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Abstract The stability of coalition structures is investigated in the sense
that no player prefers to individually deviate from the current coalition con-
sidering his utility. This principle is close to the concept of the Nash equi-
librium. The evaluation of each player’s utility is determined with respect
to the solution concept– the Shapley value with exogenous directed graph
constraint. The existence of a stable coalition structure with respect to such
a solution is examined for two-player as well as three-player games.
Keywords: coalition structure, stability, the Shapley value, directed graph.

1. Introduction

The issue of coalition formation has been an increasing prominence since it
is natural for individuals to seek a group of partners for jointly obtaining a de-
sired outcome. It has been studied from several points of view, beginning with
(Aumann and Dreze, 1974), where the static case of coalitional games in the pres-
ence of a given coalition structure is considered. In (Bloch, 1995) together with
(Bloch, 1996), Bloch considers an infinite horizon game, in which a coalition can
be formed only if all prospective members agree to form it. A dynamic model of
endogenous coalition formation in cooperative games with transferable utility is an-
alyzed in (Arnold and Schwalbe, 2002), where a player decides which of the existing
coalitions to join and asks a payoff at each step.

The emergence of coalition structures leads to a reasonable argument: what
should be meant by a stable coalition structure? More recently, many researches
focus on the examination of stable coalition structures. For instance, in (Yi, 1997),
the author investigates endogenous coalition formation among symmetric players
and examines the stability of the grand coalition under various rules. In (Bogomol-
naia and Jackson, 2002), four forms of stable coalition structures in hedonic games
are considered, and each of them captures the idea that no player has an incentive
to change the current coalition structure. Moreover, multiple coalition formation
among players is studied in (Sáiz et al., 2006), where the authors in particular pay
attention to the analysis of the stability of coalitions under different membership
rules. Later, in (Apt and Witzel, 2009), a generic method to coalition formation is
proposed, where possible operations on coalitions are only to merge and to split,
and these operations take place when they result in an improvement in a certain
sense. It is proved that stable coalition structure always exists with respect to the
Shapley value and the ES-value in three-player games in (Sedakov et al., 2013). In
(Parilina and Sedakov, 2014a), the authors seek the stable coalition partition in a
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game of cost reduction, where the characteristic function is of a specific form, and
in (Parilina and Sedakov, 2014b), they examine the stable coalition structures in
the game with a given communication topology. The existence of a stable coalition
structure with respect to the Shapley value as well as the equal surplus division
value in four-person games with special characteristic function is investigated in
(Sun and Parilina, 2018). In (Gusev and Mazalov, 2019), the existence of a Nash-
stable coalition structure is proved for cooperative games with the Aumann-Dreve
value using the framework of potential functions. In comparison with (Sedakov et
al., 2013), the chance of players to block the deviation of a player is considered in
the case when payoffs reduce with this deviation in (Sun et al., 2021).

In the present paper, we examine the existence of a stable coalition struc-
ture in two-player as well as three-player games with respect to the solution con-
cept based on the Shapley value with exogenous directed graph constraint (see
Khmelnitskaya et al., 2016). We find there must be stable coalition structures in
two-player games, while in three-player games, only when particular structures are
applied as the exogenous directed graph constraints for such solution concept, there
always exists a stable coalition structure.

The paper is organized as follows. In Section 2., the model of game with coalition
structure is given, and the definition of stable coalition structure with respect to a
solution concept is introduced. In Section 3., we first state the issue of the transfor-
mation of characteristic function, then specifically introduce the solution concept –
the Shapley value with exogenous directed graph constraint, later primarily examine
the existence of the stable coalition structure. We conclude in Section 4.

2. Game with Coalition Structure

2.1. Definitions and notations

Let the set of players be N = {1, . . . , n}, n ≥ 3. We give a brief description of
a cooperative game. A cooperative game with transferable utility is a pair (N, v),
where v : 2N → R is a characteristic function that assigns the worth v(S) to
every coalition S ⊆ N , with v(∅) = 0. For the simplicity of notation and if no
ambiguity appears, we write v when we refer to game (N, v). It is natural to allow
the formation of not only a grand coalition, but also any coalition S ⊆ N , indicating
the characteristic function might not be supperadditive, i.e., there exists at least
two disjoint coalitions S, T ⊂ N such that v(S∪T ) < v(S)+v(T ). It may take place
when some players get larger payoff if they form a smaller coalition. As a result, we
allow the formation of not only the grand coalition, and consider the games with a
coalition structure.

Definition 1. Coalition structure C = {B1, . . . , Bm} is a partition of set N if
B1 ∪ . . . ∪Bm = N and Bi ∩Bj = ∅ for all i, j = 1, . . . ,m, i ̸= j.

Denote a game with player set N , characteristic function v and coalition struc-
ture C by (N, v, C).

Definition 2. A profile xC = (xC1 , . . . , x
C
n ) ∈ Rn is a payoff distribution in game

(N, v, C) if the efficiency condition, i.e.,
∑

i∈Bj

xCi = v(Bj), is satisfied for any coalition

Bj ∈ C, j = 1, . . . ,m.
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Definition 3. A payoff distribution xC is an allocation in game (N, v, C) if the
individual rationality condition, i.e., xCi ≥ v({i}) holds for each player i ∈ N .

Denote the coalition partition C \ Bi ⊂ C by C−Bi
, and the coalition which

contains player i ∈ N by B(i) ∈ C.

2.2. Stable coalition structures

We define a stable coalition structure taking into account the player’s playoff as
a member of her coalition. To be precise, each player compares her payoff according
to the existing coalition structure with the payoffs she can get if she deviates from
his coalition and other players remain in their coalitions. She is able to modify
coalition structure becoming a singleton or deviating to another coalition from the
current one. If any player cannot increase her payoff by the way described above,
the coalition structure is called stable. Below we provide the definition in a formal
way.

Definition 4. (Sedakov et al., 2013) Coalition structure C = {B1, . . . , Bm} is said
to be stable with respect to a single-valued cooperative solution concept if for any
player i ∈ N the inequality

xCi ≥ xC
′

i holds for all C
′
= {B(i) \ {i}, Bj ∪ {i}, C−B(i)∪Bj

}, Bj ∈ C ∪∅, Bj ̸= B(i),

where xC and xC
′

are the payoff distributions calculated according to the chosen
cooperative solution concept respectively for games (N, v, C) and (N, v, C

′
).

3. Existence of Stable Coalition Structures

3.1. Transformation of characteristic function

Consider a coalition structure C which is stable with respect to a single-valued
solution and xC is the corresponding allocation, and new characteristic function
u(·) is constructed by a transformation of function v(·) as follows:

u(S) = v(S) +
∑
i∈S

ci, S ⊆ N.

Setting u({i}) = 0 for each i ∈ N , we may conclude that ci = −v({i}) for all i ∈ N .
Hence,

u(S) = v(S)−
∑
i∈S

v({i}), S ⊆ N. (1)

Following (Petrosjan and Zenkevich, 1996), there is a mapping that every pair
(v(·), xC) corresponds to a pair (u(·), yC), where the components of allocation yC

are defined by
yCi = xCi −

∑
i∈S

v({i}), S ⊆ N. (2)

By (Sedakov et al., 2013), if a coalition structure C is stable with respect to a
single-valued solution concept in game (N, v, C), then C is also stable with respect
to the same solution concept in game (N, u,C) where u(·) is defined by equation (1).
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3.2. The Shapley value with exogenous directed graph constraint

We particularly consider a single-valued cooperative solution concept, which may
not be called well known (see Khmelnitskaya et al., 2016 for details). The solution
assumes the presence of exogenously given directed graph γ representing the players’
hierarchy and taking into account the definition of a cooperative solution.

For a directed graph γ and coalition S ⊆ N , γS = {(i, j)|(i, j) ∈ γ, i, j ∈ S} is
the subgraph of γ on S. If there exists a directed path in γ from player i to player
j, then j is a successor of i and i is a predecessor of j in γ. If (i, j) ∈ γ, then j is
an immediate successor of i and i is an immediate predecessor of j in γ. The set
of all successors of player i in γ is denoted by Sγ(i) and S̄γ(i) = Sγ(i) ∪ {i}. We
say player i ∈ S dominates player j ∈ S in γS , denoted i ≻γS

j, if j ∈ SγS (i) and
i /∈ SγS (j). Let S ⊆ N be called a feasible coalition in γ, if i ∈ S, (i, j) ∈ γ, and
i /∈ Sγ(j) imply S̄γ(j) ⊂ S. The set of all feasible coalitions in γ is denoted by
H(γ).

For a permutation π : N → N , π(i) is the position of player i in π, Pπ(i) = {j ∈
N |π(j) < π(i)} is the set of predecessors of i in π, and P̄π(i) = Pπ(i) ∪ {i}. The
set of all permutations on N is denoted by Π. For a TU-game v, a permutation π
on N and player i ∈ N , the marginal contribution of player i is given by m̄v

i (π) =
v(P̄π(i)) − v(Pπ(i)). A permutation π ∈ Π is consistent with γ if it preserves the
subordination of players determined by γ, i.e., π(j) < π(i) only if j ̸≻γPπ(i)

i. The
set of permutations on N which are consistent with γ is denoted by Πγ . And in
(Khmelnitskaya et al., 2016), it is stated that if π ∈ Πγ , then for any player i ∈ N ,
P̄π(i), Pπ(i) ∈ H(γ).

The Shapley value with γ as the exogenous directed graph constraint (see Khmel-
nitskaya et al., 2016) in cooperative game (N, v) is defined as

Sh(γ) =
1

|Πγ |
∑

π∈Πγ

m̄v(π). (3)

We denote the component of the Shapley value with γ as the exogenous directed
graph constraint for player i ∈ N in game (N, v, C) by Shi(γ,C). And below we
examine the stability of coalition structures taking the Shapley value with exogenous
directed graph constraint as the solution concept to allocate utilities to the players.

3.3. Stable coalition structure in two-player games

In Section 3.1., we know that it suffices to consider the cooperative games with
characteristic function v(·) determined by the form

v({1, 2}) = c, v({1}) = v({2}) = 0, (4)

if we examine the existence of stable coalition structure in two-player games. For
the exogenous directed graph, two graphs γ1 = ∅ and γ2 = {12} are respec-
tively examined. When the empty one γ1 is applied, the solution is consistent
with the classic Shapley value (see Shapley, 1953), and the result is provided in
(Sedakov et al., 2013), which states that there always exists at least one stable
coalition structure with respect to the Shapley value in two-player games. When
graph γ2 is applied, the Shapley value with γ2 as the exogenous directed graph
constraint calculated for the two coalition structures is represented in Table 1.
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Table 1. The Shapley value with γ2 as the exogenous directed graph constraint for a
two-player game determined by (4)

C Sh1(γ2, C) Sh2(γ2, C)

{{1, 2}} c 0
{{1}, {2}} 0 0

From Table 1, we can find that coalition structure {{1, 2}} is stable when c > 0,
{{1}, {2}} is stable when c < 0, and when c = 0, both coalition structures {{1, 2}}
and {{1}, {2}} are stable. Then combining the result in (Sedakov et al., 2013), we
prove the following proposition.

Proposition 1. Let characteristic function be given by (4). In this case, there al-
ways exists at least one stable coalition structure with respect to the Shapley value
with exogenous directed graph constraint.

3.4. Stable coalition structure in three-player games

For three-player games, it suffices to consider the cooperative games with char-
acteristic function v(·) determined by the form

v({1, 2, 3}) = c, v({1}) = v({2}) = v({3}) = 0,

v({1, 2}) = c3, v({1, 3}) = c2, v({2, 3}) = c1.
(5)

With regard to the solution concept, all directed graphs essentially to be examined
among three players are presented in Fig. 1. Note that the empty graph is omitted
under which such solution is consistent with the Shapley value, and the result is
already presented in (Sedakov et al., 2013), where it is concluded that there always
exists at least one stable coalition structure with respect to the Shapley value in
three-player games.

Fig. 1. Directed graphs among three players
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The Shapley values for each graph depicted in Fig. 1 as the exogenous directed
graph constraint calculated for all possible coalition structures, and corresponding
“Stable if” conditions are represented in Tables 2–7.

Table 2. The Shapley value with γ3 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ3, C) Sh2(γ3, C) Sh3(γ3, C) “Stable if” condition

{{1, 2, 3}} (2c− 2c1 + c3)/3 c1/3 (c+ c1 − c3)/3


c1 ≥ 0
2c− 2c1 + c3 ≥ 0
c+ c1 − c3 ≥ 0

{{1, 2}, {3}} c3 0 0


c1 ≤ 0 ≤ c3
c+ c1 − c3 ≤ 0
c2 − 2c3 ≤ 0

{{1, 3}, {2}} c2/2 0 c2/2

{
c1 ≤ 0 ≤ c2
c2 − 2c3 ≥ 0

{{1}, {2, 3}} 0 c1/2 c1/2


c1 ≥ 0
c1 ≥ c2
2c− 2c1 + c3 ≤ 0

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0

Table 3. The Shapley value with γ4 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ4, C) Sh2(γ4, C) Sh3(γ4, C) “Stable if” condition

{{1, 2, 3}} c− c1 c1 0 0 ≤ c1 ≤ c

{{1, 2}, {3}} c3 0 0

{
c1 ≤ 0 ≤ c3
c2 − 2c3 ≤ 0

{{1, 3}, {2}} c2/2 0 c2/2

{
c1 ≤ 0 ≤ c2
c2 − 2c3 ≥ 0

{{1}, {2, 3}} 0 c1 0

{
c2 ≤ 0 ≤ c1
c ≤ c1

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0
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Table 4. The Shapley value with γ5 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ5, C) Sh2(γ5, C) Sh3(γ5, C) “Stable if” condition

{{1, 2, 3}} c− c1 c1/2 c1/2 0 ≤ c1 ≤ c

{{1, 2}, {3}} c3 0 0

{
c1 ≤ 0 ≤ c3
c2 ≤ c3

{{1, 3}, {2}} c2 0 0

{
c1 ≤ 0 ≤ c2
c2 ≥ c3

{{1}, {2, 3}} 0 c1/2 c1/2

{
c1 ≥ 0
c ≤ c1

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0

Table 5. The Shapley value with γ6 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ6, C) Sh2(γ6, C) Sh3(γ6, C) “Stable if” condition

{{1, 2, 3}} (c− c1 + c2)/2 (c− c2 + c1)/2 0 −c ≤ c1 − c2 ≤ c

{{1, 2}, {3}} c3/2 c3/2 0


c3 ≥ 0
c3 − 2c2 ≥ 0
c3 − 2c1 ≥ 0

{{1, 3}, {2}} c2 0 0


c2 ≥ 0
c3 − 2c2 ≤ 0
c+ c1 − c2 ≤ 0

{{1}, {2, 3}} 0 c1 0


c1 ≥ 0
c− c1 + c2 ≤ 0
c3 − 2c1 ≤ 0

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0
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Table 6. The Shapley value with γ7 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ7, C) Sh2(γ7, C) Sh3(γ7, C) “Stable if” condition

{{1, 2, 3}} (c− c1 + c3)/3 (c− c2 + c1)/3 (c− c3 + c2)/3


c− c1 + c3 ≥ 0
c− c2 + c1 ≥ 0
c− c3 + c2 ≥ 0

{{1, 2}, {3}} c3 0 0

{
c1 ≤ 0 ≤ c3
c− c3 + c2 ≤ 0

{{1, 3}, {2}} 0 0 c2

{
c3 ≤ 0 ≤ c2
c− c2 + c1 ≤ 0

{{1}, {2, 3}} 0 c1 0

{
c2 ≤ 0 ≤ c1
c− c1 + c3 ≤ 0

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0

Table 7. The Shapley value with γ8 as the exogenous directed graph constraint for a
three-player game determined by (5) and “Stable if” conditions

C Sh1(γ8, C) Sh2(γ8, C) Sh3(γ8, C) “Stable if” condition

{{1, 2, 3}} c− c1 c1 0 0 ≤ c1 ≤ c

{{1, 2}, {3}} c3 0 0

{
c1 ≤ 0 ≤ c3
c2 ≤ c3

{{1, 3}, {2}} c2 0 0

{
c1 ≤ 0 ≤ c2
c2 ≥ c3

{{1}, {2, 3}} 0 c1 0

{
c1 ≥ 0
c ≤ c1

{{1}, {2}, {3}} 0 0 0


c1 ≤ 0
c2 ≤ 0
c3 ≤ 0

We analyze the existence of stable coalition structures based on Tables 2–7 as
follows.

1. By Table 2, where graph γ3 is applied as the constraint for the solution concept,
we find that when c = 4, c1 = −1, c2 = 1, c3 = 2, no coalition structure is stable.

2. By Table 3, where graph γ4 is applied, we get that when c = −2, c1 = 2, c2 =
2, c3 = −3, no coalition structure is stable.

3. With respect to constraint γ5, when c1 ≥ 0, from Table 4, we can observe that
for coalition structure {{1, 2, 3}} or {{1}, {2, 3}}, at least one is stable; when
c1 ≤ 0, c2 ≥ 0, c3 ≤ 0, {{1, 3}, {2}} is stable; when c1 ≤ 0, c2 ≥ 0, c3 ≥ 0, for
{{1, 2}, {3}} or {{1, 3}, {2}}, at least one is stable; when c1 ≤ 0, c2 ≤ 0, c3 ≥ 0,
{{1, 2}, {3}} is stable; and when c1 ≤ 0, c2 ≤ 0, c3 ≤ 0, {{1}, {2}, {3}} is stable.
Therefore, there always exists at least one stable coalition structure when γ5 is
regarded as the exogenous directed graph constraint for the solution concept.

4. For graph γ6, the examination is provided in Table 8 from which, we conclude
that there always exists stable coalition structure.
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5. For graph γ7, we find that when c = −3, c1 = 3, c2 = 2, c3 = 1, no coalition
structure is stable.

6. Observing Tables 4 and 7, we get that the stable conditions for any certain
coalition structure are the same for graph constraints γ5 and γ8, i.e., the ad-
ditional link from player 2 to player 3 has no impact on the stable conditions
for each coalition structure. Thus, there always exists stable coalition structure
when γ8 is applied.

Table 8. Stable coalition structures under all possible cases of parameters when graph γ6
is applied as the exogenous constraint

c1 c2 c3 c Stable coalition structures

≥ 0 ≤ 0 ≤ 0 ≤ 0 {{1}, {2, 3}}

≥ 0 ≤ 0 ≤ 0 ≥ 0 {{1}, {2, 3}} or {{1, 2, 3}}

≤ 0 ≥ 0 ≤ 0 ≤ 0 {{1, 3}, {2}}

≤ 0 ≥ 0 ≤ 0 ≥ 0 {{1, 3}, {2}} or {{1, 2, 3}}

≤ 0 ≤ 0 ≥ 0 ≤ 0 {{1, 2}, {3}}

≤ 0 ≤ 0 ≥ 0 ≥ 0 {{1, 2}, {3}}

≥ 0 ≥ 0 ≤ 0 ≤ 0 {{1, 3}, {2}} or {{1}, {2, 3}}

≥ 0 ≥ 0 ≤ 0 ≥ 0 {{1, 2, 3}}, {{1, 3}, {2}} or {{1}, {2, 3}}

≥ 0 ≤ 0 ≥ 0 ≤ 0 {{1, 2}, {3}} or {{1}, {2, 3}}

≥ 0 ≤ 0 ≥ 0 ≥ 0 {{1, 2, 3}}, {{1, 2}, {3}} or {{1}, {2, 3}}

≤ 0 ≥ 0 ≥ 0 ≤ 0 {{1, 2}, {3}} or {{1, 3}, {2}}

≤ 0 ≥ 0 ≥ 0 ≥ 0 {{1, 2, 3}}, {{1, 2}, {3}} or {{1, 3}, {2}}

≥ 0 ≥ 0 2c1 ≤ c3 ≤ 2c2 any {{1, 2, 3}}, {{1, 3}, {2}} or {{1}, {2, 3}}

≥ 0 ≥ 0 2c2 ≤ c3 ≤ 2c1 any {{1, 2, 3}} or {{1}, {2, 3}}

≥ 0 ≥ 0 0 ≤ c3 ≤ min{2c1, 2c2} any {{1, 2, 3}}, {{1, 3}, {2}} or {{1}, {2, 3}}

≥ 0 ≥ 0 c3 ≥ max{2c1, 2c2} any {{1, 2}, {3}}

≤ 0 ≤ 0 ≤ 0 any {{1}, {2}, {3}}

Above all, we directly obtain Proposition 2.

Proposition 2. Let characteristic function be given by (5). In this case, there al-
ways exists at least one stable coalition structure with respect to the Shapley value
with the empty graph, and with γ5, γ6 or γ8 given as the exogenous directed graph
constraint.

4. Conlcusion

By establishing the model of games with coalition structure, this paper examines
the existence of stable coalition structures in two-player and three-player games
when the Shapley value with exogenous directed graph constraint is applied as the
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solution concept. We prove that there always exists a stable coalition structure in
two-player games given any characteristic function. We also present the specific
stability analysis for various structures being the graph constraints in three-person
games.
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