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Abstract The paper presents the dynamic characteristics of a vector-host
epidemic model with direct transmission. The malaria propagation model
is defined by a system of ordinary differential equations. The host popula-
tion is divided into four subpopulations: susceptible, exposed, infected and
recovered, and the vector population is divided into three subpopulations:
susceptible, exposed and infected. Using the theory of the Lyapunov func-
tions, certain sufficient conditions for the global stability of the disease-free
equilibrium and endemic equilibrium are obtained. The basic reproduction
number that characterizes the evolution of the epidemic in the population
was found. Finally, numerical simulations are carried out to study the influ-
ence of the key parameters on the spread of vector-borne disease.
Keywords: malaria, mathematical modeling of epidemics, mosquito popu-
lation, subpopulations, reproductive number, endemic equilibrium.

1. Introduction

Malaria is an ancient disease that has a huge social, economic and health burden.
Tropical regions such as Africa, Asia and America are conducive to the rapid spread
of this disease (Cai et al., 2017). Many attempts have been made to describe the
complex dynamics of the host and insect population dynamics with the presence of
malaria infection using mathematical models. The classical population-based models
developed by Ross and Macdonald (Ross, 1916; Macdonald, 1957) are still the basis
for many new approaches (Maliki et al., 2018; Baygents and Bani-Yaghoub, 2017;
Mandal et al., 2011). These models are based on the SIR (Susceptible/Infected/Re-
covered) methodology and sometimes aim at large-scale epidemiological predictions,
and in most scientific articles describing the dynamics of malaria.

The malaria life cycle describes the different phases of the development and re-
production of malaria, an infectious disease carried by mosquitoes and caused by
a variety of protists known as Plasmodium. Five different varieties of Plasmodium
are capable of infecting humans; Plasmodium falciparum tends to cause the most
severe cases of the infection. Malaria infections in individuals are governed by sev-
eral factors such as temperature, climate, environment, etc. The description of the
malaria cycle omit some details. It is worth to say that malaria infection in the
human population begins when sporozoites are delivered into the bloodstream by
an infected female mosquito. Sporozoites migrate to the liver, and after some pe-
riod (sometimes weeks, and sometimes months) they enter the bloodstream in the
form of gametocytes, which the mosquito first receives when exposed by an infected
person. During the development cycle in the mosquito, the injected gametocytes
become gametes that first turn into zygotes, then into motile ookinetes that pierce
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the mosquito’s intestine and release a large number of sporozoites. This cycle can
be schematized in the form (Martens et al., 1995) given in Figure 1.

Fig. 1. Diagram of the main population and rate processes involved in the life cycle of the
malaria parasite (the picture is borrowed from (Martens et al., 1995))

In recent years, a lot of scientific research has been undertaken and progress
has been made in understanding host-parasite-vector interactions and their biology.
However, the complexity of the parasite’s life cycle, the very complex environmental
and social interactions, the evolutionary pressure of drugs and control measures
contributing to the parasite’s resistance to drugs, the unforeseen effects of climate
change and the migration of the population between endemic and non-endemic areas
continued. Contribute to the enormous burden of morbidity and mortality that
accompanies the disease. These have also presented new challenges to researchers
and public health professionals.

In this article, a deterministic model of vector-borne disease is proposed. This
model develops the transmission of the disease from mosquitoes to humans and
from humans to mosquitoes as described on the malaria cycle. Mathematically,
the transmission is described by differential equations (Ndiaye and Parilina, 2022;
Gurarie et al., 2012; Zhang et al., 2020). We generalize the malaria model by in-
cluding in the community considered the exposed, infected, cured people and a
community of exposed, infected mosquitoes, taking into account the induced mor-
tality caused by the disease in the population. We first study the stability of a
system of differential equations describing a model, the analysis of which shows
that there are equilibria characterizing the state of the system without disease and
stable states in the presence of an epidemic. The number of the basic reproduction
number R0 is calculated. The value R0 is the number of secondary infections that
an infectious individual would create during the period of the disease, provided that
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the total population, except infectious, is susceptible. Numerical simulations study-
ing the impact of the key parameters on the spread of the disease are made in the
work.

Diseases, such as yellow fever, dengue fever and malaria, transmitted by mosqui-
toes, are frequently observed in tropical and subtropical countries. Among these
vector-borne diseases, malaria is one of the serious major diseases caused by several
species of parasites transmitted by mosquitoes (Plasmodium falciparum, Plasmod-
ium malaria, Plasmodium ovale, Plasmodium vivax, etc.) (Ghosha et al., 2013). The
female anopheles mosquito is responsible for transmitting the disease to the human
body through a bite (Wei et al., 2012), and after this bite it divides the individuals
of the community into categories according to the parasitic density within them
and the type of infection. These categories or compartments are represented us-
ing a modified model SEIRSkEkIk based on the pioneering work of Kermack and
McKendrik (Kermack and McKendrick, 1927).

The rest of the paper is organized as follows. We describe the formulation of
the model and specify the feasible region of the problem in Section 2. In Section
3, we determine the equilibrium points of the system of differential equations and
the base reproductive number R0, and then we study the stability of the system at
the equilibrium points. We also provide the results of the numerical simulations in
Section 4 and briefly conclude in Section 5.

2. Model SEIRSkEkIk

We describe a modified model SEIRSkEkIk based on the work (Kermack and
McKendrick, 192). The mosquitoes that transmit the disease pass in three phases:
the susceptible (Sk), the exposed (Sk) and the infected (Ik). The bite of a female
anopheles mosquito carrying the malaria virus converts a healthy (susceptible) hu-
man being (S) into a category called infected hosts (I). The human population
that is not infected, but is at risk of being infected with malaria, is known as the
exposed population. People recovered from the infected population through medical
treatment without a threat to their lives fall into the group of recovered people (R).
Figure 2 shows the interaction diagram between the human population (host) and
the mosquito population (vector) for the transmission of malaria.

Fig. 2. The malaria model
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The total host population can be represented as N(t) = S(t)+E(t)+I(t)+R(t)
and the total vector population is represented as Nk(t) = Sk(t) + Ek(t) + Ik(t).

The mathematical model of the population dynamics (human and mosquito)
can be represented analytically by the following nonlinear system of seven ordinary
differential equations:

dS(t)

dt
= −αS(t)Ik(t) + aN(t)− a′S(t),

dE(t)

dt
= αS(t)Ik(t) + µR(t)− bE(t)− βE(t),

dI(t)

dt
= βE(t)− cI(t)− γI(t),

dR(t)

dt
= γI(t)− dR(t)− µR(t),

dSk(t)

dt
= −αkSk(t)I(t) + akNk(t)− a′kSk(t),

dEk(t)

dt
= αkSk(t)I(t)− bkEk(t)− βkEk(t),

dIk(t)

dt
= βkEk(t)− ckIk(t),

(1)

with the initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, Sk(0) ≥ 0, Ek(0) ≥ 0, Ik(0) ≥ 0. (2)

The total human population dynamics are given by

dN

dt
= aN0 − a′S − bE − cI − dR.

The given initial conditions (2) we should satisfy the condition: N(0) ≥ 0. Thus, the
total population size N(t) remains positive and bounded for all finite time t > 0.
The dynamics of the total vector population are

dNk

dt
= aN0k − a′Sk − bEk − cIk.

The following parameters are used in the model:

N(t) — the human population size;
S(t) — the number of subpopulations of susceptible humans;
E(t) — the number of the subpopulation of the humans exposed by the vector;
I(t) — the number of subpopulations of infected humans;
R(t) — the number of the subpopulation of recovered humans;
a — fertility rate in the human population;
a′ — mortality rate among subpopulation S;
b — mortality rate among subpopulation E;
c — mortality rate among infected subpopulation I;
d — mortality rate among the recovered subpopulation R;
β — the intensity of the transition of people from the subpopulation E to I, i.e.

with the onset of the disease symptoms;
γ — the intensity of healing of humans, i.e. the transition from the subpopulation

I into R;
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µ — the rate of return of humans from recovered to susceptible;
α — the probability of transmitting a bite from an infectious mosquito to a suscep-

tible person.
Nk(t) — total mosquito population;
Sk(t) — the number of mosquitoes that can be infected;
Ek(t) — the number of mosquitoes susceptible to the disease;
Ik(t) — number of infected mosquitoes;
ak(t) — fertility rate;
a′k(t) — mortality in the population of susceptible mosquitoes;
bk(t) — mortality of the exposed mosquito population;
ck(t) — mortality of the population of infected mosquitoes;
βk(t) — the coefficient of mosquitoes in which the symptoms of the disease begin.

2.1. The feasible region
A mathematical model presented by the system of differential equations (1)

describes the changes of the human and mosquito populations. Therefore, it is im-
portant to make sure that all solutions with non-negative initial conditions (2) will
remain non-negative forever. All solutions of the proposed system, which is initiated
in Ω region, remain in Ω region. Strictly speaking, this result can be generalized in
the following theorem.

Theorem 1. Let (S,E, I,R, Sk, Ek, Ik) be any solution of system (1) with positive
initial conditions (2). For any time t ≥ 0 there is a domain:

Ω =
{
(S,E, I,R, Sk, Ek, Ik) ∈ R7

+, V1 ≤ aN0

a′ + b+ c+ d
, V2 ≤ akN0k

a′k + bk + ck

}
.

Then Ω is positively invariant and attracting under the flow described by (1).

Proof. To prove this theorem, we use Lyapunov functions. Consider the following
Lyapunov function V (t) = (V1(t), V2(t)). Suppose that the functions V1(t), V2(t)
are defined for ∀ t ≥ 0, and they are differentiable and continuously differentiable
on the set Ω containing the origin.

The time derivative of function V (t) is

dV (t)

dt
=


dV1(t)

dt
= aN0 − (a′ + b+ c+ d)V1 − a′S − bE − cI − dR,

dV2(t)

dt
= akN0k − (a′k + bk + ck)V2 − a′kSk − bkEk − ckIk.

(3)

For the system (3), it is obvious that

dV1(t)

dt
≤ aN0 − (a′ + b+ c+ d)V1,

dV2(t)

dt
≤ akN0k − (a′k + bk + ck)V2.

(4)

By the properties of the Lyapunov function, we obtain the following conditions:
dV1
dt

≤ aN0 − (a′ + b+ c+ d)V1 ≤ 0 for V1 ≥ aN0

a′ + b+ c+ d
,

dV2
dt

≤ akN0k − (a′k + bk + ck)V2 ≤ 0 for V2 ≥ akN0k

a′k + bk + ck
.

(5)
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From conditions (5), it follows that
dV (t)

dt
≤ 0, which means that Ω is a positively

invariant and an absorbing set.
From the above equations and conditions (3)–(5), we output the inequalities for

V1 and V2:

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ d
+ e−(a

′+b+c+d)t
(
V01

− aN0

a′ + b+ c+ d

)
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck
+ e−(a

′
k+bk+ck)t

(
V02

− akN0k

a′k + bk + ck

)
.

With t −→ +∞, we obtain that

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ d
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck
,

and we can conclude that Ω is an absorbing set. Indeed, for t −→ +∞ we obtain
the inequalities

lim sup
t→+∞

V1 ≤ aN0

a′ + b+ c+ d
,

lim sup
t→+∞

V2 ≤ akN0k

a′k + bk + ck
.

Thus, Ω is positively invariant, and all solutions are bounded by the interval [0,∞).

3. The Equilibria

For the model, we examine two equilibrium points for the system of differen-
tial equations (1): (i) disease-free equilibrium Es, and (ii) endemic equilibrium Ee.
Solving the following system of differential equations

−αS(t)Ik(t) + aN(t)− a′S(t) = 0
αS(t)Ik(t) + µR(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,
γI(t)− dR(t)− µR(t) = 0,

−αkSk(t)I(t) + akNk(t)− a′kSk(t) = 0,
αkSk(t)I(t)− bkEk(t)− βkEk(t) = 0,

βkEk(t)− ckIk(t) = 0,

(6)

we can find these two equilibrium points:

1. Disease-free equilibrium Es = ( a
a′N0, 0, 0, 0,

ak

a′
k
N0k , 0, 0), i.e. it is a constant

solution of a system, in which there is no disease;
2. Endemic equilibrium of the system Ee = (S∗, E∗, I∗, R∗, S∗

k , E
∗
k , I

∗
k), which as-

sumes the presence of disease.

To find the equilibria, from the first equation of the system (6) we first get

S =
(aN0)E

αIk + a′
, from the third equation we obtain E =

c+ γ

β
I or I =

β

c+ γ
E, then
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from the fourth equation: R =
γ

d+ µ
I, from the fifth equation: Sk =

akN0k

αkI + a′k
,

from the sixth equation: Ek =
αkSk

bk + βk
I, from the seventh equation: Ik =

βkEk

ck
,

from the second equation: E =
α

b+ β
SIk +

µ

b+ β
R.

Substituting the first, third, fourth, fifth, sixth, and seventh equations of the
system (6) into the second equation of this system, we obtain

E =
aakααkβkN0N0k(d+ µ)(c+ γ)I

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNkI + a′ck(bk + βk)(αkI + a′k))
.

Making equality with the third equation obtained in the system (6), we get:

I =
aakαβαkβkN0N0k(d+ µ)− a′a′kck(bk + βk)((b+ β)(d+ µ)(c+ γ)− µγβ)

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNk + a′ckαk(bk + βk))
.

Hence, the endemic equilibrium of the model (1) is defined as the vector Ee =
(S∗, E∗, I∗, R∗, S∗

k , E
∗
k , I

∗
k) with the components

I∗ =
aakαβαkβkN0N0k − a′a′kck(bk + βk)((b+ β)(d+ µ)(c+ γ)− µγβ)

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNk + a′ckαk(bk + βk))
,

S∗ =
aN0

αI∗k + a′
,

E∗ =
c+ γ

β
I∗,

R∗ =
γ

d+ µ
I∗,

S∗
k =

akN0k

αkI∗ + a′k
,

E∗
k =

αk

bk + βk
S∗
kI

∗,

I∗k =
akαkβkN0k

ck(bk + βk)(αkI∗ + a′k)
I∗.

The equilibrium Ee represents the endemic point of the model, in which all
population subgroups are presented. The host population tends to recover, and the
recovery rate depends on the severity of the disease and the strategies adopted to
eliminate the disease.

3.1. Determination of the base reproductive number R0

The base reproductive number R0 measures the average number of new malaria
infections caused by one infected person in a fully susceptible population. To cal-
culate R0 for a system of equations (1), we use the next generation matrix method
described in (Ndiaye and Parilina, 2022; Diekmann et al., 2010, Van den Driessche,
2017; Jones, 2007). The required system of equations (1) for our model can be
written as

dx

dt
= F (x)− V (x),

x = (S,E, I,R, Sk, Ek, Ik)
T .
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Using the next generation method, we will do the following. First we define the
matrices F and V :

F =


αkSk(t)I(t)

0
αS(t)Ik(t)

0

 , V+ =


µR(t)
βE(t)

0
βkEk(t)

 , V− =


−(b+ β)E(t)
−(c+ γ)I(t)

−(bk + βk)Ek(t)
−ckIk(t)

 ,

from which we obtain that

V = V+ + V− =


µR(t)− (b+ β)E(t)
βE(t)− (c+ γ)I(t)
−(bk + βk)Ek(t)
βkEk(t)− ckIk(t)

 .

We find the matrices

DF(Es) =


0 αkS

0
k 0 0

0 0 0 0
0 0 0 αS0

0 0 0 0

 ,

DV(Es) =


−(b+ β) 0 0 0

β −(c+ γ) 0 0
0 0 −(bk + βk) 0
0 0 βk −ck

 .

Therefore,

F =

[
0 αkS

0
k

0 0

]
, F ′ =

[
0 αS0

0 0

]
,

V =

[
−(b+ β) 0

β −(c+ γ)

]
, V ′ =

[
−(bk + βk) 0

βk −ck

]
.

Calculate R0 by the formula R0 = ρ(−FV −1), where

V −1 =
1

det(V )
t(com(V )),

and
det(V ) = (b+ β)(c+ γ), t(com(V )) =

[
−(c+ γ) 0

−β −(b+ β)

]
.

Substituting det(V ) and t(com(V )) into expression of V −1, we get

V −1 =
1

(b+ β)(c+ γ)

[
−(c+ γ) 0

−β −(b+ β)

]
,

(V ′)−1 =
1

(bk + βk)ck

[
−ck 0
−βk −(bk + βk)

]
.

Finally, we obtain the following expressions:

FV −1 =

[
− αkβS

0
k

(b+β)(c+γ) −
αkS

0
k

c+γ

0 0

]
,

FV ′−1 =

[
− αβkS

0)
ck(bk+βk)

−αS0

ck

0 0

]
,
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and calculate Rh and Rk:

Rh = ρ(−FV −1) =
αkβS

0
k

(b+ β)(c+ γ)
, Rk = ρ(−FV ′−1) =

αβkS
0)

ck(bk + βk)
,

from which we obtain the base reproductive number R0 in the form

R0 = Rh ×Rk =
αkβS

0
kαβkS

0

ck(bk + βk)(b+ β)(c+ γ)
,

where (S0, S0
k) = ( a

a′N0,
ak

a′
k
N0k), and finally we write down the formula for R0:

R0 =
αβαkβkaakN0N0k

a′a′kck(b+ β)(c+ γ)(bk + βk)
.

If R0 ≤ 1 and at least one person is infected, but the infection cannot develop,
and the system (1) is stable. If R0 ≥ 1, i.e., at least one infected person can infect
several people, the number of infected humans is growing, and the disease can cover
the entire population. A numerical study will give us a more representative picture
of the disease spread among the population depending on the number R0.

Note that an endemic equilibrium point Ee exists if R0 > 1.

3.2. Study of stability at equilibrium points

First we analyze the stability of the disease-free equilibrium of the system of
equations (1) using the base reproductive number R0 in the following theorem.

Theorem 2. The disease-free equilibrium Es is locally asymptotically stable if
R0 ≤ 1 and ck >

αβαkβkN0N0k
(d+µ)

(b+β)(c+γ)(d+µ)(bk+βk)+βγµ(bk+βk)
, and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (1) is written in the form:

J(S,E, I,R, Sk, Ek, Ik)

=



−αIk − a′ 0 0 0 0 0 −αS
αIk −b− β 0 µ 0 0 αS
0 β −c− γ 0 0 0 0
0 0 γ −d− µ 0 0 0
0 0 −αkSk 0 αkI − a′k 0 0
0 0 αkSk 0 αkI −(bk + βk) 0
0 0 0 0 0 βk −ck


.

The Jacobian matrix at the disease-free equilibrium point Es reads as

J(Es) =



−a′ 0 0 0 0 0 −αN0

a

0 −b− β 0 µ 0 0 αN0

a
0 β −c− γ 0 0 0 0
0 0 γ −d− µ 0 0 0

0 0 −αk
N0k

ak
0 −a′k 0 0

0 0 αk
N0k

ak
0 0 −(bk + βk) 0

0 0 0 0 0 βk −ck


.
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We define the eigenvalues of this matrix by equating its next determinant, that is,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a′ − λ 0 0 0 0 0 −αN0

a

0 −b− β − λ 0 µ 0 0 αN0

a
0 β −c− γ − λ 0 0 0 0
0 0 γ −d− µ− λ 0 0 0

0 0 −αk
N0k

ak
0 −a′k − λ 0 0

0 0 αk
N0k

ak
0 0 −(bk + βk)− λ 0

0 0 0 0 0 βk −ck − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
to zero. We obtain the characteristic equation

(a′ + λ)(a′k + λ)[λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5] = 0,

where

C1 = ck + d+ µ+ bk + βk + b+ β + c+ γ,

C2 = (d+ µ)(bk + βk) + (b+ β + c+ γ)(d+ µ+ bk + βk)

+ (b+ β)(c+ γ) + ck(d+ µ+ bk + βk),

C3 = (b+ β + c+ γ)((d+ µ)(bk + βk) + ck(d+ µ+ bk + βk))+

+ (b+ β)(c+ γ)(d+ µ+ bk + βk + ck) + ck(d+ µ)(bk + βk),

C4 = (b+ β)(c+ γ)((d+ µ)(bk + βk) + ck(d+ µ+ bk + βk)

+ βγµ(ck + bk + βk)−
αβαkβkN0N0k

aak
,

C5 = ck(b+ β)(c+ γ)(d+ µ)(bk + βk) + βγµck(bk + βk)− αβαkβkN0N0k(d+ µ).

The characteristic equation admits seven proper roots, the first two values of
which λ1 and λ2 are written as: λ1 = −a′ and λ2 = −a′k. The remaining five
eigenvalues are obtained from solving the following equation:

λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5 = 0.

This equation does not admit trivial solutions, and it is difficult to find the roots of
this polynomial. To determine the nature of the stability of the equilibrium point
Es. We use the Routh-Hurwitz criterion to study stability. To do this we write an
auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C2 C4 0 0 0
C1 C3 C5 0 0 0

C1C2 − C3

C1

C1C4 − C5

C1
0 0 0 0

C3 −
C1C4 − C5

C1C2 − C3
C5 0 0 0 0

C1C4 − C5

C1
− C5(C1C2 − C3)

2

C3(C1C2 − C3)− C1C4 + C5
0 0 0 0 0

C5 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Applying the Hurwitz criterion, we obtain that the system (1) is asymptotically
stable at the equilibrium point Es if the inequalities are met,

C1 > 0,

C5 > 0,

C1C2 − C3

C1
> 0,

C3 −
C1C4 − C5

C1C2 − C3
> 0,

C1C4 − C5

C1
− C5(C1C2 − C3)

2

C3(C1C2 − C3)− C1C4 + C5
> 0.

Then from C1C2−C3

C1
> 0 and C1 > 0, it follows that C1C2 − C3 > 0. The fourth

inequality is equivalent to C3(C1C2 − C3)− C1C4 + C5 > 0, or C1C2C3 − C1C4 −
C2

3 +C5 > 0. Then the last inequality can be simplified as (C1C4 −C5)(C1C2C3 −
C1C4 − C2

3 + C5)− C1C5(C1C2 − C3)
2 > 0.

Therefore, we obtain the system:

C1 > 0,

C5 > 0,

C1C2 − C3 > 0,

C1C2C3 − C1C4 − C2
3 + C5 > 0,

(C1C4 − C5)(C1C2C3 − C1C4 − C2
3 + C5)− C1C5(C1C2 − C3)

2 > 0.

The first two eigenvalues λ1 and λ2 have negative real parts, and the remain-
ing five eigenvalues have negative real parts if they satisfy the Routh-Hurwitz
criteria. Thus, all eigenvalues of the characteristic equation have negative real
parts if and only if R0 < 1 and C1C2C3 + C5 > C1C4 + C2

3 , that is to say
ck >

αβαkβkN0N0k
(d+µ)

(b+β)(c+γ)(d+µ)(bk+βk)+βγµ(bk+βk)
, which shows that the disease-free equilib-

rium Es is locally asymptotically stable. This finishes the proof.

Theorem 3. The endemic equilibrium point Ee is locally asymptotically stable if
R0 > 1 and ck >

αββkαkS
∗
k

(αkI∗+a′
k)(a

′+αI∗
k)(bk+βk)

.

Proof. The Jacobian matrix of the system (1) is written in the form:

J(S,E, I,R,Sk, Ek, Ik)

=



−αIk − a′ 0 0 0 0 0 −αS
αIk −b− β 0 µ 0 0 αS
0 β −c− γ 0 0 0 0
0 0 γ −d− µ 0 0 0
0 0 −αkSk 0 αkI − a′k 0 0
0 0 αkSk 0 αkI −(bk + βk) 0
0 0 0 0 0 βk −ck


.
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The Jacobian matrix at the endemic equilibrium point Ee = (S∗, E∗, I∗, R∗, S∗
k , E

∗
k ,

I∗k) can be written as

J(Ee) =



−αI∗k − a′ 0 0 0 0 0 −αS∗

αI∗k −b− β 0 µ 0 0 αS∗

0 β −c− γ 0 0 0 0
0 0 γ −d− µ 0 0 0
0 0 −αkS

∗
k 0 αkI

∗ − a′k 0 0
0 0 αkS

∗
k 0 αkI

∗ −(bk + βk) 0
0 0 0 0 0 βk −ck


.

We define the eigenvalues of this matrix by equating its determinant to zero, and
we obtain the following characteristic equation:

λ7 +A1λ
6 +A2λ

5 +A3λ
4 +A4λ

3 +A5λ
2 +A6λ+A7 = 0,

where

A1 = b+ β + c+ γ + d+ µ+ a′ + αI∗k + bk + βk + αkI
∗ + a′k + ck,

A2 = (d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ) + (b+ β + c+ γ + d+ µ+ a′

+ αI∗k + bk + βk + αkI
∗ + a′k + ck) + ck(αkI

∗ + a′k) + (αI∗k + a′)(bk + βk)

+ (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck),

A3 = (d+ µ)(b+ β)(c+ γ) + (d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ) + a′

+ αI∗k + bk + βk + αkI
∗ + a′k + ck + ck(αkI

∗ + a′k) + (αI∗k + a′)(bk + βk)

+ (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck)(b+ β + c+ γ + d+ µ)

+ ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck),

A4 = (a′ + αI∗k + bk + βk + αkI
∗ + a′k + ck)(d+ µ)(b+ β)(c+ γ)

+ [ck(αkI
∗ + a′k) + (αI∗k + a′)(bk + βk) + (a′ + αI∗k + bk + βk)(αkI

∗ + a′k + ck)]

× [(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)] + (b+ β + c+ γ + d+ µ)

× [ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck)]

+ ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)− αββkαkS
∗
k ,

A5 = [ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk) + (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck)]

× (b+ β)(c+ γ)(d+ µ) + [ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + ck(αkI
∗ + a′k)

× (a′ + αI∗k)(bk + βk)(αkI
∗ + a′k + ck)][(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)]

+ ck(b+ β + c+ γ + d+ µ)(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)

− αββkαkS
∗
k(d+ µ+ a′k + αS∗I∗ + αI∗k + a′),

A6 = (d+ µ)(b+ β)(c+ γ)[ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk)

+ (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck)] + ck(αkI

∗ + a′k)(a
′ + αI∗k)(bk + βk)

× [(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)]

− αββkαkS
∗
k(a

′
k(d+ µ) + (d+ µ+ a′k)(αS

∗I∗ + αI∗k + a′)),

A7 = ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)(d+ µ)(b+ β)(c+ γ)

− αββkαkS
∗
ka

′
k(d+ µ)(αS∗I∗ + αI∗k + a′).

The eigenvalues of this matrix are the solutions of the characteristic equation. The
equation admits seven eigenvalues. We use the Routh-Hurwitz criterion, which states
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that all roots of a characteristic equation have negative real parts if and only if the
conditions of the Routh-Hurwitz criteria are satisfied.

We use the Hurwitz criterion to study stability, and write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 A2 A4 A6 0 0
A1 A3 A5 A7 0 0

A1A2 −A3

A1

A1A4 −A5

A1

A1A6 −A7

A1
0 0 0

A3 −
A1(A1A4 −A5)

A1A2 −A3
A5 −

A1(A1A6 −A7)

A1A2 −A3
A7 0 0 0

A′
1 A′

2 0 0 0 0
A′

3 A7 0 0 0 0
A′

3A
′
2−A′

1A7

A′
3

0 0 0 0 0

A7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

A′
1 =

A1A4 −A5

A1
− (A1A2 −A3)(A5(A1A2 −A3)−A1(A− 1A6 −A7))

A1(A3(A1A2 −A3)−A1(A1A4 −A5))
,

A′
2 =

A1A6 −A7

A1
− A7(A1A2 −A3)

2

A1(A3(A1A2 −A3)−A1(A1A4 −A5))
,

A′
3 = A5 −

A1(A1A6 −A7)

A1A2 −A3
− A3(A1A2 −A3)−A1(A1A4 −A5)

A1A2 −A3

A′
2

A′
1

.

Applying the Hurwitz criterion, we obtain that the system (1) is asymptotically
stable at the equilibrium point Ee if the inequalities are met

A1 > 0,

A7 > 0,

A1A2 −A3

A1
> 0,

A3 −
A1(A1A4 −A5)

A1A2 −A3
> 0,

A1A4 −A5

A1
− (A1A2 −A3)(A5(A1A2 −A3)−A1(A− 1A6 −A7))

A1(A3(A1A2 −A3)−A1(A1A4 −A5))
> 0,

A1A6 −A7

A1
− A7(A1A2 −A3)

2

A1(A3(A1A2 −A3)−A1(A1A4 −A5))
> 0,

A5 −
A1(A1A6 −A7)

A1A2 −A3
− A3(A1A2 −A3)−A1(A1A4 −A5)

A1A2 −A3

A′
2

A′
1

> 0

A′
3A

′
2 −A′

1A7

A′
3

> 0,

Then from A1A2−A3

A1
> 0 and A1 > 0, it follows that A1A2 − A3 > 0. The

fourth inequality is equivalent to A3(A1A2 −A3)−A1(A1A4 −A5) > 0, or A1A2 −
A3 > 0. The fifth inequality is equivalent to A1(A1A4 − A5)(A3(A1A2 − A3) −
A1(A1A4 − A5)) − A1(A1A2 − A3)(A5(A1A2 − A3) − A1(A − 1A6 − A7)) > 0, or
A2

1(A3(A1A2 − A3) − A1(A1A4 − A5) > 0. The sixth inequality is equivalent to
A1(A1A6 − A7)(A3(A1A2 − A3) − A1(A1A4 − A5)) − A1A7(A1A2 − A3)

2 > 0, or
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A′
1 > 0. The seventh inequality is equivalent to A5A

′
1(A1A2 −A3)−A1A

′
1(A1A6 −

A7) − A′
2(A3(A1A2 − A3) − A1(A1A4 − A5)) > 0. Then the last inequality can be

simplified as A′
3A

′
2 −A′

1A7 > 0, or A′
3 > 0.

Therefore, we obtain the system:

A1 > 0,

A7 > 0,

A1A2 −A3 > 0,

A3(A1A2 −A3)−A1(A1A4 −A5) > 0,

A1(A1A4 −A5)(A3(A1A2 −A3)−A1(A1A4 −A5))−
−A1(A1A2 −A3)(A5(A1A2 −A3)−A1(A− 1A6 −A7)) > 0,

A1(A1A6 −A7)(A3(A1A2 −A3)−A1(A1A4 −A5))−A1A7(A1A2 −A3)
2 > 0,

A5A
′
1(A1A2 −A3)−A1A

′
1(A1A6 −A7)−A′

2(A3(A1A2 −A3)−
−A1(A1A4 −A5)) > 0

A′
3A

′
2 −A′

1A7 > 0,

The seven eigenvalues have negative real parts if they meet the Routh-Hurwitz
criteria. Thus, all eigenvalues of the characteristic equation have negative real parts
if and only if R0 > 1 and A3A1A2+A1A5 > A2

3+A
2
1A4, that is satisfied when ck >

αββkαkS
∗
k

(αkI∗+a′
k)(a

′+αI∗
k)(bk+βk)

, which shows that the endemic equilibrium Ee is locally
asymptotically stable. This finishes the proof.

4. Numerical Simulations

Numerical modeling is one of the best methods to understand the dynamics of
malaria. It gives us the evolution of each subgroup of the population depending
on the severity of the disease. In our model, we made several representations of
the dynamics of malaria disease in the time interval [0, 60] with different values
of parameters, i.e., different R0. The resulting curves are performed using Matlab
software. The parameters, for which the numerical simulations are performed, are
presented in the tables.

Table 1. Parameters for modeling represented in Fig. 3

α αk β βk γ γk µ µk a a′ ak a′
k b bk c ck d dk R0

In Fig. 3 (first run)
0.9 0.7 1.2 0.5 0.4 0.5 0.15 0.2 0.3 0.2 0.4 0.3 0.3 0.7 0.03 0.4 0.15 0.25 2.44

In Fig. 3 (second run)
1.8 0.5 1.5 0.6 0.3 0.5 0.1 0.15 0.6 0.3 0.4 0.2 0.5 0.65 0.01 0.4 0.12 0.17 10.45

In Figure 3 we represent the two runs of simulations, for which R0 = 2.44 (the
first row of graphs), and R0 = 10.45 (the second row of graphs). We can notice that
the disease exists in the populations (the host and vector ones), and that the repre-
sentative curves of susceptible subpopulations decrease, and the existing population
in it changes into a different behavior. At the same time, the representative curves
of the subpopulations (exposed, infected and recovered) converges to the equlibrium
values, and we notice a significant presence of the disease in the population. If no
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Fig. 3. The epidemic process for various values R0 > 1 (R0 = 2.44 and R0 = 10.44)

intervention is planned, there is a risk that the disease will persist in the popula-
tion, since the obtained baseline reproduction rate shows that at least one infected
person can infect several people (it is true for both runs).

Table 2. Parameters for modeling represented in Fig. 4

α αk β βk γ γk µ µk a a′ ak a′
k b bk c ck d dk R0

In Fig. 4 (first run)
0.7 0.8 0.9 0.7 0.5 0.4 0.3 0.4 0.4 0.316 0.6 0.3 0.5 0.8 0.65 0.8 0.2 0.3 0.46

In Fig. 4 (second run)
0.8 0.7 0.9 0.6 0.5 0.65 0.2 0.3 0.4 0.35 0.5 0.45 0.4 0.75 0.02 0.5 0.05 0.3 0.84

In Figure 4 we represent the two runs of simulations, for which R0 = 0.46 (the
first row of graphs) and R0 = 0.84 (the second row of graphs), we can notice that
the disease is practically absent and that all representative curves of subpopula-
tions (the host and vector ones) are almost linear. It explains that the sizes of the
subpopulations are almost constants. The disease does not pose a danger to the
population for these sets of parameters since each infected person infects less than
one person, which explains why the disease can disappear from the population after
some time.

In Figure 5 we represent the two runs of simulations, for which R0 = 23.23 (the
first row of graphs) and R0 = 0.04 (the second row of graphs). In the first run of
simulations, we should notice that the size of infected subpopulations (both host
and vector) increases significantly, as shown by the corresponding curve (see the
first row of the graphs), which grows exponentially. The entire population is at risk
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Fig. 4. The epidemic process for various values R0 < 1 (R0 = 0.46 and R0 = 0.84)

Table 3. Parameters for modeling represented in Fig. 5

α αk β βk γ γk µ µk a a′ ak a′
k b bk c ck d dk R0

In Fig. 5 (first run)
0.7 0.8 0.9 0.7 0.5 0.6 0.3 0.4 0.4 0.4 0.6 0.3 0.45 0.55 0.05 0.45 0.2 0.3 23.23

In Fig. 5 (second run)
0.7 0.8 0.9 0.7 0.5 0.4 0.3 0.4 0.4 0.4 0.6 0.3 1.5 1.8 1.65 1.8 0.2 0.3 0.04

of infection if measures are not taken to combat the disease. On the second run, we
represent the case when R0 = 0.04, i.e., the basic reproduction number is almost
zero, which explains the absence of the disease. The population remains stable.

We can see that the base reproductive number R0 plays an important role in the
study of mathematical modeling of diseases. This allows us to examine the speed of
the spread of the disease among the population.

5. Conclusions

Malaria is a tropical infectious disease. By these days, scientists have failed to
develop an effective vaccine to combat this disease which can be very dangerous with
many deaths in the human population. Mathematical modeling of this disease plays
a crucial role in understanding of transmission dynamics and appropriate preven-
tion strategies. In this paper, we study the SEIRSkEkIk model to give predictions
of the spread of malaria. For the model, we examine two stable equilibrium points:
a disease-free equilibrium, in which the disease is not present in the populations;
and an endemic equilibrium point, when there is a non-zero infected subpopula-
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Fig. 5. The epidemic process for various values R0 (R0 = 23.23 and R0 = 0.04)

tion. We establish the stability results for these two equilibria. We use the theory of
the Lyapunov functions to examine stability of both equilibrium points. It is proved
that the dynamical process is completely determined by the base reproduction num-
ber R0. If R0 ≤ 1, the disease-free equilibrium is locally asymptotically stable. If
R0 > 1, there is an endemic equilibrium that is globally asymptotically stable. The
simulation results significantly showed how the disease spreads among the popula-
tion. The spread of this disease can be prevented through effective awareness-raising
strategies in regions where it has spread rapidly.
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