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Abstract This thesis is devoted to the spread of virus in human society.
First, we modified the original basic epidemiological model, and divide the
system into M different types. The optimal control problem is formulated
for the changes of compartments in different states. The total cost is then
minimized, the Pontryagin maximum principle is used to solve this nonlinear
optimal control problem. Next, we prove that the optimal policy has the
simple structure. Finally, we fit the propagation process of this model using
Matlab. Consider the situation where there are only two types of virus in
the system, and compare the two types of virus appear at the same time
and at different times.
Keywords: optimal control, virus propagation, epidemic model.

1. Introduction

The basic models of epidemics are the susceptible-infected model (SIS) and the
susceptible-infected-recovered model (SIR) (Bichara et al., 2014). The total popu-
lation is divided into a susceptible, an infected, and a recovered subpopulation. We
assume that the general progression of an epidemic is a dynamic process, moving
from the susceptible to the infected and finally to the recovered population.

Viruses are neither living nor abiotic, but parasitic self-replicator. They can
infect all living organisms with cellular structures. When a susceptible compartment
encounters an infected compartment, there is the potential for virus to spread.

On the one hand, compartments throughout the system are divided into many
different types, virus of different types can spread randomly throughout the system.
On the other hand, we assume that virus of different types appear at different times,
and that vulnerable compartments are likely to be infected by different virus at
different times (Gubar and Zhu, 2013).

Mathematical models based on nonlinear differential equations have been de-
veloped and applied to various systems, and we can model all systems with epi-
demiological behavior (Khouzani et al., 2011). First, an optimal control formula is
established according to the changes of compartments in different states. The total
cost is then minimized, resulting in an ideal tradeoff between network security and
resource consumption. Finally, the Pontryagin maximum principle is used to solve
this nonlinear optimal control problem.
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2. System Model

2.1. Dynamics

We first determine the state evolution and then formulate the system model.
A system consists of N compartments, and at time t, the number of suscepti-
ble, exposed, infected, recovered, and dead states is nS(t), nE(t), nI(t), nR(t) and
nD(t), the corresponding fractions are S(t) = nS(t)/N,E(t) = nE(t)/N, I(t) =
nI(t)/N,R(t) = nR(t)/N,D(t) = nD(t)/N . So for all t, we have S(t)+E(t)+I(t)+
R(t) +D(t) = 1. For type i, at time t, the fractions for the states susceptible, ex-
posed, infected, recovered, and dead are Si(t), Ei(t), Ii(t), Ri(t), Di(t), respectively.
In our model, we assume that the compartments of each type are stable and do not
change over time.

Susceptible compartments are compartments that can be easily attacked by
viruses but have not been infected; exposed compartments are compartments that
have been infected but do not have the ability to spread; infected compartments are
compartments that have been contaminated by virus; recovery compartments are
compartments that have become immune to virus; dead compartments are lifeless
(Eshghi et al., 2016).

The compartments of the system can be stratified into different types of M
(Eshghi et al., 2016). The number of compartments in these types need not be ex-
actly equal. Compartments of type i contact compartments of type j at the rate
µji.

In each type, a set of compartments filled with the vaccine, called the im-
mune compartment group, is preselected. The immune swarm can distribute vac-
cines to vulnerable compartments and infected compartments, immunizing vul-
nerable compartments against the virus and potentially curing infected compart-
ments. When a susceptible compartment becomes immune or an infected com-
partment recovers, it is converted to a recovery compartment. The number of
immune individuals is NR, where 0 < R < 1. We assume that immune indi-
viduals are not infected, so they regain their state from the start. At t = 0, let
0 ≤ S(0) = S0 < 1, 0 < E(0) = E0 ≤ 1, 0 ≤ I(0) = I0 ≤ 1, D(0) = D0 = 0. Thus,
R(0) = 1− S0 − E0 − I0 −D0. If no virus exists, I0 = 0.

Fig. 1. State transitions

In modeling, we assume that susceptible compartments that have touched ex-
posed compartments are immediately exposed and homogeneously mixed, i.e., ex-
posed compartments have the same probability of being in contact with any other
compartment. The susceptible compartment of type i to contact the exposed com-
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partment of type j at the rate µji. Let an exposed compartment of type i contact an
infected compartment of type i at a rate ωi. Immune compartment group distribute
their vaccine on contact to infected and susceptible compartments, with i type im-
mune compartment group distributing vaccine at ui. Obviously, 0 ≤ ui ≤ 1. Immune
compartment group can touch susceptible or infected compartments at a rate of ω̄.
The mortality rate of each infected compartment of type i is δi, here, the mortality
in the other compartments are negligible. Where 0 ≤ µji ≤ 1, 0 ≤ ωi ≤ 1, 0 ≤ ω̄ ≤ 1
and 0 ≤ δi ≤ 1.

The efficacy of the vaccine on infected compartments may be less than on sus-
ceptible compartments. If the vaccine heals the infected compartment, the infected
compartment’s state transitions to recovered, otherwise it remains infected. θi rep-
resents the effectiveness of patching i type of infected compartment.

Figure 1 illustrates the transitions between different states of compartments and
the notations used in type i.

If the total number of compartments (N) is large, then S(t), E(t), I(t), R(t) and
D(t) converge to the solution of the following system of differential equations:

Ṡi =−
M∑
j=1

SiµjiEj − Siω̄iRiui

Ėi =

M∑
j=1

SiµjiEj − EiωiIi

İi =EiωiIi − Iiω̄iRiuiθi − δiIi

Ḋi =δiIi

Ṙi =Siω̄iRiui + Iiω̄iRiuiθi,

(1)

where, by writing S(t) =
∑M

i=1 Si(t), E(t) =
∑M

i=1Ei(t), I(t) =
∑M

i=1 Ii(t),

D(t) =
∑M

i=1Di(t), R(t) =
∑M

i=1Ri(t), the initial conditions and state constraints
are given by

0 ≤ S(0) = S0 < 1, 0 < E(0) = E0 ≤ 1, 0 ≤ I(0) = I0 ≤ 1,

D(0) = D0 = 0, R(0) = 1− S0 − E0 − I0 −D0,

S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0,

S(t) + E(t) + I(t) +R(t) +D(t) = 1.

(2)

2.2. The Objective Function
We seek the minimum total cost of the system. Since the malicious activity of the

virus affects the evolution of the system, the system incurs a cost of f(I(t)), g(E(t)),
k(D(t)) at each time t. The network also benefits at a rate of L(R(t)) due to the
removal of uncertainty about the state of the vaccine. where f(·), g(·), k(·), L(·) are
all non-decreasing and differentiable functions such that f(0) = g(0) = k(0) =
L(0) = 0. Note that it is natural to assume that f(.), g(.), k(.) can be any function.

Suppose that each active immune compartment group at time t consumes re-
sources at a rate of h(u(t)), because it uses a rate of u(t) at time t. Here h(0) = 0
and h(x) > 0 if x > 0. Suppose the cost of consuming additional resources at time
t is given by a sum of the form

∑M
i=1Rihi(ui).
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Using the above parameters, the total cost is given by an expression of the form

J =

T∫
0

(f(I) + g(E) + k(D)− L(R) +

M∑
i=1

Rihi(ui))dt. (3)

3. Optimal Protecting Strategies

3.1. Theoretical for computing the optimal controls
We apply Pontryagin’s Maximum Principle to obtain a framework for solving

the optimal control problem as posed (Grass et al., 2008). Let ((S,E, I,D,R), u)
be an optimal solution to the problem posed in the previous section, consider the
Hamiltonian H, and the corresponding co-state or adjoint functions λSi , λEi , λIi , λDi
and λRi , defined as follows:

H(u(t)) =f(I(t)) + g(E(t)) + k(D(t))− L(R(t)) +

M∑
i=1

Rihi(ui)

+

M∑
i=1

(λSi Ṡi + λEi Ėi + λIi İi + λDi Ḋi + λRi Ṙi)

=f(I(t)) + g(E(t)) + k(D(t))− L(R(t)) +

M∑
i=1

Rihi(ui)

+

M∑
i=1

((−λSi + λEi )

M∑
j=1

SiµjiEj + (−λSi + λRi )Siω̄iRiui

+ (−λEi + λIi )EiωiIi + (−λIi + λRi )Iiω̄iRiuiθi + (−λIi + λDi )δiIi),

(4)

Where the adjoint functions λSi , λEi , λIi , λDi and λRi are continuous functions, We
have a differential equation,

λ̇Si = −∂H
∂Si

= (λSi − λEi )

M∑
j=1

µjiEj + (λSi − λRi )ω̄iRiui

λ̇Ei = − ∂H

∂Ei
= −∂g(E)

∂Ei
+

M∑
j=1

(λSj − λEj )µijSj + (λEi − λIi )ωiIi

λ̇Ii = −∂H
∂Ii

= −∂f(I)
∂Ii

+ (λEi − λIi )Eiωi + (λIi − λRi )ω̄iRiuiθi + (λIi − λDi )δi

λ̇Di = − ∂H

∂Di
= −∂k(D)

∂Di

λ̇Ri = − ∂H

∂Ri
=
∂L(R)

∂Ri
− hi(ui) + (λSi − λRi )Siω̄iui + (λIi − λRi )Iiω̄iuiθi,

(5)

Together with the final conditions

λSi (T ) = 0, λEi (T ) = 0, λIi (T ) = 0, λDi (T ) = 0, λRi (T ) = 0. (6)

Then PMP implies that the optimal control at time t satisfies the following
conditions.

ui ∈ argmin
v

H(v), (7)
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where the minimization is over the space of admissible controls.
From (3), it can be shown that vector minimization can be expressed as scalar

minimization

ui(t) ∈ argmin
0≤x≤1

Ri(t)γi(x, t), (8)

where,

γi(x, t) = hi(x)− ϕi(t)x, (9)

ϕi(t) = (λSi − λRi )Siω̄i + (λIi − λRi )Iiω̄iθi. (10)

First, from (6) that γi(0, t) = 0, hence (8) results in Ri(t)γi(ui, t) ≤ 0. That is,
for all t,

γi(ui, t) ≤ 0. (11)

3.2. Structure
We are now ready to identify the structures of the optimal controls (u1(t), . . . ,

uM (t)):

Lemma 1. For any i, ϕi(t) is a decreasing function of t.1

In economic terms, the adjoint function represents the shadow price. In simple
terms, λDi should be a positive number because it represents the additional cost per
unit time that the system incurs as the proportion of dead compartments increases.
Similarly, λEi should also be a positive number, and λRi should also be a negative
number. Therefore, we expect λDi − λRi ≥ 0,λEi − λRi ≥ 0.

Lemma 2. The positivity constraints λDi (t) − λRi (t) ≥ 0 and λEi (t) − λRi (t) ≥ 0
hold for all i = 1, . . . ,M and all t ∈ [0, T ).2

Theorem. Assuming the existence of an optimal control, for types i such that
Ri > 0: if hi(·) is concave, then the optimal control for type i has the following
structure: u∗i (t) = 1 for 0 ≤ t < ti, and u∗i (t) = 0 for ti ≤ t ≤ T , where ti ∈ (0, T ).
If hi(·) is strictly convex, then the optimal control for type i, ui(t) is continuous
and has the following structure: u∗i (t) = 1 for 0 ≤ t ≤ t1i , u

∗
i (t) = 0 for t2i ≤

t ≤ T , and u∗i (t) strictly decreases in the interval (t1i , t2i ), where 0 < t1i < t2i < T
(Gubar and Zhu, 2013, Eshghi et al., 2016).

Proof. This time the Hamiltonian

H(u) = f(I) + g(E) + k(D)− L(R) +

M∑
i=1

((−λSi + λEi )

M∑
j=1

SiµjiEj

+(−λEi + λIi )EiωiIi + (−λIi + λDi )δiIi) +

M∑
i=1

(Ri(hi(ui)− ϕiui)).

(12)

1) Let hi(·) be a concave function, i.e., h
′′

i (·) < 0, then the Hamiltonian is
a concave function of ui, i = 1, 2, ...,M . There are two different possibilities for
ui ∈ [0, 1] that minimize the Hamiltonian(Gubar et al., 2021),

1See Appendix 1 for proof of Lemma 1.
2See Appendix 2 for proof of Lemma 2.
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Fig. 2. The case of concave function - h
′′
i (·) < 0

If at the time t
H(0) > H(1)

that is, ϕi > hi(1), then the optimal control is u∗i = 1; otherwise u∗i = 0.
ϕi(t) is a decreasing function of t, and Lemma 1 will prove this. Define ϕi(ti) =

hi(1), We have {
ϕi(t) > hi(1), t ∈ [0, ti)
ϕi(t) < hi(1), t ∈ [ti, T ].

(13)

So, {
u∗i = 1, t ∈ [0, ti)
u∗i = 0, t ∈ [ti, T ].

(14)

2) Let hi(·) be a strictly convex function, i.e., h
′′

i (·) > 0, then the Hamiltonian
is a convex function of ui, i = 1, 2, ...,M . There are three different possibilities for
ui ∈ [0, 1] that minimize the Hamiltonian,

Fig. 3. The case of convex function - h
′′
i (·) > 0

If at time t,
∂(hi(ui)− ϕiui)

∂ui
|ui=0 = h′i(0)− ϕi ≥ 0,

then the optimal control is u∗i = 0.
If

∂(hi(ui)− ϕiui)

∂ui
|ui=1 = h′i(1)− ϕi ≤ 0,

then the optimal control is u∗i = 1.
Otherwise,

∂(hi(ui)− ϕiui)

∂ui
|ui=u∗

i
= 0

we can find such a value u∗i ∈ (0, 1).
ϕi(t) is a decreasing function of t. Define ϕi(t1i ) = h′i(1), ϕi(t

2
i ) = h′i(0). We haveϕi(t) ≥ h′i(1), t ∈ [0, t1i ]

h′i(0) < ϕi(t) < h′i(1), t ∈ (t1i , t
2
i )

ϕi(t) ≤ h′i(0), t ∈ [t2i , T ].
(15)
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So,


u∗i = 1, t ∈ [0, t1i ]
u∗i = h′−1

i (ϕi), t ∈ (t1i , t
2
i )

u∗i = 0, t ∈ [t2i , T ].
(16)

4. System Model of Two Types

In this section, we consider a case of M = 2 and it is an extension of the model
considered in the previous section. In order to better and more intuitively describe
the changes of the system state when different viruses appear at different times, only
the case of M = 2 is considered here. The spread of viruses is a process from local to
global. The case of M = 2 means that at a certain time, a particular virus is found
in two different local environments, and the spread of these two different viruses will
affect the overall process. Compartments of type i contact compartments of type j
at the rate of µji. In different types, the totals may not be equal, and of course the
value of each parameter may vary.

Fig. 4. State transitions of two types

Figure 4 illustrates the thansition schemes for SEIRD model with two types of
virus. If the total number of compartments (N) is large, then fractions S(t), E(t), I(t), R(t)
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and D(t) converge to the solution of the following system of differential equations:

Ṡ1 = −S1µ11E1 − S1µ21E2 − S1ω̄1R1u1

Ṡ2 = −S2µ12E1 − S2µ22E2 − S2ω̄iR2u2

Ė1 = S1µ11E1 + S2µ12E1 − E1ω1I1

Ė2 = S1µ21E2 + S2µ22E2 − E2ω2I2

İ1 = E1ω1I1 − I1ω̄1R1u1θ1 − δ1I1

İ2 = E2ω2I2 − I2ω̄2R2u2θ2 − δ2I2

Ḋ1 = δ1I1

Ḋ2 = δ2I2

Ṙ1 = S1ω̄1R1u1 + I1ω̄1R1u1θ1

Ṙ2 = S2ω̄2R2u2 + I2ω̄2R2u2θ2

(17)

where, by writing S(t) = S1(t) + S2(t), E(t) = E1(t) + E2(t), I(t) = I1(t) +
I2(t), D(t) = D1(t) + D2(t), R(t) = R1(t) + R2(t), the initial conditions and state
constraints are given by

0 ≤ S(0) = S0 < 1, 0 < E(0) = E0 ≤ 1, 0 ≤ I(0) = I0 ≤ 1,

D(0) = D0 = 0, R(0) = 1− S0 − E0 − I0 −D0

S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0,

S(t) + E(t) + I(t) +R(t) +D(t) = 1.

(18)

The aggregate cost is given by an expression of the form:

J =

T∫
0

(f(I) + g(E) + k(D)− L(R) +R1h1(u1) +R2h2(u2))dt. (19)

We apply Pontryagin’s Maximum Principle to obtain a framework for solving the
optimal control problem as posed. Consider the Hamiltonian H, and corresponding
co-state or adjoint functions λSi , λEi , λIi , λDi and λRi , defined as follows:

H(u(t)) =f(I(t)) + g(E(t)) + k(D(t))− L(R(t)) +R1h1(u1) +R2h2(u2)

+ (−λS1 + λE1 )(S1µ11E1 + S1µ21E2) + (−λS1 + λR1 )S1ω̄1R1u1

+ (−λE1 + λI1)E1ω1Ii + (−λI1 + λR1 )I1ω̄1R1u1θ1 + (−λI1 + λD1 )δ1I1

+ (−λS2 + λE2 )(S2µ12E1 + S2µ22E2) + (−λS2 + λR2 )S2ω̄2R2u2

+ (−λE2 + λI2)E2ω2I2 + (−λI2 + λR2 )I2ω̄2R2u2θ2 + (−λI2 + λD2 )δ2I2,

(20)
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We got differential equation,

λ̇S1 = (λS1 − λE1 )(µ11E1 + µ21E2) + (λS1 − λR1 )ω̄1R1u1

λ̇S2 = (λS2 − λE2 )(µ12E1 + µ22E2) + (λS2 − λR2 )ω̄2R2u2

λ̇E1 = −∂g(E)

∂E1
+ (λS1 − λE1 )µ11S1 + (λS2 − λE2 )µ12S2 + (λE1 − λI1)ω1I1

λ̇E2 = −∂g(E)

∂E2
+ (λS1 − λE1 )µ21S1 + (λS2 − λE2 )µ22S2 + (λE2 − λI2)ω2I2

λ̇I1 = −∂f(I)
∂I1

+ (λE1 − λI1)E1ω1 + (λI1 − λR1 )ω̄1R1u1θ1 + (λI1 − λD1 )δ1

λ̇I2 = −∂f(I)
∂I2

+ (λE2 − λI2)E2ω2 + (λI2 − λR2 )ω̄2R2u2θ2 + (λI2 − λD2 )δ2

λ̇D1 = −∂k(D)

∂D1

λ̇D2 = −∂k(D)

∂D2

λ̇R1 =
∂L(R)

∂R1
− h1(u1) + (λS1 − λR1 )S1ω̄1u1 + (λI1 − λR1 )I1ω̄1u1θ1

λ̇R2 =
∂L(R)

∂R2
− h2(u2) + (λS2 − λR2 )S2ω̄2u2 + (λI2 − λR2 )I2ω̄2u2θ2,

(21)

along with the final conditions

λSi (T ) = 0, λEi (T ) = 0, λIi (T ) = 0, λDi (T ) = 0, λRi (T ) = 0 (22)

Then PMP implies that the optimal control at time t satisfies
u1 ∈ argmin

ν1

H(ν1)

u2 ∈ argmin
ν2

H(ν2).
(23)

where the minimization is over the space of admissible controls.
We modified the base model, and on the modified model, we considered that

the system contains multiple types with different subpopulations. Our main work
is to study the propagation behavior of virus when the system contains only two
subpopulations, here, this is an uncontrolled model.

5. Numerical Investigations

In this section, we confirm our results with some numerical simulations. For the
theoretical model introduced in the previous section, it is an uncontrulled model.
For simplicity and without loss of generality, we only simulate the case where the
cost function h(ui) is concave. The focus of this section is to study the behavior
of the modified model, we will conduct two experiments: the first, comparing the
presence of two different virus at the same time and at different times, on the
dynamics of susceptible, exposed, infected, recovered, and dead compartments to
evaluate. The second experiment simulates the effect of different parameter values
on virus propagation using the first set of data from the first experiment.
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Fig. 5. State transition of only one type of in the system

First, we assume that there is only one type of subpopulation in the system,
only one type is infected, and the state transition is shown in Figure 5.

Let I1 = 0.0001, E1 = 0.00005, S1 = 0.99, D1 = 0, for i = 1, also, µ11 =
0.76, ω1 = 0.55, ω̄1 = 0.43;u1 = 0.55, θ1 = 0.65, δ1 = 0.01.

Fig. 6. The changing trend of each state for only one type of virus in the system

According to Figure 6, the susceptible fraction decreases rapidly when t ∈ [0, 28],
and then gradually flattens. The exposed fraction grow rapidly at t ∈ [0, 28], and
reach the highest point at t = 28. At this time, the fraction of exposed compartments
is 0.6746. And then decreases rapidly, and gradually flattens after t = 67. The
infected fraction has no obvious change when t ∈ [0, 28], and it grows rapidly when
t ∈ [28, 56], and reaches the highest point when t = 56. At this time, the fraction of
the infected compartment is 0.3481. After that, it decreased rapidly, and gradually
flattened after t = 86. The dead fraction does not change significantly when t ∈
[0, 45], and then slowly rises. After t = 117, it is basically in a stable state. The
recovery fraction increases significantly when t ∈ [0, 25]∪ [42, 95], while the increase
in t ∈ [25, 42] is small, and after t = 95, it is basically stable.

In the early stage of virus propagation, most compartments are in a suscep-
tible state, so the decline rate of susceptible fraction is relatively fast, and these
compartments just turn into exposed compartments or recovered compartments.
Therefore, exposed and recovered fraction grow rapidly at this stage. When the
exposed compartments grow to a certain number, some of them are converted into
infected compartments, and the infected fraction increase significantly. The growth
of exposed and infected fraction is bound to reach a commanding height at some
point, when virus spreads the most. After the commanding heights, the proportion
of exposed and infected fraction will drop significantly. As the end compartments
of the system, the death and the recovery fraction will slowly increase in propor-
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Fig. 7. Same time case of the first data: a) only type 1 in the system; b) only type 2 in
the system; c) type 1 and type 2 in the system

tion as the virus spreads, and reach a stable state after a certain time. Recovery
fraction grow slowly when t ∈ [25, 42], because almost all susceptible compartments
have been converted to exposed compartments or recovered compartments at this
time, while infected fraction have not grown significantly. The proportion of sus-
ceptible and infected fraction is small, and only a small number of compartments
can be converted into recovery compartments. Over time, compartments transition
between different states, and the number changes significantly. In the late stage of
virus propagation, the number of compartments in all states tends to stabilize.

Then we discuss the case where the system contains two different types. In the
two distinct types of subpopulations, state transitions not only occurred within, but
were also affected by mutual infection between them. In different types, the totals
may not be equal, and of course the value of each parameter may vary. At this point,
we consider two different scenarios, where two types of virus appear at the same
time, and the two types of virus appear at different times. The state transition is
shown in Figure 4.

For the first case, we assume that the virus all appears when t = 0, and we can fit
the corresponding change graph. Let N1 = 50000, N2 = 100000, N = N1 +N2, I1 =
0.0002, I2 = 0.00015, S1 = 0.998, S2 = 0.999, D1 = 0;D2 = 0, E1 = 0.00002, E2 =
0.00002, µ11 = 0.76, µ21 = 0.35, µ22 = 0.56, µ12 = 0.35, ω1 = 0.55, ω2 = 0.55, ω̄1 =
0.43, ω̄2 = 0.45, u1 = 0.55, u2 = 0.45, θ1 = 0.65, θ2 = 0.4, δ1 = 0.01, δ2 = 0.015.
Shown it in Figure 7.

Then we try to change the value of each parameter and study the same charac-
teristics of the transitions between states when the parameter values are different.
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Fig. 8. Same time case of the second data: a) only type 1; b) only type 2; c) type 1 and
type 2 in the system

Let N1 = 200000, N2 = 100000, N = N1 + N2, I1 = 0.00005, I2 = 0.0001, S1 =
0.9995, S2 = 0.999, D1 = 0;D2 = 0, E1 = 0.000025, E2 = 0.00002, µ11 = 0.56, µ21 =
0.45, µ22 = 0.66, µ12 = 0.55, ω1 = 0.55, ω2 = 0.74, ω̄1 = 0.42, ω̄2 = 0.36, u1 =
0.4, u2 = 0.3, θ1 = 0.7, θ2 = 0.4, δ1 = 0.03, δ2 = 0.01. Shown it in Figure 8.

According to a) and b) of Figure 7 or Figure 8, we find that when only type
1 or type 2 is included in the system, the transitions between different states are
roughly similar to those in Figure 6. Since the parameter values selected by the two
are not equal, the steady state values of the corresponding peaks are not equal. We
mainly discuss c) of Figure 7 or Figure 8, which shows that when the system includes
two different types, virus not only spreads within the same type, but also interacts
between different types, and virus from other types will susceptible compartments
are converted to other types of exposed compartments.

Table 1. Fraction of each state at steady state

R D
Only type 1 0.8514 0.1484
Only type 2 0.5922 0.4078

Type 1 and Type 2 0.3158 0.6831

According to Figure 9 and Table 1, when there is only one type in the system,
the recovery fraction is higher than the death fraction at steady state. However,
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Fig. 9. Same time case of the first data: a) recovered fraction; b) death fraction

when there are two types in the system, the junctions between the two types also
interact, resulting in higher death fraction than recovery fraction.

Table 2. Fraction of each state at the peak

data 1 data 2

E I E I
Only type 1 0.9025 0.7218 0.981 0.7852
Only type 2 0.9251 0.7892 0.9883 0.9354

Type 1 and Type 2 0.9738 0.5725/0.5679 0.9943 0.6318

According to Figure 10 and Table 2, after the interaction of two types of com-
partments in the system, the fraction of exposed compartments at the peak are
slightly higher than those of the system with only one type, and the fraction of
infected compartments at the peak are slightly lower than those of the system with
only one type type of situation. Because when there are two types in the system,
the exposed compartments come from two types of susceptible compartments, not
just from the same type of susceptible compartments under the action of different
virus from the two types. The ω-values of the two types are different, causing the
infection compartments to peak at t = 67 and t = 92, respectively.

Table 3. Time required for each state to stabilize

data 1 data 2

S I E D R S I E D R
Only type 1 28 100 50 102 114 34 159 63 194 203
Only type 2 37 150 50 196 238 30 369 45 453 485

Type 1 and Type 2 42 300 100 343 361 35 489 159 587 536

According to Table 3, when there are two types in the system, the time required
for each state to stabilize is longer than when there is only one type in the system.
The problem we face is exacerbated when two types of virus are present in the
system.
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Fig. 10. Same time case of the first data: a) exposed fraction; b) infected fraction. Same
time case of the second data; c) exposed fraction; d) infected fraction

Then, we fit the occurrences of the two types of virus at different times. This
situation is more realistic, and it is very unlikely that two different pieces of virus
will appear at the same time. We assume that for type 1, the virus appears at t = 0,
and for type 2, it appears at t = 180.

According to a) and b) of Figure 11, virus of type 1 appears at t = 0, and each
state changes significantly when t ∈ [0, 100]. Virus of type 2 appears at t = 180,
and each state changes significantly when t ∈ [180, 350]. c) of Figure 11 Shows the
changes in the fraction of compartments incompartment each state when two types
of virus appear in the system at different times. When type 1 virus appears, it
will cause the susceptible fraction to decrease at t ∈ [0, 76], the exposed fraction
to increase at t ∈ [0, 70], to decrease at t ∈ [70, 144], and the infected fraction to
increase at t ∈ [70, 125], decreasing at t ∈ [125, 208]. The susceptible fraction remain
stable in t ∈ [76, 176], because the number of susceptible compartments has reached
a steady state in the propagation of virus from type 1 at this time, while virus from
type 2 has not yet started to spread. When type 2 virus appears, it will cause the
susceptible fraction to decrease at t ∈ [176, 215], the exposed fraction to increase at
t ∈ [180, 211], to decrease at t ∈ [211, 240], and the infected fraction to increase at
t ∈ [208, 236], and at t ∈ [236, 446] decrease. Dead and recovery fraction continue
to rise steadily.
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Fig. 11. Different time: a) only type 1 in the system; b) only type 2 in the system; c) type
1 and type 2 in the system

Table 4. Fraction of each state at the peak for different case

E I
Type 1 and Type 2 for same time 0.9738 0.5725/0.5679

Type 1 and Type 2 for different time 0.3099/0.6548 0.2207/0.5593

Then, we compare Figure 7c and Figure 11c, trying to find differences between
the two types of virus at the same time and at different times.

Table 4 shows that when the two types of virus are present on the system at
different times, the proportion of exposure and infection is smaller than when they
are present on the system at the same time, and the sequential presence of the virus
moderates the propagation process.

Table 5. Time required for each state to stabilize for different case

S I E D R
Type 1 and Type 2 for same time 42 300 100 343 361

Type 1 and Type 2 for different time 215 477 250 573 553

Table 5 shows that when two kinds of virus appear in the system at different
times, the time required for each state to stabilize is longer than when they appear
in the system at the same time, and the successive appearance of the vires delays
the overall spread of the system end time.
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Next, we changed the value of one of the parameters and fixed the value of
the other parameters to observe the influence of each parameter on the spread of
virus. First of all, we observe the infection rate of the system when the parameter
values are different. The values of µ11 are 0.3, 0.5, 0.7, 0.9 and the values of ω1 are
0.2, 0.4, 0.6, 0.8.

a) b)

Fig. 12. The infection fraction: a) corresponding to different µ11 values; b) corresponding
to different ω1 values

Table 6. The peak situation of the infection fraction when the value of µ11 is different

t ∈ [0, 200] t ∈ (200, 600]

µ11 = 0.3 / 0.7914
µ11 = 0.5 / 0.7118
µ11 = 0.7 0.327 0.5855
µ11 = 0.9 0.488 0.3881

Combining Figure 12 and Table 6, at t ∈ [0, 200], the larger the value of µ11,
the larger the infection fraction of the system. So in order to prevent the spread of
virus, we should lower the value of µ11, for example, we need to isolate susceptible
compartments and exposed compartments. At t ∈ (200, 600], this pattern is no
longer met because type 2 virus also participates in the propagation behavior. At
this time, the value of µ22, µ12 and µ21 will directly affect the change of the system
infection score.

Table 7. The peak situation of the infection fraction when the value of ω1 is different

t ∈ [0, 200] t ∈ (200, 800]

ω1 = 0.2 / 0.7903
ω1 = 0.4 0.5632 0.3339
ω1 = 0.6 0.5935 0.3211
ω1 = 0.8 0.6111 0.3155

Combining Figure 12 and Table 7, the parameter ω1 has a similar effect on the
infection fraction as µ11, at t ∈ [0, 200], the larger the value of ω11, the larger the
infection fraction of the system. So in order to prevent the spread of virus, we should
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lower the value of ω11, that is, reduce the contact between exposed compartments
and infected compartments. When ω1 = 0.2, there is only one peak, Because the
value of ω1 is too small. At t ∈ [0, 200], the infection fraction grows extremely slowly
and has not yet reached its peak. The spread of type 2 virus has already begun,
and the infection fraction will rise to another peak.

We then observe the exposed fraction of the system when the parameter values
are different. The value of ω1 is 0.2, 0.4, 0.6, 0.8.

Fig. 13. The exposed fraction corresponding to different ω1 values

Table 8. The length of time that the exposure score dropped rapidly after the first peak

length of time
ω1 = 0.2 122
ω1 = 0.4 59
ω1 = 0.6 39
ω1 = 0.8 26

Combining Figure 13 and Table 8, the larger the value of ω1, the faster the drop
in the later stages of type 1 virus propagation. This means that exposed compart-
ments are converting to infected compartments at a faster rate. To hinder the spread
of virus, we must minimize the rate of contact between exposed compartments and
infected compartments.

We then observe the death fraction of the system when the parameter val-
ues are different. The values of µ11 are 0.3, 0.5, 0.7, 0.9 and the values of ω1 are
0.2, 0.4, 0.6, 0.8.

Table 9. The death fraction when the value of µ11 is different

t = 200 t = 500

µ11 = 0.3 0.004031 0.8235
µ11 = 0.5 0.02569 0.797
µ11 = 0.7 0.2394 0.8915
µ11 = 0.9 0.4102 0.9351
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a) b)

Fig. 14. The death fraction: a) corresponding to different µ11 values; b) corresponding to
different ω1 values

Table 10. The death fraction when the value of ω1 is different

t = 150

ω1 = 0.2 0.002828
ω1 = 0.4 0.3865
ω1 = 0.6 0.4197
ω1 = 0.8 0.4346

Combining Figure 14 and Table 9, at t ∈ [0, 200], the larger the value of µ11, the
higher the death fraction. After that, due to the spread of type 2 virus, the death
fraction no longer conforms to this pattern.

Combining Figure 14 and Table 10, the larger the value of ω1, the higher the
death fraction.

We then observe the recovered fraction of the system when the parameter values
are different. The values of ω̄1 are 0.1, 0.3, 0.5, 0.7.

Fig. 15. The recovery fraction corresponding to different ω̄1 values
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Table 11. The situation of the fastest growing stage of the recovery score

Required time Corresponding recovery fraction
ω̄1 = 0.1 406 0.09131
ω̄1 = 0.3 224 0.2077
ω̄1 = 0.5 150 0.3973
ω̄1 = 0.7 106 0.4896

Combining Figure 15 and Table 11, the larger the value of ω̄1, the faster the
recovery fraction increases, and when a steady state is reached, the higher the
fraction.

Among the COVID-19 outbreaks in 2019(Hannah and Ritchie, 2020), France
had its first confirmed case in Bordeaux on January 24, 2020, and India had its first
confirmed case on January 30, 2020. According to the data, on March 1, 2020, the
cumulative number of infections per 1 million people in France was 6.32, and the
cumulative number of deaths per 1 million people was 0.1. On May 1, 2020, the
cumulative number of deaths per 1 million people in India was 0.1. The cumulative
number of infections was 26.47, and the cumulative number of deaths per 1 million
people was 0.87. On September 17, 2022, France currently has 395398 infections,
154672 deaths, 34310015 recoveries, a mortality rate of 4%, and a recovery rate
of 98.4%; India currently has 46848 infections, 528302 deaths, and recoveries. was
43953374, the mortality rate was 1.2%, and the recovery rate was 98.7%.

In COVID-19, because the recovered refers to the patients who have recovered
from the infection of the new type of coronavirus pneumonia. So here we assume
that the rate of conversion of susceptible to cured is 0. By calculation, we can derive
the average infection rate, which we assume the virus spreads at a uniform rate.
Here, we only show outbreaks in France and India, where the virus emerged 60 days
apart. The state transition is shown in Figure 16. In figure a), after t=200, the state
change tends to be stable, in figure b), the state change has a significant change
after t=600, in figure c), when 500 < t < 800, the state changes significantly .

Fig. 16. a) State transition of France; b) State transition of India; c) State transition of
two countries

The graph shows that the peak of virus transmission in France is July 2020
and that in India is August 2022. But when the two countries influence each other,
there are no clear two peaks, mainly because the total population of France is much
smaller than that of India, and the individual changes are minimal to the whole.
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Table 12. Contrast infection fraction

Highest infection fraction Corresponding moment
France 0.8779 98
India 0.5323 842
Both 0.6955 686

In Table 12, we can clearly see that the virus infection situation in the two
countries is very different. When the two countries are influenced by each other due
to population movement, the infection rate and the peak period of infection are
between the highest and lowest values before the influence.

6. Conclusion

In this work, we have done:
1) On the epidemic base model SIR, add some new compartments, consider

systems with multiple types, and model the modified SEIDR system and apply it
to the spread of virus.

2) The optimal control problem is formulated in the context of a total cost min-
imization model. We solve this nonlinear optimal control problem by dynamically
choosing the vaccine propagation rate using the Pontryagin maximum principle.

3) We focus on considering only two different types of situations in the system.
We fit the propagation process of this model with Matlab. Here, we consider this an
uncontrolled model. Compare two types of virus at the same time and at different
times. Then change some parameters of the model and observe the effect of the
parameters on the virus propagation process. Numerical computations reveal many
interesting behavioral strategies.

Appendix

1. Proof of Lemma 1
Lemma 1. For any i, ϕi(t) is a decreasing function of t.
Proof: ϕi(t) is everywhere continuous (due to continuity of the states and ad-

joint functions) and differentiable, if ui(·) is continuous. For any t where ui(·) is
continuous, we have:

ϕ̇i
ω̄i

= (λ̇Si − λ̇Ri )Si + (λSi − λRi )Ṡi + θi[(λ̇
I
i − λ̇Ri )Ii + (λIi − λRi )İi]. (24)

Therefore, after some regrouping and cancellation of terms, at any t, we have

ϕ̇i(t
+)

ω̄i
= −(λEi − λRi )(

M∑
j=1

SiµjiEj − θiIiEiωi)− (λDi − λRi )θiIiδi

− (Si + θiIi)(
∂L(R)

∂Ri
− γi(ui, t))− θiIi

∂f(I)

∂Ii
.

(25)

Now, since 0 ≤ θi ≤ 1, during virus propagation, have
∑M

j=1 SiµjiEj ≥ IiωiEi ≥
θiIiEiωi, Lemma 2 will imply that the sum of the first and second terms will be
negative. The third and last terms will be non-positive due to the definitions of f(·)
and L(·). So ϕ̇i(t+) ≤ 0 for all t. The proof for ϕ̇i(t−) ≤ 0 is exactly as above. In
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a very similar fashion, it can be proved that ϕ̇i(t) ≤ 0 at all points of continuity
of u(·), which coupled with the continuity of ϕi(t) shows that it is a decreasing
function of time.

2. Proof of Lemma 2
Lemma 2. The positivity constraints λDi (t)− λRi (t) ≥ 0 and λEi (t)− λRi (t) ≥ 0

hold for all i = 1, ...,M and all t ∈ [0, T ).
Proof: First, we note that λDi (T ) = 0 at any t ∈ [0, T ] at which u is continuous,

λ̇Di = − ∂H
∂Di

= −∂k(D)
∂Di

≤ 0. Thus, since u is piecewise continuous, λDi (t) ≥ 0 for all
0 ≤ t ≤ T . And by the same token, λEi (t) ≥ 0 for all 0 ≤ t ≤ T .

We note that λRi (T ) = 0 at any t ∈ [0, T ] at which u is continuous, λ̇Ri =
∂L(R)
∂Ri

−hi(ui)+ (λSi −λRi )Siω̄iui+(λIi −λRi )Iiω̄iuiθi =
∂L(R)
∂Ri

−γi(ui, t) ≥ 0. Thus,
since u is piecewise continuous, λRi (t) ≤ 0 for all 0 ≤ t ≤ T .

So, we can get λDi (t)−λRi (t) ≥ 0 and λEi (t)−λRi (t) ≥ 0 hold for all i = 1, ...,M
and all t ∈ [0, T ).
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