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Abstract The Gibbard-Satterthwaite theorem established that no non-
trivial voting rule is strategy-proof, but that does not mean that all vot-
ing rules are equally susceptible to strategic manipulation. Over the past
fifty years numerous approaches have been proposed to compare the ma-
nipulability of voting rules in terms of the probability of manipulation,
the domains on which manipulation is possible, the complexity of finding
such a manipulation, and others. In the closely related field of matching,
Pathak and Sönmez (2013) pioneered a notion of manipulability based on
case-by-case comparison of manipulable profiles. The advantage of this ap-
proach is that it is independent of the underlying statistical culture or the
computational power of the agents, and it has proven fruitful in the match-
ing literature. In this paper, we extend the notion of Pathak and Sönmez
to voting, studying the families of k-approval and truncated Borda scoring
rules. We find that, with one exception, the notion does not allow for a
meaningful ordering of the manipulability of these rules.
Keywords: social choice, strategic voting, Borda, scoring rules.

1. Introduction

Strategy-proofness – the idea that it is in an agent’s interest to reveal their true
preferences – is a fundamental desideratum in mechanism design. All the other prop-
erties a mechanism may have become suspect if we can not assume that an agent will
play according to the rules. Unfortunately, in the field of voting, this is a property
we have to live without – per the Gibbard-Satterthwaite theorem (Gibbard, 1973;
Satterthwaite, 1975), the only strategy-proof rule with a range consisting of more
than two candidates is dictatorship. This negative result, however, did not mean
that scholars were willing to give up on either voting or resistance to strategy.
Instead, the search was on for a workaround.

It was already known that the impossibility does not hold on restricted domains
(Dumett and Farquharson, 1961), and if the preferences of the voters are separa-
ble (Barbera et al., 1991) or single-peaked (Moulin, 1980), then natural families of
strategy-proof voting rules exist. For those committed to the universal domain, there
was the statistical approach – all rules may be manipulable, but it could be the case
that some are more manipulable than others. This lead to a voluminous litera-
ture on manipulation indices, that sought to quantify how likely a voting rule is to
be manipulable (Nitzan, 1985; Kelly, 1993; Aleskerov and Kurbanov, 1999). With
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the incursion of computer science into social choice, an approach based on com-
putational complexity came into prominence – the idea being, if a strategic vote is
computationally infeasible to find, that is almost as good as there being no strategic
vote in the first place (Bartholdi et al., 1989; Conitzer et al., 2007; Walsh, 2011).

None of these approaches were entirely convincing. Domain restrictions are by
nature arbitrary, and there is little point in arguing as to how natural single-peaked
preferences may be, if no real-world example actually is (Elkind et al., 2017). Ma-
nipulation indices are sensitive to the choice of the statistical culture, and are usually
obtained by means of computer simulations for particular choices of the number of
voters and candidates; so while an index could tell us which voting rule is more ma-
nipulable under, say, impartial culture with four voters and five candidates, it would
be a stretch to extrapolate from this to statements about the manipulability of a
voting rule in general. Computational complexity focuses on the worst case of finding
a strategic vote, and a high worst-case complexity does not preclude the possibility
of the problem being easy in any practical instance (Faliszewski et al., 2011).

In the closely related field of matching, Pathak and Sönmez (2013) proposed a
method to compare the manipulability of mechanisms that seemed to sidestep all
these issues – mechanism f is said to be more manipulable than g if the set of profiles
on which g is manipulable is included in the set of profiles on which f is manipulable.
No restrictions on domain, statistical culture, or computational ability is required. In
the appendix to their paper, Pathak and Sönmez theorised how the approach could
be extended to other areas of mechanism design. This was taken up by the matching
community (Decerf and Van der Linden, 2021); Bonkoungou and Nesterov, 2021),
but to our knowledge the only authors to apply this approach to voting were Arri-
billaga and Massó (2016; 2017). However, the notion used by Arribillaga and Massó
differed from that of Pathak and Sönmez. A là Pathak and Sönmez, we would say
that a voting rule f is more manipulable than g just if:

∀P : g is manipulable at P ⇒ f is manipulable at P .

In other words, if a voter can manipulate g in profile P , then a voter can also
manipulate f in the same profile. Arribillaga and Massó’s notion is a bit harder to
parse:

∀Pi : (∃P−i : g is manipulable at (Pi, P−i)) ⇒ (∃P ′
−i : f is manipulable at (Pi, P

′
−i)).

That is, if there exists a possible preference order of voter i, Pi, such that there
exists some profile extending Pi, in which the voter can manipulate g, then there also
exists a possibly different profile extending Pi, in which the voter can manipulate f .
To see why this could be an issue, recall that a voting rule is neutral if for any
permutation of candidates π, f(πP ) = πf(P ). A neutral voting rule is always
manipulable under the definition above – by the Gibbard-Satterthwaite theorem,
there exists some profile P where a voter can manipulate. If we pick an appropriate
permutation of candidate names, we will obtain a manipulable profile where voter i’s
preference order is any order we want. Indeed, the papers of Arribillaga and Massó
deal with the manipulability of median voter schemes (Moulin, 1980) and voting
by committees (Barbera et al., 1991), both of which are fundamentally non-neutral
procedures.

Neutrality, however, is a fundamental property of voting rules, essentially saying
that the same rule can be applied to any set of candidates, without worrying about
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their identity. Almost all rules studied in the literature are neutral, and neutrality is
typically relaxed only for the purposes of tie-breaking. The notion of Arribillaga and
Massó is inappropriate in this setting. The purpose of this paper is to see whether
the original notion of Pathak and Sönmez is any better.

1.1. Our contribution

We apply the manipulability notion of Pathak and Sönmez to the families of
k-approval and truncated Borda voting rules. In Section 2 we introduce key terms
and notation. In Section 3 we find that all members of the k-approval family are
incomparable with respect to this notion. In Section 4 we find that in the truncated
Borda family, in the special case of two voters, (k + 1)-Borda is more manipulable
than k-Borda; all other members are incomparable. We conclude in Section 5.

2. Preliminaries

Let V, |V| = n, be a set of voters, C, |C| = m, a set of candidates, and L(C) the
set of linear orders over C. Every voter is associated with some ⪰i∈ L(C), which
denotes the voter’s preferences. A profile P ∈ L(C)n is an n-tuple of preferences, Pi

is the ith component of P (i.e. the preferences of voter i), and P−i the preferences
of all the other voters.

A voting rule is a mapping:

f : L(C)n → C

Note two consequences of the definition above. First, the number of voters and
candidates is integral to the definition of a voting rule. I.e., for the purposes of
this paper the Borda rule with n = 3,m = 4 is considered to be a different voting
rule from the Borda rule with n = 4,m = 3. This is why our results meticulously
consider every combination of n and m in detail.

Second, since we are requiring the voting rule to output a single candidate, we are
assuming an inbuilt tie-breaking mechanism. For the purposes of this paper, all ties
will be broken lexicographically. Capital letters will be used to denote candidates
with respect to this tie-breaking order. That is, in a tie between A and B the tie is
broken in favour of A. In the case of subscripts, ties are broken first by alphabetical
priority, then by subscript. That is, in the tie {A3, A5, B1 }, the winner is A3 since
A has priority over B and 3 is smaller than 5.

In cases where we do not know a candidate’s position in the tie-breaking order,
we denote the candidate with lower case letters. Thus, if the tie is { a, b, c }, we
cannot say who the winner is, and must proceed by cases.

We study two families of voting rules:

Definition 1. k-approval, denoted αk, is the voting rule that awards one point to
a candidate each time that candidate is ranked in the top k positions of a voter. The
highest scoring candidates are the tied winners, ties are broken lexicographically.

k-Borda, denoted βk, is the voting rule that awards k−i+1 points to a candidate
each time that candidate is ranked ith, i ≤ k. The highest scoring candidates are
the tied winners, ties are broken lexicographically.

The corner case of α1 = β1 is also known as the plurality rule, while βm−1 is
known as the Borda rule.
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Both families are special cases of scoring rules, under which a candidate gains si
points each time it is ranked ith. Under k-approval, s1 = · · · = sk = 1, while under
k-Borda si = max(0, k − i+ 1).

We will be comparing the k-approval and k-Borda families of voting rules via
the notion of manipulability pioneered by Pathak and Sönmez (2013).

Definition 2 (Pathak and Sönmez, 2013). Let f, g be two voting rules. We
say that f is manipulable at profile P just if there exists a voter i and a preference
order P ′

i such that:
f(P ′

i , P−i) ≻i f(Pi, P−i).

We say that f is more manipulable than g, denoted f ≥PS g, just if, for every
profile P , if g is manipulable at P then so is f .

f >PS g is shorthand for f ≥PS g and f ≱PS g, and f ×PS g is shorthand for
f ≱PS g and g ≱PS f .

3. k-Approval Family

In this section we fix i < j. Our final result (Theorem 1) is that for any n,m,
αi ×PS αj – any two members of the approval family are incomparable using the
notion of Pathak and Sönmez.

Proposition 1. For all n,m: αi ≱PS αj.

Proof. Consider a profile with i B candidates, j − i A candidates, and m − j C
candidates.

n− 1 voters of type 1 B1 . . . Bi A1 . . . Aj−i C1 . . . Cm−j

1 voter of type 2 B1 . . . Bi Aj−i . . . A1 C1 . . . Cm−j

In αj all A and B candidates are tied by score, and A1 wins the tie. The voter
of type 2 can swap A1 for C1. This will lower the score of A1 from n to n− 1, while
the other A and B candidates still have n. If j − i > 1, the winner will be A2. If
j − i = 1, the winner will be B1. In either case, the outcome will be better for the
manipulator.

In αi B1 wins, so every voter gets his best outcome. No one has an incentive to
manipulate.

Lemma 1. For n = 2q,m ≥ 2j − 1: αj ≱PS αi.

Proof. The profile consists of j−1 B candidates, j−1 C candidates, one A candidate,
and m− 2j + 1 D candidates. The condition that m ≥ 2j − 1 guarantees that the
top j candidates of voters of types 1 and 2 intersect only at A:

q voters of type 1 B1 . . . Bi Bi+1 . . . Bj−1A C1 . . . Cj−1D1 . . . Dm−2j+1

q − 1 voters of type 2 AC1 . . . Ci−1 Ci . . . Cj−1 B1 . . . Bj−1D1 . . . Dm−2j+1

1 voter of type 3 C1 . . . Ci Ci+1 . . . Cj−1A B1 . . . Bj−1D1 . . . Dm−2j+1

Under αi, A has q − 1 points, B1 through Bi and C1 through Ci−1 have q, Ci

has 1. The winner is B1. The voter of type 3 can manipulate by swapping A for C1.
A will have q points and will beat B1 in the tie.
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Under αj , A has n points and is the winner. Voters of type 2 get their best
choice elected. A voter of type 1 would rather have a B candidate win, but A has a
lead of at least one point on these. Moving A below the jth position will only drop
the score by one, and A will win the tie. The voter of type 3 would rather see a C
candidate win, but A has a lead of at least one. Dropping A’s score will at most
force a tie, which A will win.

Lemma 2. For n = 2q + 1,m ≥ 2j − 1: if i ≥ 2, then αj ≱PS αi.

Proof. The profile consists of j B candidates, j − 1 A candidates, and m − 2j + 1
C candidates. The condition that m ≥ 2j − 1 guarantees that the top j candidates
of voters of types 1 and 2 intersect only at B1:

q voters of type 1
≥2︷ ︸︸ ︷

A1 . . . Ai B1Ai+1 . . . Aj−1 B2 . . . BjC1 . . . Cm−2j+1

q voters of type 2 Bi . . . B1 Bi+1 . . . Bj A1 . . . Aj−1C1 . . . Cm−2j+1

1 voter of type 3 B1 . . . Bi Bi+1 . . . Bj A1 . . . Aj−1C1 . . . Cm−2j+1

Under αi, the winner is B1 with q + 1 points. An voter of type 2 can swap B1

with Bj , and B2 will win (since i ≥ 2, B1 and B2 are necessarily distinct).
Under αj , B1 wins with n points. The other B candidates have at most n − 1

points, and the A candidates have at most n − 2. A voter of type 2 would rather
see another B candidate win, but such a voter can only lower the score of B1 by 1,
and B1 will win the tie against any B candidate. A voter of type 1 would rather
see an A candidate win, but B1 has a lead of at least two points, so will beat the A
candidates by points even if ranked last.

Lemma 3. For all n,m: if i = 1, then αj ≱PS αi.

Proof. The profiles consist of candidates A,B,C, and D1 through Dm−3.
Case one: n even, n = 2q.

q voters of type 1 B AD1 . . . Dj−2 CDj−1 . . . Dm−3

q − 1 voters of type 2 A BD1 . . . Dj−2 CDj−1 . . . Dm−3

1 voter of type 3 C AD1 . . . Dj−2 BDj−1 . . . Dm−3

Under αi, B has q points, A has q − 1, and C has 1. If q ≥ 2, B wins by score,
and if q = 1, B wins the tie. The voter of type 3 can swap C with A to force a tie,
which A will win.

Under αj , A is the winner with n points. Voters of type 2 have no incentive to
manipulate. A voters of type 1 would rather see B win, but B has at most n − 1
points, so a voter of this type can at most force a tie, which A will win. Likewise,
the voter of type 3 would rather C win, who has 1 point. Decreasing A’s score will
at most force a tie.

Case two: n odd, n = 2q + 1.

q voters of type 1 B CD1 . . . Dj−2 ADj−1 . . . Dm−3

q voters of type 2 A BD1 . . . Dj−2 CDj−1 . . . Dm−3

1 voter of type 3 C BD1 . . . Dj−2 ADj−1 . . . Dm−3

Under αi, A wins by tie-breaking. The voter of type 3 can swap C with B to
give B a points victory.



Comparing the Manipulability of Approval Voting and Borda 241

Under αj , B wins with n points. A voter of type 2 would rather see A win, but
B has at least a two point lead, so he cannot force a tie. The voter of type 3 would
rather C win, but C is behind by at least one point, so he can at best force a tie,
which B will win.

Corollary 1. For all n,m ≥ 2j: αj ≱PS αi.

Proof. Follows from Lemma 1, Lemma 2, and Lemma 3.

Lemma 4. For all n,m < 2j: if i ≥ 2, then αj ≱PS αi.

Proof. Case one: m ≥ i+ j.
Since m ≥ i+ j = 2i+(j− i), we can guarantee the existence of 2i A candidates

and (j−i) B candidates. The remaining m−(i+j) candidates are the C candidates.
Observe that since m < 2j, the number of the C candidates is smaller than the
number of the B candidates (m− j − i < j − i).

⌊n/2⌋ voters of type 1
≥2︷ ︸︸ ︷

A1 . . . Ai B1 . . . Bj−i A2i . . . Ai+1

<j−i︷ ︸︸ ︷
C1 . . . Cm−(i+j)

⌈n/2⌉ voter of type 2 Ai+1 . . . A2i B1 . . . Bj−i Ai . . . A1C1 . . . Cm−(i+j)

Under αi, if n is even the winner is A1. A voter of type 2 can manipulate by
swapping A2i with Ai, giving Ai n/2 + 1 points. Since i ≥ 2, Ai ̸= A1. If n is odd,
the winner is Ai+1 with ⌈n/2⌉ points. A voter of type 1 can swap A1 with A2i to
give A2i ⌈n/2⌉+ 1 points. Since i ≥ 2, A2i ̸= Ai+1.

Under αj , all the B candidates have n points, and the winner is B1. A voter of
type 1 would rather see one of A1, . . . , Ai win. Since he cannot raise the score of
these, he will have to lower the score of the B candidates. However, there are more
B candidates than C candidates, so if the voter were to rank all the B candidates
below the jth position, he would necessarily raise the score of one of Ai+1, . . . , A2i

to ⌈n/2⌉+1. That candidate would then win by score, and he is even worse for the
manipulator than B1.

Likewise, a voter of type 2 would rather see one of Ai+1, . . . , A2i win. He can
attempt to rank all the B candidates below j, but then one of A1, . . . , Ai will get
⌊n/2⌋+ 1 ≥ ⌈n/2⌉ points and win the election (possibly by tie-breaking).

Case two: m < i+ j.
In the profile below we have i C candidates, j − i B candidates, and m − j A

candidates. Since m < i + j, m − j < i, so the voters of type 1 can rank all the A
candidates in the top i positions, as well as at least one B candidate.

n− 1 voters of type 1
≥1︷ ︸︸ ︷

B1 . . . Bi−(m−j)

≥1︷ ︸︸ ︷
A1 . . . Am−j any order any order

1 voter of type 2 C1 . . . Ci B1 . . . Bj−i A1 . . . Am−j

Under αi, the winner is A1. The voter of type 2 can manipulate by ranking B1

first.
Under αj , the winner is B1 (either by score, or winning a tie against a C candi-

date). The voters of type 1 get their best choice elected. The voter of type 2 would
rather see a C candidate win, but to do so he would have to lower the score of the
B candidates. If he ranks any B candidate below the jth position, he would have
to rank one of the A candidate above – that candidate would then win the election
with n points, and the outcome would be worse than B1.
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Corollary 2. For all n,m < 2j: αj ≱PS αi.

Proof. Follows from Lemma 3 and Lemma 4.

Theorem 1. For all n,m: αi ×PS αj.

Proof. By Proposition 1, αi ≱PS αj . By Corollary 1 and Corollary 2, αj ≱PS αi.

4. The k-Borda Family

As before, we fix i < j. In this section we will show that for n = 2, j ̸= m − 1,
βj >PS βi (Corollary 5), but in all other cases the rules are incomparable (Theorem
2, Corollary 3, Proposition 2).

We make use of a standard result about the manipulability of scoring rules:

Lemma 5. Consider a profile P , and scoring rule f . Let w be the winner under
sincere voting, f(P ) = w. Call all the candidates voter i perceives to be at least as
bad as w (including w) the bad candidates. Call the other candidates the good can-
didates. Order the good candidates g1, . . . , gq and the bad candidates b1, . . . , br from
the highest to the lowest scoring in P−i. In case of equal scores, order candidates
by their order in the tie-breaking. We claim that if i can manipulate f at P , he can
manipulate with the following vote:

P ∗
i = g1 ≻ · · · ≻ gq ≻ br ≻ · · · ≻ b1.

Proof. Let score(c, P ) be the score of candidate c at profile P . Suppose voter i can
manipulate at P . That is, there is a P ′

i such that f(P ′
i , P−i) = gj . In order to be

the winner, gj must have the highest score.

score(gj , P ′
i , P−i) ≥ max

c̸=gj
(score(c, P ′

i , P−i)). (1)

Observe that score(gj , P ′
i , P−i) = score(gj , P−i)+sk, where k is the position in which

gj is ranked in P ′
i . By ranking g1 first in P ∗

i it follows that score(g1, P ∗
i , P−i) =

score(g1, P−i) + s1, and observe that score(g1, P−i) ≥ score(gj , P−i), and s1 ≥ sk.
Thus:

score(g1, P ∗
i , P−i) ≥ score(gj , P ′

i , P−i). (2)

We now claim that the score of the highest scoring bad candidate in (P ′
i , P−i)

is no higher than in (P ∗
i , P−i). For contradiction, suppose that bp is the highest

scoring bad candidate in (P ∗
i , P−i), and his score is higher than any bad candi-

date in (P ′
i , P−i). Observe that score(bp, P ∗

i , P−i) = score(bp, P−i) + sm−p+1. Since
score(b1, P−i), . . . , score(bp, P−i) ≥ score(bp, P−i), this means that bad candidates
b1, . . . , bp must all get strictly less than sm−p+1 points in P ′

i . However there are p
such candidates, and only p− 1 positions below m− p+ 1.

Since the highest scoring candidate in (P ′
i , P−i) has at least as many points as

the highest scoring bad candidate, it follows that:

max
c ̸=gj

(score(c, P ′
i , P−i)) ≥ max

b∈{ b1,...,br }
(score(b, P ∗

i , P−i)). (3)

Combining 1, 2, and 3, we conclude that g1 is among the highest scoring candidates
in (P ∗

i , P−i). If at least one of the inequalities is strict, g1 has more points than any
bad candidate and we are done.
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Suppose then in each of 1, 2, and 3 equality holds. Observe that this implies
that if g1 ̸= gj , then g1 must come before gj in the tie-breaking order. To see this,
observe that if we assume score(g1, P ∗

i , P−i) = score(gj , P ′
i , P−i), then it follows

that score(g1, P−i) + s1 = score(gj , P−i) + sk, where k is the position in which gj is
ranked in P ′

i . Since score(g1, P−i) ≥ score(gj , P−i), and s1 ≥ sk, the only way this is
possible is if score(g1, P−i) = score(gj , P−i). By definition, in the case of equal scores
in P−i, the candidate that is labelled g1 must have priority in the tie-breaking.

If g1 also wins the tie against any bad candidate, we are done. For contradiction,
suppose a bad candidate bp wins the tie given P ∗

i . This means that bp beats g1 and
gj in the tie-breaking. Observe that bp is ranked in position m− p+ 1 in P ∗

i . Since
bp loses in (P ′

i , P−i), bp must have been ranked lower than m− p+ 1 in P ′
i . This

means bp was ranked lower than at least m − p + 1 candidates. Since m = q + r,
and there are q candidates, this means bp was ranked lower than at least r − p+ 1
bad candidates. In P ∗

i , bp is ranked below exactly r − p bad candidates, so there
must exist a bad candidate that was ranked above bp in P ′

i , but is ranked below
bp in P ∗

i . Call this candidate bt. By definition of P ∗
i , it must be the case that

score(bt, P−i) > score(bp, P−i) or score(bt, P−i) = score(bp, P−i) and bt wins the tie.
But that is impossible, because then bt would have gained at least as many points
in (P ′

i , P−i) as bp did in (Pi∗, P−i), and since the score of bp in (Pi∗, P−i) is equal
to g1, it means bt has at least as many points in (P ′

i , P−i) as gj , so wins either by
points or by tie-breaking.

Lemma 6. For n = 2q, all m: βi ≱PS βj.

Proof. Consider a profile with one A candidate, one B candidate, and m − 2 C
candidates:

1 voter of type 1 AC1 . . . Ci−1 Ci . . . Cj−2B Cj−1 . . . Cm−2

1 voter of type 2 BACm−2 . . . Cm−i+1 Cm−i . . . Cm−j+1 Cm−j . . . C1

q − 1 voters of type 3 AC1 . . . Ci−1 Ci . . . Cj−1 Cj−2 . . . Cm−2B
q − 1 voter of type 4 BCm−2 . . . Cm−i Cm−i−1 . . . Cm−j Cm−j−1 . . . C1A

Under βj , A has qj + (j − 1) points. B has qj + 1. C1 is the highest scoring C
candidate with q(j − 1). The winner is A. However, the voter of type 2 can rank A
last and shift the C candidates up one. This gives A a score of qj, B’s score is still
qj + 1, and a C candidate’s is at most q(j − 1) + 1. B wins a points victory.

Under βi, A has qi+(i−1) = qi+i−1 points. B has qi. C1 has q(i−1), the other
C candidates no more. Voters of type 1 and three have no incentive to manipulate.
The voter of type 2 would rather see B win, but by Lemma 5 this would mean
ranking A last, and A would still have qi points and win the tie. A voter of type 4
would rather see anyone win, and by Lemma 5 this involves putting either B or C1

first. B is already ranked first and does not win, and putting C1 first would give C1

q(i− 1) + i = qi− q + i points, which is less than A.

Lemma 7. For n = 2q + 1, all m: βi ≱PS βj.

Proof. Consider a profile with one A candidate, one B candidate, and m − 2 C
candidates:

1 voter of type 1 BC1 . . . Ci−1 Ci . . . Cj−2A Cj−1 . . . Cm−2

q voters of type 2 BAC1 . . . Ci−2 Ci−1 . . . Cj−2 Cj−1 . . . Cm−2

q voters of type 3 ABCm−2 . . . Cm−i+1 Cm−i . . . Cm−j+1 Cm−j . . . C1
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Under βi, A has qi+ q(i−1) = 2qi− q points. B has (q+1)i+ q(i−1) = 2qi− q+ i.
All the C candidates are Pareto dominated by B, so the winner is B. A voter of
type 3 would like to see A win, but if he ranks B last, A will have 2qi− q points to
B’s 2qi− q + i− (i− 1) = 2qi− q + 1, so B would still win.

Under βj , A has qj+q(j−1)+1 = 2qj−q+1, B has (q+1)j+q(j−1) = 2qj−q+j.
If a voter of type three ranks B last and shifts the C candidates up one, B will have
2qj − q + j − (j − 1) = 2qj − q + 1, tying with A, and A wins the tie. It remains
to check that A will have more points than the highest scoring C candidate, which
is clearly C1. After the manipulation, C1’s score will increase by at most one. C1’s
score before manipulation is j − 1 + q(j − 2), so A will beat C1 if:

2qj − q + 1 ≥ j + qj − 2q,

qj − q ≥ j − 1− 2q,

qj − j ≥ −1− q,

(q − 1)j ≥ −1− q,

which is always satisfied.

Corollary 3. For all n,m: βi ≱PS βj.

Proof. Follows from Lemma 6 and Lemma 7.

Lemma 8. For n = 2q + 1, all m: βj ≱PS βi.

Proof. Consider the following profile:

q voters of type 1 ABCm−2 . . . Cm−i+1 Cm−i . . . Cm−j+1 Cm−j . . . C1

q − 1 voters of type 2 BAC1 . . . Ci−2 Ci−1 . . . Cj−2 Cj−1 . . . Cm−2

1 voters of type 3 BC1 . . . Ci−1 Ci . . . Cj−1 Cj . . . Cm−2A
1 voter of type 4 C1 . . . Ci BCi+1 . . . Cj−1 Cj . . . Cm−2A

Under βi,A has qi+(q−1)(i−1) = 2qi−q−i+1 points.B has qi+q(i−1) = 2qi−q.
C1 is clearly the highest scoring C candidate, and has i+ (i− 1) + (q − 1)(i− 2) =
qi + i − 2q + 1 points. If i > 1, B wins a points victory, but a voter of type 1 can
rank B last to force a tie, which A will win. If i = 1, then A wins by tie-breaking,
but the voter of type 4 can rank B first to make B the winner.

Under βj , A has qj + (q − 1)(j − 1). B has qj + q(j − 1) + (j − i). A voter of
type 1 would like to manipulate in favour of A, but if he ranks B last, B’s score
will only drop by j − 1, and B will still win.

The voter of type 4 would rather see one of C1 through Ci win. Observe that an
upper bound on the score a C candidate can get from the voters of type 1 through
3 is q(j − 1) – for q − 1 voters of types 1 and 2, each time the first group gives the
candidate j − 2 − k points, the other gives at most k points, for an upper bound
of (q − 1)(j − 2). The voter of type 3 ranks all C candidates one position higher,
so combined with the remaining voter of type 1 the contribution to the candidate’s
score is at most j−1, which gives a total of (q−1)(j−2)+(j−1) < q(j−1). If the
voter ranks B last and the C candidate first, B will still have qj + q(j − 1) points
to the C’s candidate j + q(j − 1), so B will still win.

Lemma 9. For n = 2q, all m: if q > 2, βj ≱PS βi.
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Proof. Consider the following profile:

q − 1 voters of type 1 ABCm−2 . . . Cm−i+1 Cm−i . . . Cm−j+1 Cm−j . . . C1

q − 2 voters of type 2 BAC1 . . . Ci−2 Ci−1 . . . Cj−2 Cj−1 . . . Cm−2

1 voter of type 3 BC1 . . . Ci−1 Ci . . . Cj−1 Cj . . . Cm−2A
1 voter of type 4 C1 . . . Ci BCi+1 . . . Cj−1 Cj . . . Cm−2A
1 voter of type 5 Cm−2 . . . Cm−i−1 BCm−i−2 . . . Cm−j Cm−j−1 . . . C1A

Case one: m > 3, and hence C1 ̸= Cm−2.
Under βi, A has (q−1)i+(q−2)(i−1) points and B has (q−1)i+(q−1)(i−1).

A C candidate has at most (q − 2)(i − 2) + (i − 1) + (i + 1) – observe that if the
candidate gets i − 2 − k points from a voter of type 1, he gets at most k from a
voter of type 2, which gives us at most (q − 2)(i − 2) from q − 2 of each type of
voter; the voter of type 3 gives one more point to the candidate, so paired with the
remaining voter of type 1, the contribution is i − 1; as for the voters of voters of
type 4 and 5, if one gives the candidate i− k points, the other gives at most k + 1,
for the remaining (i+ 1).

Since q > 2, A and B have more points than the C candidates. If i > 1, B also
beats A by points, but a voter of type 1 can rank B last and shift the C candidates
up one to force a tie between A and B. This operation will raise the score of a C
candidate by at most 1, so such a candidate will at worst enter the tie, which A
wins. If i = 1, A wins by tie-breaking, but a voter of type 4 can rank B first to give
him one more point.

Under βj , A has (q − 1)j + (q − 2)(j − 1) points, B has (q − 1)j+
(q − 1)(j − 1) + 2(j − i). B has more points than A, and a voter of type 1 can
no longer change this by ranking B last.

A voter of type 4 would like to manipulate in favour of one of C1 through Ci.
As we have argued above, such a candidate would get no more than (q−2)(j−2)+
(j − 1) from voters of types 1 through 3, which we round up to (q − 1)(j − 1). If
the manipulator ranks this candidate first, he will get at most 2j from the voters
of type 4, 5 for an upper bound of 2j + (q − 1)(j − 1). In comparison, B gets
(q − 1)j + (q − 1)(j − 1) from the voters of type 1 through 3. Since q > 2, B would
still win. The argument for the voter of type 5 is analogous.

Case two: m = 3. The same profile we had above collapses to the following:

q − 1 voters of type 1 A B C
q − 2 voters of type 2 B A C

1 voter of type 3 B C A
1 voter of type 4 C B A
1 voter of type 5 C B A

The argument with respect to A and B is unchanged. We need only verify that C
cannot win under βi or βj .

Under βi, C has exactly 2 points. A and B are tied with q− 1, and the voter of
type 4 can only manipulate in favour of B by ranking B first.

Under βj , C has exactly 5 points. B has at least 8, and a voter of type 4 or 5
can only lower B’s score by one point.

Lemma 10. For n = 4, all m: βj ≱PS βi.
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Proof. Case one: i > 1.

2 voters of type 1 BCm−2 . . . Cm−i Cm−i−1 . . . Cm−j Cm−j−1 . . . C1A
1 voter of type 2 ABC1 . . . Ci−2 Ci−1 . . . Cj−2 Cj−1 . . . Cm−2

1 voter of type 3 AC1 . . . Ci−1 Ci . . . Cj−2B Cj−1 . . . Cm−2

Under βi, B wins with 2 + i− 1 points. The voter of type 2 can manipulate by
ranking B last.

Under βj , B wins with 3j points. If the voter of type 2 ranks B last, B will still
have 2j + 1, beating A. The voter of type 3, likewise, cannot manipulate in favour
of A, but could try to manipulate in favour of a C candidate. If he ranks B last
and Ci−1 first, then B will have a score of 3j − 1. We can bound Ci−1’s score by
j (from one voter of type 1 and type 2) +j (the manipulator ranks Ci−1 first) +x
(the points from the remaining voter of type 1). In order for Ci−1 to win, we must
have 2j + x > 3j − 1, which is clearly impossible.

Case two: i = 1.

2 voters of type 1 B ACm−2 . . . Cm−j+1 Cm−j . . . C1

1 voter of type 2 A C1 . . . Cj−1 Cj−1 . . . Cm−2B
1 voter of type 3 C1 AC2 . . . Cj−1 Cj . . . Cm−2B

Under β1, B is the winner, but the voter of type 3 can manipulate in favour of A.
Under βj , A has 4j − 3 points to B’s 2j. Since j ≥ 2, A is the winner. A voter

of type 1 would rather see B win, but even if he ranks A last, A will still have
3j − 2 ≥ 2j points. A voter of type 3 would rather see C1 win, but C1 has 2j − 1
points, so would lose to B no matter what the voter does.

Corollary 4. For n > 2, all m: βj ≱PS βi.

Proof. Follows from Lemma 8, Lemma 9, and Lemma 10.

Theorem 2. For n > 2, all m: βi ×PS βj.

Proof. Follows from Corollary 3 and Corollary 4.

Thus far the story resembles that of k-approval. However, in the case of n = 2,
a hierarchy of manipulability is observed:

Theorem 3. For n = 2, m > k + 2: βk+1 ≥PS βk.

Proof. Let voter 1’s preferences be c1 ≻1 · · · ≻1 cm and voter 2’s b1 ≻2 · · · ≻2 bm.
Note that c1 ̸= b1, else manipulation would not be possible.

Let βk(P1, P2) = d and βk+1(P1, P2) = e. We consider whether or not d = e by
cases.

Case one: d = e.
Assume voter 1 can manipulate βk in favour of cq ≻1 d. By Lemma 5, this means

cq is the winner in the following profile:

P ∗
1 cqbm . . . bm−k+1 bm−k bm−k−1 . . . b1
P2 b1 . . . bk bk+1 bk+1 . . . bm

Let us consider who the winner must be under βk+1(P
∗
1 , P2). Observe that the

score of a candidate under βk+1 is at most two points higher than under βk – it
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will increase by one point for each voter who ranks the candidate in the top k + 1
positions.

If cq’s points increase by 2 points, then we are done – whenever cq has more
points than f under βk, cq still has more points under βk+1; and if cq is tied with
f under βk then that must mean cq beats f in the tie, under βk+1 cq will either tie
with f and win the tie, or have more points outright. Thus, voter 1 can manipulate
in favour of cq ≻1 d.

If cq’s points increase by 1, then that must mean that voter 2 does not rank cq in
the top k+1 positions, and a fortiori in the top k positions. Thus, under βk(P ∗

1 , P2)
cq has k points, b1 has k points, and the other candidates strictly less. Under βk+1

cq and b1 will still tie at k + 1, and, since m > k + 2, the other candidates will still
have strictly less.

Case two: d ̸= e.
As we have argued before, the score of a candidate can increase by at most two

points when going from βk to βk+1. Since d wins under βk but e wins under βk+1,
this means that e’s score must increase by 2 and d’s by 1. This means that one
voter does not rank d in the top k + 1 positions, and, since d must still win under
βk, this means the other voter must rank d first (at least one candidate will have a
score of k, so the winner’s score must be at least k). Since voter 1 is the one with
an incentive to manipulate, this means the sincere profile must be the following:

Voter 1 c1 . . . ci−1eci+1 . . . cm
Voter 2 db2 . . . bj−1ebj+1 . . . bm

Under βk d either has one point more than e, or they are tied and d wins the
tie. Under βk+1 e wins, which means d’s score increases by 1 and e’s by two — thus
d cannot be in the top k + 1 positions of voter 1. But this means in the sincere
profile both d and c1 have k points under βk, and d wins the tie. Voter 2 can thus
manipulate βk+1 as follows:

Voter 1 c1 . . . ci−1eci+1 . . . cm
Voter 2 dcm . . . c1

Both d and c1 have k + 1 points, since m > k + 2 the other candidates have
strictly less, and d wins the tie.

Corollary 5. For n = 2, k < m− 2: βj >PS βi.

Proof. Follows from the transitivity of ≥PS , Theorem 3, and Corollary 3.

To finish, we observe that the proviso that m > k + 2 really is necessary — the
Borda rule proper (βm−1) is incomparable with βk.

Proposition 2. For n = 2, all m: βm−1 ≱PS βk.

Proof. Consider the following profile, with a B candidate, a C candidate, and m−2
A candidates:

Voter 1 BCA1 . . . Ak−2 Ak−1 . . . Am−2

Voter 2 CA1 . . . Ak−1 Ak . . . Am−2B

Under βk, if k > 1 then C is the winner with 2k − 1 points. Voter one can
manipulate by voting B ≻ Am ≻ · · · ≻ A1 ≻ C. This way B will have k points,
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and the other candidates strictly less. If k = 1 then B is the winner by tie-breaking.
Voter 2 can manipulate by voting for A1.

Under βm−1, C is the winner. Voter 2 has no incentive to manipulate, voter 1
would rather see B win. By Lemma 5, if this is possible then it is possible in the
following profile:

Voter 1 BAm−2 . . . A1C
Voter 2 CA1 . . . Am−2B

However, in this profile all candidates are tied with m− 1 points, and A1 wins
the tie, which is worse than C for the manipulator.

5. Conclusion

In this paper we have shown:

1. For any choice of n,m: αi ≱PS αj ;
2. For n = 2, i < j, j ̸= m = 1: βj >PS βi;
3. In every other instance, βi ≱PS βj .

These results suggest that the notion of Pathak and Sönmez is ill-suited to
the case of voting. Even in the case of two natural, hierarchical families of scoring
rules, the notion fails to make a meaningful distinction between their manipulability.
The quest for a useful framework for comparing the manipulability of voting rules
continues.
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