = fk(xk, uk, uk;uk−), x1 = x01, (9)

for k ∈ {1, 2, · · · , T}.
The controls executed before the start of the operation in stage 1, that is

u1−, are known and some or all of them can be zeros. The gik(xk, uk, uk;uk−),
fk(xk, uk, uk;uk−) and qiT+1(xT+1;u(T+1)−) are continuously differentiable func-
tions.

The information set of every player includes the knowledge in
(i) all the possible moves by himself and other players, that is uik and uik, for

k ∈ {1, 2, · · · , T} and i ∈ N ;
(ii) the set of controls which are executed before stage k by all players but still

in effect in stage k, that is uk− = (u1k−, u
2
k−, ..., u

n
k−), for k ∈ {1, 2, · · · , T};
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(iii) the payoff functions of all players, that is

T∑
k=1

gik(xk, uk, uk;uk−)δ
k
1 + qiT+1(xT+1;u(T+1)−)δ

T+1
1 ,

for i ∈ N ; and
(iv) the state dynamics xk+1 = fk(xk, uk, uk;uk−) and the values of present and

past states (xk, xk−1, ..., x1).

2.3. Game Equilibria
We then characterizes the non-cooperative payoffs of the players in a feed-back

Nash equilibrium of the durable-strategies dynamic game (8)–(9) as follow.

Theorem 2. Let {u∗∗k , u∗∗k } be the set of feedback Nash equilibrium strategies and
V i(k, x;u∗∗k−) be the feedback Nash equilibrium payoff of player i at stage k in the
non-cooperative dynamic game (8)–(9), then the function V i(k, x;u∗∗k−) satisfies the
following recursive equations:

V i(T + 1, x;u∗∗(T+1)−) = qiT+1(x;u
∗∗
(T+1)−)δ

T+1
1 ; (10)

V i(k, x;u∗∗k−) = max
ui
k,u

i
k

{gik(x, uik, uik, u
∗∗( ̸=i)
k− , u

∗∗(̸=i)
k− ;u∗∗k−)δ

k
1

+V i[k + 1, fk (x, uik, u
i
k, u

∗∗(̸=i)
k− , u

∗∗( ̸=i)
k− ;u∗∗k−);u

i
k, u

∗∗( ̸=i)
k , u∗∗(k+1)− ∩ u∗∗k−]}, (11)

for k ∈ {1, 2, · · · , T} and i ∈ N, where
u
∗∗(̸=i)
k = (u1∗∗k , u2∗∗k , ..., ui−1∗∗

k , ui+1∗∗
k , ..., un∗∗k ), and

u
∗∗(̸=i)
k = (u1∗∗k , u2∗∗k , ..., ui−1∗∗

k , ui+1∗∗
k , ..., un∗∗k ).

Proof. Conditions (10)–(11) show that V i(k, x;u∗∗k−) is the maximized payoff of
player i ∈ N according to Theorem 1 given the game equilibrium strategies of the
other n− 1 players. Hence a Nash equilibrium results. ⊓⊔

System (10)–(11) can be regarded as the Hamilton-Jacobi-Bellman equations
for durable-strategies dynamic games. Worth-noting is that this class of games can-
not be handled by the standard approach of dynamic programming. Given the
prevalence of durable strategies in real-life game situation, durable-strategies dy-
namic games yield a wide scope of applications in many practical scenarios. For
instance, technology innovation under knowledge diffusion over time, long-lasting
pollution-generating effects in global environmental management, advertising cam-
paigns with lagged effects, oligopoly competition with investments requiring several
stages to be converted into productive physical capital, business transactions involv-
ing payment by instalments. Applications can also be readily made by constructing
relevant dynamic game counterparts with durable strategies in marketing games
from (Jorgensen and Zaccour, 2004), in economics games from (Long, 2010), in var-
ious dynamic games from (Basar and Zaccour, 2018), and in economic optimizations
from (Yeung and Petrosyan, 2012).
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3. Random Horizon Durable Strategies Dynamic Games

In this section, we first formulate a general class of random horizon dynamic
games with durable strategies. Then, we characterize the non-cooperative game
equilibrium. Finally, we present an illustrative example.

3.1. Game Formulation
Consider the n-person dynamic game with T̂ stages where T̂ is a random vari-

able with range {1, 2, · · · , T} and corresponding probabilities {θ1, θ2, · · · , θT }. Con-
ditional upon the reaching of stage τ , the probability of the game would last up to
stages τ, τ + 1, · · · , T becomes respectively

θτ
T∑

ζ=τ

θζ

,
θτ+1

T∑
ζ=τ

θζ

, ...,
θT
T∑

ζ=τ

θζ

.

There exist durable and nondurable strategies affecting the players’ payoffs and
the state dynamics. We use uik ∈ U i ⊂ Rmi

to denote the set of non-durable control
strategies of player i. We use uik = (u

(2)i
k , u

(3)i
k , · · · , u(ωi)i

k ) to denote the set of
durable strategies of player i, where u(ζ)ik ∈ U

(ζ)i ⊂ Rm(ζ)i for ζ ∈ {2, 3, · · · , ωi}. In
particular, u(2)ik are non-durable strategies that have effects in stages k and k + 1.
The strategies u(3)ik are durable strategies that have effects within stage k to stage
k + 2. The strategies u(ωi)i

k are durable strategies that have effects within stages
k, k + 1, · · · , k + ω − 1. The state at stage k is xk ∈ X ⊂ Rm, and the state space
is common for all players. The single-stage payoff of player i in stage k is

gik(xk, uk, uk;uk−), for k ∈ {1, 2, · · · , T} and i ∈ {1, 2, · · · , n} ≡ N,

where uk = (u1k, u
2
k, . . . , u

n
k ) is the set of durable strategies of all the n players,

uk = (u1k, u
2
k, . . . , u

n
k ) is the set of durable strategies of all the n players, and uk− =

(u1k−, u
2
k−, . . . , u

n
k−) is the set of strategies which are executed before stage k by all

players but still in effect in stage k.
If the game ends after stage T̂ , player i will receive a terminal payment

qi
T̂+1

(xT̂+1;u(T̂+1)−) in stage T + 1, which can be zero, positive (a salvage value)
or negative (a penalty).

The expected payoff of player i is

E{
T̂∑

k=1

gik(xk, uk, uk;uk−)δ
k
1 + qi

T̂+1
(xT̂+1;u(T̂+1)−)δ

T̂+1
1 }

=

T∑
T̂=1

θT̂ {
T̂∑

k=1

gik(xk, uk, uk;uk−)δ
k
1 + qi

T̂+1
(xT̂+1;u(T̂+1)−)δ

T̂+1
1 }, (12)

for i ∈ N , where δk1 is the discount factor from stage 1 to stage k.

The state dynamics is characterized by a vector of difference equations:

xk+1 = fk(xk, uk, uk;uk−), x1 = x01, (13)
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for k ∈ {1, 2, · · · , T}.

The controls executed before the start of the operation in stage 1, that is
u1−, are known and some or all of them can be zeros. The gik(xk, uk, uk;uk−),
f ik(xk, uk, uk;uk−) and qi

T̂+1
(xT̂+1;u(T̂+1)−) are continuously differentiable func-

tions.
Now consider the case when stage τ has arrived with the state being xτ and

the previously executed durable strategies uτ−. Then it becomes a game in which
the payoff of player i is

E{
T̂∑

k=τ

gik(xk, uk, uk;uk−)δ
k
1 + qi

T̂+1
(xT̂+1;u(T̂+1)−)δ

T̂+1
1 }

=

T∑
T̂=τ

θT̂
T∑

ζ=τ

θζ

{
T̂∑

k=τ

gik(xk, uk, uk;uk−)δ
k
1 + qi

T̂+1
(xT̂+1;u(T̂+1)−)δ

T̂+1
1 }, (14)

for i ∈ N , and the state dynamics are

xk+1 = fk(xk, uk, uk;uk−), for k = {τ, τ + 1, · · · , T}, xτ = x, (15)

The information set of every player includes the knowledge in
(i) all the possible moves by himself and other players, that is (uik, u

i
k), for

k ∈ {1, 2, · · · , T} and i ∈ N ;
(ii) the set of controls which are executed before stage k by all players but still

in effect in stage k, that is uk− = (u1k−, u
2
k−, ..., u

n
k−), for k ∈ {1, 2, · · · , T};

(iii) the state dynamics xk+1 = fk(xk, uk, uk;uk−) and the values of present and
past states (xk, xk−1, · · · , x1);

(iv) the payoff functions of all players gik(xk, uk, uk;uk−), for i ∈ N and k ∈
{1, 2, · · · , T};

(v) the knowledge of the random variable T̂ with range {1, 2, · · · , T} and corre-
sponding probabilities {θ1, θ2, · · · , θT }; and

(vi) the terminal payment qi
T̂+1

(xT̂+1;u(T̂+1)−) in stage T̂ + 1, for i ∈ N , if the

game terminates after stage T̂ .

3.2. Non-cooperative Equilibrium
In this subsection, we investigate the non-cooperative outcome of the random

horizon durable strategies dynamic game (12)–(13). In particular, a feedback Nash
equilibrium of the game can be characterized by the following theorem.

Theorem 3. Let {u∗∗τ , u∗∗τ } denote the set of the players’ feedback Nash equilibrium
strategies and V i(τ, x;u∗∗τ−) denote the feedback Nash equilibrium payoff of player i
in the non-cooperative game (14)–(15), then the function V i(τ, x;u∗∗τ−) satisfies the
following system of recursive equations

V i(T + 1, x;u∗∗(T+1)−) = qiT+1(x;u
∗∗
(T+1)−)δ

T+1
1 ; (16)
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V i(T, x;u∗∗T−) = max
ui
T ,ui

T

{giT (x, uiT , uiT , u
∗∗(̸=i)
T , u

∗∗(̸=i)
t ;u∗∗T−)δ

T
1

+ qiT+1[fT (x, u
i
T , u

i
T , u

∗∗(̸=i)
T , u

∗∗( ̸=i)
T ;u∗∗T−);u

i
T , u

∗∗(̸=i)
T , u∗∗(T+1)− ∩ u∗∗T−]δ

T+1
1 },

(17)

V i(τ, x;u∗∗τ−) = max
ui
τ ,u

i
τ

{giτ (x, uiτ , uτ , u(̸=i)∗∗
τ , u( ̸=i)∗∗

τ ;u∗∗τ−)δ
T
1

+
θτ

T∑
ζ=τ

θζ

qiτ+1[fτ (x, u
i
τ , u

i
τ , u

(̸=i)∗∗
τ , u(̸=i)∗∗

τ ;u∗∗τ−);u
i
τ , u

(̸=i)∗∗
τ , u∗∗(τ+1)− ∩ u∗∗τ−]δτ+1

1 }

+

T∑
ζ=τ+1

θζ

T∑
ζ=τ

θζ

V i[τ+1, fτ (x, u
i
τ , u

i
τ , u

(̸=i)∗∗
τ , u(̸=i)∗∗

τ ;u∗∗τ−);u
i
τ , u

(̸=i)∗∗
τ , u∗∗(τ+1)−∩u∗∗τ−]},

(18)

for τ ∈ {1, 2, · · · , T − 1}, where u( ̸=i)∗∗
τ = u∗∗τ \u∗∗τ and u( ̸=i)∗∗

τ = u∗∗τ \ui∗∗τ .

Proof. The conditions in (16)–(18) shows that the optimal random horizon dynamic
optimization result under durable strategies in Theorem 2 holds for each player given
other players’ equilibrium strategies (u

( ̸=i)∗∗
τ , u

(̸=i)∗∗
τ ), for τ ∈ {1, 2, . . . , T − 1}.

Hence the conditions of a Nash (1951) equilibrium are satisfied and Theorem 3
follows. ⊓⊔

Theorem 3 is a novel solution technique for the characterization of a feedback
Nash equilibrium in a dynamic game. The set of equations in (16)–(18) represents
the random horizon durable strategies analogue of the Isaacs-Bellman equations in
a feedback Nash game equilibrium.

Substituting the set of feedback Nash equilibrium strategies (u∗∗k , u
∗∗
k ), for k ∈

{1, 2, . . . , T} from Theorem 3 into state dynamics (12) yields the game equilibrium
dynamics

xk+1 = fk(xk, u
∗∗
k ;u∗∗k−), x1 = x01. (19)

Substituting the set of feedback Nash equilibrium strategies u∗∗k , for k ∈ {1, 2, . . . ,
T} into the player i’s payoff yields

V i(τ, x;u∗∗τ−) = E{
T̂∑

k=τ

gik(xk, u
∗∗
k , u

∗∗
k ;u∗∗k−)δ

k
1 + qi

T̂+1
(xT̂+1;u

∗∗
(T̂+1)−)δ

T̂+1
1 }

=

T∑
T̂=τ

θT̂
T∑

ζ=τ

θζ

{
T̂∑

k=τ

gik(xk, u
∗∗
k , u

∗∗
k ;u∗∗k−)δ

k
1 + qi

T̂+1
(xT̂+1;u

∗∗
(T̂+1)−)δ

T̂+1
1 }, (20)

for i ∈ N .
The value function V i(τ, x;u∗∗τ−) gives the expected game equilibrium payoff to

player i from stage τ to the end of the game.
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3.3. An Illustrative Example
Consider a 10-stage 2-person random horizon durable-strategies dynamic games

in which the expected payoff of agent i ∈ {1, 2} to be maximized is

10∑
T̂=1

θT̂ {
T̂∑

k=1

(Ri
k(u

i
kx

i
k)

1/2 − ciku
i
k −ϕ

(x)i
k (u

(3)i
k )2 −φi

k(u
(4)i
k )2 +

k∑
t=k−3

p
|t|i
k u

(4)i
t )δk−1

1

+ (Q
(i)i

T̂+1
xi +

T̂∑
t=T̂+1−2

v
|t|i
T̂+1

u
(3)i
t +

T̂∑
t=T̂+1−3

p
|t|i
T̂+1

u
(4)i
t +ϖi

T̂+1
)δT̂ }, (21)

where δ is the discount factor, and the controls executed before the start of the
operation in stage 1, that is (u

(3)
1−, u

(4)
1−) , are known to can be zeros.

The accumulation process of the private capital stock of agent i is governed by
the dynamical equation

xik+1 = xik + ε
|k|i
k u

(3)i
k +

k−1∑
t=k−2

ε
|k|i
k u

(3)i
k − λikx

i
k + γ

(i)j
k xjk,

xi1 = x
i(0)
1 , i, j ∈ {1, 2} and i ̸= j, (22)

where λik is the depreciation rate of capital xik.
Using Theorem 3, one can obtain a solution with the game equilibrium payoff

of firm i being

V i(τ, x;u
(3)∗∗
τ− , u

(4)∗∗
τ− ) = (A(i)i

τ xi +A(i)j
τ xj + Ci

τ )δ
τ−1, for τ ∈ {1, 2, · · · , 11}, (23)

where
A

(i)i
11 = Q

(i)i
11 ,

A
(i)j
11 = 0,

Ci
11 =

∑10
t=11−2 v

|t|i
11 u

(3)i∗∗
t +

∑10
t=11−2 p

|t|i
11 u

(4)i∗∗
t +ϖi

11,

A
(i)i
10 =

(Ri
10)

2

4ci10
+ δA

(i)i
11 (1− λi10),

A
(i)j
10 = δA

(i)i
11 γ

(i)j
T ,

A
(i)i
τ =

(Ri
τ )

2

4ciτ
+ θτ∑10

ζ=τ θζ
δQ

(i)i
τ+1(1− λiτ ) +

∑10
ζ=τ+1 θζ∑10
ζ=τ θζ

(A
(i)i
τ+1(1− λiτ ) +A

(i)j
τ+1γ

(j)i
τ )δ,

A
(i)j
τ = θτ∑10

ζ=τ θζ
(A

(i)i
τ+1γ

(i)j
τ +A

(i)j
τ+1(1− λjτ ))δ,

Ci
τ is an expression with previously executed controls (u

(3)∗∗
τ− , u

(4)∗∗
τ− ), for

τ ∈ {1, 2, . . . , 10} and i, j ∈ {1, 2} and i ̸= j.

4. Cooperative Dynamic Games with Durable Strategies

In this Section, we develop a T -stage, n-player nonzero-sum discrete-time coop-
erative dynamic game with non-durable and durable strategies affecting the players’
payoffs and the state dynamics.
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4.1. Game Formulation
The payoff of player i is:

T∑
k=1

gik(xk, uk, uk;uk−)δ
k
1 + qiT+1(xT+1;u(T+1)−)δ

T+1
1 , (24)

where qiT+1(xT+1;u(T+1)−) is the terminal payoff of player i.

The state dynamics is characterized by a vector of difference equations:

xk+1 = fk(xk, uk, uk;uk−), x1 = x01, (25)

for k ∈ {1, 2, · · · , T}.

To exploit the potential gains from cooperation, the players agree to act coop-
eratively and distribute the payoffs among themselves according to an agreed-upon
gain sharing optimality principle.

To achieve group optimality, the players will maximize their joint payoff by
solving the dynamic optimization problem which maximizes

n∑
j=1

T∑
k=1

gik(xk, uk, uk;uk−)δ
k
1 +

n∑
j=1

qiT+1(xT+1;u(T+1)−)δ
T+1
1 , (26)

subject to (25).

An optimal solution to the joint maximization problem (25)–(26) can be
characterized by the theorem below.

Theorem 4. Let W (k, x;uk−) be the maximal value of the joint payoff

n∑
j=1

T∑
t=k

gjt (xt, ut, ut;ut−)δ
t
1 +

n∑
j=1

qjT+1(xT+1;u(T+1)−)δ
T+1
1 ,

for the joint payoff maximization problem (25)–(26) starting at stage k with state
xk = x and previously executed controls uk−, then the function W (k, x;uk−)
satisfies the following system of recursive equations:

W (T + 1, x;u(T+1)−) =

n∑
j=1

qjT+1(x;u(T+1)−)δ
T+1
1 , (27)

W (k, x;uk−) = max
uk,uk

{
n∑

j=1

gjk(x, uk, uk;uk−)δ
k
1

+W [k + 1, fk(x, uk, uk;uk−);u(k+1)−]}

= max
uk,uk

{
n∑

j=1

gjk(x, uk, uk;uk−)δ
k
1

+W [k + 1, fk(x, uk, uk;uk−);uk−, u(k+1)− ∩ uk−]}, (28)
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for k ∈ {1, 2, · · · , T}.

Proof. The conditions in (27)–(28) satisfy the optimal conditions of the dynamic
optimization technique with durable controls in Theorem 1 and hence an optimal
solution to the control problem results. ⊓⊔

We use {u∗k, u∗k} for k ∈ {1, 2, · · · , T} to denote the optimal control strategies
derived from Theorem 4. Substituting these optimal controls into the state dynamics
(25), one can obtain the dynamics of the optimal cooperative trajectory as:

xk+1 = fk(xk, u
∗
k, u

∗
k;u

∗
k−), x1 = x01, (29)

for k ∈ {1, 2, . . . , T}.

We use {x∗k}
T+1
k=1 to denote the solution to (29) which yields the optimal coop-

erative state trajectory. The Pareto group optimal joint payoff of the players over
the cooperative duration from stage k ∈ {1, 2, · · · , T} can be expressed as

W (t, xk;uk−) =

n∑
j=1

T∑
t=k

gjt (x
∗
t , u

∗
t , u

∗
t ;u

∗
t−)δ

t
1 +

n∑
j=1

qjT+1(x
∗
T+1;u

∗
(T+1)−)δ

T+1
1 . (30)

Obtaining W (t, xk;uk−) guarantees the maximal joint payoff can be distributed
to the players.

Let

ξ(k, xk;uk−) = [ξ1(t, xt;ut−), ξ
2(t, xt;ut−), ..., ξ

n(t, xt;ut−)], (31)

for k ∈ {1, 2, · · · , T}, denote the agreed upon distribution of cooperative payoffs
among the players at stage k.

To satisfy group optimality in the cooperative scheme, one of the conditions is
that the imputation vector ξ(k, xk;uk−) in the outset of the game has to satisfy

W (t, xk;uk−) =

n∑
j=1

ξj(t, xt;ut−), (32)

for k ∈ {1, 2, · · · , T}.
For individual rationality to be maintained, it is required that

ξi(k, xk;uk−) ≥ V i(k, xk;uk−), (33)

for i ∈ N .
For dynamical/subgame consistency to be satisfied (see Yeung and Petrosyan

(2004, 2010, and 2016), the players’ agreed-upon optimality principle will be effec-
tive along the cooperative state trajectory x∗k contingent upon u∗k−. Therefore, the
cooperative payoff given to player i has to satisfy the following condition, that is

ξi(k, x∗k;u
∗
k−) = [ξ1(k, x∗k;u

∗
k−), ξ

2(k, x∗k;u
∗
k−), ...

..., ξn(k, x∗k;u
∗
k−)], for k ∈ {1, 2, · · · , T}. (34)
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4.2. Imputation Distribution Procedure

Crucial to the analysis is the derivation an Imputation Distribution Procedure
(IDP) leading to the realization of the agreed imputations in (34). To do this, we
follow Yeung and Petrosyan (2010, 2016 and 2019) and use βi

k(x
∗
k;u

∗
k−) to denote

the payment that player i receives in stage k under the cooperative agreement along
the cooperative trajectory {x∗k}Tk=1 with durable strategies executive before but still
in effect being u∗k−. The payment scheme involving βi

k(x
∗
k;u

∗
k−) constitutes an IDP

in the sense that the payoff to player i over the stages from k to T + 1 satisfies the
condition:

ξi(k, x∗k;u
∗
k−) = βi

k(x
∗
k;u

∗
k−)δ

k
1 + {

T∑
ζ=k+1

βi
ζ(x

∗
ζ ;u

∗
ζ−)δ

ζ
1

+qiT+1(x
∗
T+1;u

∗
(T+1)−)δ

T+1
1 }, (35)

for i ∈ N and k ∈ {1, 2, · · · , T}.

A theorem for the derivation of βi
k(x

∗
k;u

∗
k−), for k ∈ {1, 2, · · · , T} and i ∈ N ,

that satisfies (35) is provided below.

Theorem 5. The agreed-upon imputation ξ(k, x∗k;u
∗
k−), for k ∈ {1, 2, · · · , T} along

the cooperative trajectory {x∗k}Tk=1, can be realized by a payment

βi
k(x

∗
k;u

∗
k−) = (δk1 )

−1[ξi(k, x∗k;u
∗
k−)

−ξi(k + 1, fk(x
∗
k, u

∗
k, u

∗
k;u

∗
k−);u

∗
(k+1)−)] (36)

given to player i ∈ N at stage k ∈ {1, 2, · · · , T}.

Proof. Using (35) one can obtain

ξi(k + 1, x∗k+1;u
∗
k−) = Bi

k+1(x
∗
k+1;u

∗
k−)δ

k+1
1 + {

T∑
ζ=k+2

βi
ζ(x

∗
ζ ;u

∗
ζ−)δ

ζ
1

+ qiT+1(x
∗
T+1;u

∗
(T+1)−)δ

T+1
1 }, (37)

Upon substituting (37) into (35) yields

ξi(k, x∗k;u
∗
k−) = βi

k(x
∗
k;u

∗
k−)δ

k
1 + ξi(k + 1, x∗k+1;u

∗
(k+1)−),

which can be expressed as

ξi(k, x∗k;u
∗
k−) = βi

k(x
∗
k;u

∗
k−)δ

k
1 + ξi(k + 1, fk(x

∗
k, u

∗
k, u

∗
k;u

∗
k−);u

∗
(k+1)−). (38)

From (38) one can obtain Theorem 5. ⊓⊔
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The payment scheme in Theorem 5 gives rise to the realization of the impu-
tation guided by the agreed-upon optimality principle and constitutes a dynamically
consistent payment scheme. More specifically, the payment of βi

k(x
∗
k;u

∗
k−) allotted

to player i ∈ N in stage k ∈ {1, 2, · · · , T} will establish a cooperative plan that
matches with the agreed-upon imputation to every player along the cooperative
path. It is worth-noting that formula (36) in Theorem 5 is a new formulation in
that the term ξi(k + 1, fk(x

∗
k, u

∗
k, u

∗
k;u

∗
k−);u

∗
(k+1)−) appears in (Yeung and Pet-

rosyan, 2019) instead of ξi(k + 1, fk(x
∗
k, u

∗
k)) as in (Yeung and Petrosyan, 2016).

Finally, under cooperation, all players would use the cooperative strategies and
the payoff that player i will directly receive at stage k along the cooperative trajec-
tory {x∗k}Tk=1 with previously executed durable strategies u∗k− becomes
gik(x

∗
k, u

∗
k, u

∗
k;u

∗
k−). However, according to the agreed upon imputation, player i

will receive βi
k(x

∗
k;u

∗
k−) at stage k. Therefore, a side-payment

πi
k(x

∗
k;u

∗
k−) = βi

k(x
∗
k;u

∗
k−)− gik(x

∗
k, u

∗
k, u

∗
k;u

∗
k−), for k ∈ {1, 2, · · · , T}, (39)

has to be given to player i ∈ N to yield the cooperative imputation ξi(k, x∗k;u
∗
k−).

5. Discussion and Conclusion

The works of Petrosyan and Yeung (2020) and Yeung and Petrosyan (2019,
2021a, 2021b, 2022) provided the origination of the paradigm of durable-strategies
dynamic games and constitute a large part of the contents discussed in this paper.
This game paradigm would find fruitful applications in

(i) Environmental Use for many man-made impacts on the environment are
durable,

(ii) Global Financial Investments for almost all financial investments yield future
returns,

(iii) International Trade for technology spillover through trade have durable
effects,

(iv) Public Capital Provision because diffusion of knowledge-based investments
may take a certain period of time,

(v) Political Unions because tariff agreements, common currency arrangements,
social and political policy strategies have lasting effects,

(vi) Climate Change Accords for durable policy controls,
(vii) Advertising and Promotion which indeed involve intertemporal strategies

with durable control,
(viii) Green Technology Development for green technology takes time to develop

and innovate,
and
(ix) International Disputes which are often on-going for a period time with

actions which have effects over time.
Further theoretical and application research would be expected.
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