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Abstract We describe a model of a discrete time dynamic system with ac-
tive elements (players) and states in a metric space. Each state is associated
with the common utility value and player shares. Coalitions of players can
change the system state, but each move requires their expenses. The players
may have only restricted and local knowledge about the system. We define
the concept of an equilibrium state in this dynamic game and present itera-
tive algorithms that create feasible trajectories tending to equilibrium states
under rather general conditions.
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1. Introduction

The usual approach to formulation of various decision making problems is to
choose the best variant under the current knowledge about the problem under so-
lution. This means that all the necessary knowledge about the problem data and
all the parameters should be derived beforehand. In this situation, the solution of
the basic problem can be treated as absolute. This approach may admit proper cor-
rections caused by possible data perturbations, but the model remains the same in
general. At the same time, the presentation of all the model functions, constraints,
and parameters may vary together with changes of the real system states. More-
over, only some limited information about the system may be known at each state.
Therefore, our decisions will be then dependent on the current state and this fact
should be reflected in the mathematical formulation of the decision making problem.

Recently, a new approach to optimization formulations of decision making prob-
lems was proposed in (Konnov, 2019) where they are treated as relative or subjective
optimization problems with respect to system states and give (quasi-)equilibrium
problems. In (Konnov, 2021), a rather general class of relative optimization prob-
lems in metric spaces was presented. It was shown that the quasi-equilibrium type
formulations of relative optimization problems admit rather simple descent solution
methods and give suitable trajectories tending to a relatively optimal state.

In this paper, we apply the above approach to game problems. The basic model
represents a discrete time dynamic system with active elements (players). Each state
of the system is associated with the common (aggregated) system utility value and
shares for all the players. Feasible coalitions of the players can change system states,
but each move requires certain expenses. The players may have only restricted and
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local knowledge about the system. We define the concept of an equilibrium state in
this dynamic game and propose a descent type solution method for creating suitable
trajectories converging to an equilibrium state under mild conditions. Besides, if
there exists a lower positive threshold for move expenses, we propose a simplified
method, which solves the equilibrium problem in a finite number of iterations. The
proposed game is illustrated by several examples of applications.

2. Basic Problem Formulations

We describe a general model of a system whose possible states are contained in
a set X ⊆ E where E is a metric space. The system involves m active elements
(players). Let M = {1, . . . ,m} and let M ⊆ Π(M) denote the set of feasible
coalitions that can change system states. Here and below Π(F ) denotes the family
of all nonempty subsets of a set F . Each state x ∈ X is associated with the common
system utility value φ(x) and a set of player shares

A(x) ⊆ Sm
+ =

{
u ∈ Rm

m∑
i=1

ui = 1, ui ≥ 0, i = 1, . . . ,m

}
.

This means that the set-valued shares mapping x 7→ A(x) is defined on X. The
actual vector of player shares a(x) ∈ A(x) becomes known only after arrival to the
state x. Each feasible coalition I ∈ M can define its set of feasible states DI(x)
at state x in the sense that this coalition I can move the system from x to y and
evaluate the common system utility value φ(y) if y ∈ DI(x). Next, each move
(x → y) accomplished by coalition I requires its common expenses cI(x, y). We
suppose that cI(x, y) is non-negative and known at x to any player of this coalition
for any y ∈ DI(x). Hence, we can define the estimate of pure expenses of coalition
I for the move (x→ y) as follows

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y),

where
aI(x) =

∑
i∈I

ai(x).

This means all the players of any active coalition agree to bear the expenses related
to the corresponding system move. Then we can define the following equilibrium
problem.

Problem (P1) Find a point x∗ ∈ X such that

fI(x
∗, y) ≥ 0 ∀y ∈ DI(x

∗), ∀I ∈ M. (1)

Therefore, if x∗ is an equilibrium state in the sense of (1), no active coalition has
a positive profit estimate for any feasible move from this state. Solution of Problem
(P1) may be found by an iterative sequence with non-negative profit estimates.
The starting state x0 ∈ X is supposed to be known. We will say that a sequence
{xk} ⊂ X is a feasible trajectory if xk+1 ∈ DI(x

k) and I ∈ M for each number k.
Then we can define the dynamic equilibrium problem.

Problem (P2) Find a feasible trajectory {xk} with the initial state x0 ∈ X and
negative pure move expenses estimates for the corresponding active coalitions such
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that it either terminates at a solution of Problem (P1) or its limit points are solu-
tions of Problem (P1).

The above framework is rather general and admits various implementation rules.
For instance, many rules can be taken for distribution of coalition move expenses
among the players. However, any rule should provide positive personal profit esti-
mates if so is the common coalition profit estimate. For instance, if fI(x, y) < 0, we
can define the i-th player personal profit estimate

µi
I(x, y) = ai(x)[φ(y)− φ(x)]− ai(x)cI(x, y)/aI(x) = −ai(x)fI(x, y)/aI(x) > 0,

if ai(x) > 0. Clearly, coalition I may be profitable for the move (x→ y) if

cI(x, y) <
∑
i∈I

ci(x, y), (2)

especially for any player j such that aj(x) = 0. In general, if I ′′ = I ′
⋃
{j} and

cI′′(x, y) < cI′(x, y), then coalition I ′′ is more profitable for all the players from
coalition I ′ with respect to move (x→ y) under the same cost distribution rule.

It should be observed that the family M determines the kind of the presented
game model. In fact, if M = ({1}, . . . , {m}), we have a non-cooperative game,
whereas M = Π(M) together with (2) corresponds to a complete cooperative game
setting. At the same time, the players can also behave in a non-cooperative manner
if (2) does not hold, i.e. then

cI(x, y) ≥
∑
i∈I

ci(x, y).

The set-valued mappings x 7→ DI(x) enable us to determine all the gaming restric-
tions. It seems rather natural to suppose that x ∈ DI(x) for any x ∈ X and I ∈ M,
but this condition is not obligatory. Next, setting DI(x) = {x} means that coalition
I can not change the system state x. The choice of the set-valued shares mapping
x 7→ A(x) is also determined by the rules of the game under consideration. For
example, they can involve the condition

aI(x) ≤ aI(y) if y ∈ DI(x),

or
aI(y) = argmax{aI | a ∈ A(y)}.

In general, the proposed model differs from the known formulations of static and
dynamic games; see e.g. (Mazalov, 2010, Peters, 2015).

We observe that a solution of the global optimization problem

max
x∈X

→ φ(x) (3)

is always a solution of Problem (P1) in this setting, but Problem (P1) may have
other solutions as the following simple examples illustrate.

Example 1. Let X = [0, 1] and φ(x) = x + 1, then the point x∗ = 1 is a unique
solution of (3). Next, let M = {1, 2}, M = ({1}, {2}, {1, 2}), a(x) ≡ (0.5, 0.5)⊤,
DI(x) = [x − 0.1, x + 0.1)]

⋂
X for any I ∈ M, and x0 = 0. Also, set cI(x, y) =
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2(x− y)2+8x|x− y| for I = {1, 2} and cI(x, y) = 3(x− y)2+10x|x− y| for I = {1}
and I = {2}. Then the cooperative behaviour is more reasonable for both the players
and we fix I = {1, 2}. Take the first move (x0 → x1) where x1 = x0 + 0.1 = 0.1,
then we have the estimate

fI(x
0, x1) = −0.1 + 0.02 < 0,

i.e. it is profitable. However, this is not the case for the next similar move (x1 → x′)
where x′ = x1 + 0.1 = 0.2 since

fI(x
1, x′) = −0.1 + 0.02 + 0.08 = 0.

We take the next move (x1 → x2) with the reduced step and choose x2 = x1+0.05 =
0.15. It is profitable since

fI(x
1, x2) = −0.05 + 0.005 + 0.04 = −0.005 < 0.

It appears that x2 is a solution of Problem (P1) since

fI(x
2, x) ≥ 0 ∀x ∈ DI(x

2).

The trajectory {x0, x1, x2} is feasible, therefore, it is a solution of Problem (P2).

The next example also shows that solutions may depend on trajectories.

Example 2. We take a system with a finite number of states, namely, we set X =
{v1, v2, v3, v4}, φ(v1) = 10, φ(v2) = φ(v3) = 11, φ(v4) = 12; see Figure 1. The arcs
indicate feasible profitable moves. Also, we can determine the distance d(v, v) = 0
for any v ∈ X, d(u, v) = 1 for any pair of different vertices u, v ∈ X joined by one
arc, and d(u, v) = 2 for any other different vertices u, v ∈ X. Then the set X is a
metric space. Next, let M = {1, 2}, M = ({1}, {2}), hence the players will behave
in a non-cooperative manner. We define their state shares as follows:

a(v1) = (0.5, 0.5)⊤, a(v2) = (0.9, 0.1)⊤, a(v3) = a(v4) = (0.1, 0.9)⊤,

and the feasible sets:

D{1}(v
1) = D{2}(v

1) = {v2, v3},
D{1}(v

2) = D{2}(v
2) = {v4}, D{1}(v

3) = D{2}(v
3) = {v4}.

Next, we define the move expenses as follows:

c{1}(v
1, v2) = c{2}(v

1, v3) = 0.25, c{1}(v
1, v3) = c{2}(v

1, v2) = 1, c{2}(v
2, v4) = 0.5,

c{1}(v
2, v4) = c{2}(v

3, v4) = 1, c{1}(v
3, v4) = 0.2.

We denote by pi(x) the pure profit of player i at system state x, which is equal
to his/her profit at x minus the trajectory expenses. If x0 = v1, then p1(x

0) =
p2(x

0) = 5. However, x0 is not a solution of Problem (P1).
Let us take the first move (v1 → v2). Then we have the estimates

f{1}(v
1, v2) = −0.5 + 0.25 < 0 and f{2}(v1, v2) = −0.5 + 1 > 0,
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i.e. the move may be profitable for the first player. Hence, we can check the second
move (v2 → v4). We have the estimates

f{1}(v
2, v4) = −0.9 + 1 > 0 and f{2}(v2, v4) = −0.1 + 0.05 < 0,

i.e. the move may be profitable for the second player. Therefore, v4 is a solution of
Problem (P1) and the trajectory {v1, v2, v4} is a solution of Problem (P2). Besides,
v4 is a solution of (3). Let us compare the pure profits of the players:

p1(v
2) = 9.65 > 5, p2(v

2) = 1.1 < 5, p1(v
4) = 0.95 < 5, p2(v

4) = 10.75 > 5.

Let us take the other first move (v1 → v3). Then we have the estimates

f{1}(v
1, v3) = −0.5 + 1 > 0 and f{2}(v1, v3) = −0.5 + 0.25 < 0,

i.e. the move may be profitable for the second player. Hence, we can check the
second move (v3 → v4). We have the estimates

f{1}(v
3, v4) = −0.1 + 0.2 > 0 and f{2}(v3, v4) = −0.9 + 1 > 0,

i.e. they are not profitable. Therefore, v3 is a solution of Problem (P1) and the
trajectory {v1, v3} is a solution of Problem (P2). Let us compare the pure profits
of the players:

p1(v
3) = 1.1 < 5, p2(v

3) = 9.65 > 5.
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Fig. 1. An equilibrium problem on a graph

3. The Basic Method and Its Convergence

We will use the following set of basic assumptions.
(A1) The set X ⊆ E is nonempty and closed, the function φ : X → R is continuous,
for each I ∈ M the bi-function cI : X ×X → R is non-negative and continuous.
(A2) For some number α ≤ u(x0) the set

Xα = {x ∈ X | φ(x) ≥ α}
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is compact.
(A3) For each I ∈ M the mapping DI : X → Π(X) is lower semi-continuous on
X.
(A4) The mapping A : X → Π(Sm

+ ) is upper semi-continuous on X and has closed
values on X.

We recall that a set-valued mapping T : X → Π(X) is said to be
(a) upper semicontinuous on X, if for each point v ∈ X and for each open set

U such that U ⊇ T (v), there is an open neighborhood Ṽ of v such that T (w) ⊂ U
whenever w ∈ Ṽ

⋂
X;

(b) lower semicontinuous on X, if for each point v ∈ X and for each open
set U such that U

⋂
T (v) ̸= ∅, there is an open neighborhood Ṽ of v such that

U
⋂
T (w) ̸= ∅ whenever w ∈ Ṽ

⋂
X.

Clearly, (A2) is a general coercivity condition, which together with continuity
of φ implies that the global optimization problem (3) has a solution and that

φ∗ = sup
x∈X

φ(x) < +∞. (4)

Hence, Problem (P1) also has a solution. The solutions of both (P1) and (P2) can
be found by the following threshold descent method (TDM).

Method (TDM).
Initialization: Take the given point x0, choose a positive sequence {δl} → 0. Set
l = 1, k = 0, z0 = x0.

Step 1: Given a point zk ∈ X and a vector a(zk) ∈ A(zk), find a coalition
J = J(k) ∈ M such that

∃zk+1 ∈ DJ(z
k), fJ(z

k, zk+1) < −δl, (5)

set k = k + 1 and go to the beginning of Step 1. Otherwise, i.e., if this coalition
does not exist, go to Step 2.

Step 2: Set xl = zk, l = l + 1 and go to Step 1.

Therefore, δl stands for the current descent threshold, which determines the suf-
ficient profit for the movement. The index l is a counter for the number of restarts
(threshold changes). The choice of zk+1 in accordance with (5) depends on pecu-
liarities of the problem. In particular, it can be based on a solution of the auxiliary
problem

min
z∈DJ (zk)

→ {cJ(zk, z)− aJ(z
k)φ(z)}. (6)

Theorem 1. Let assumptions (A1)–(A4) be fulfilled. Then the sequence {xl} gen-
erated by Method (TDM) has limit points, all these limit points are solutions of
Problem (P1), and the sequence {zk} solves Problem (P2).

Proof. The assertion will be proved in several steps.
Step 1: For each fixed k relation (5) implies

aJ(k)(z
k) > 0 (7)

and
φ(zk+1)− φ(zk) > δl. (8)
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If (7) does not hold (5) gives

0 ≤ cJ(k)(z
k, zk+1) < −δl < 0,

which is a contradiction. Next, by definition,

φ(zk+1)− φ(zk) = [cJ(k)(z
k, zk+1)− fJ(k)(z

k, zk+1)]/aJ(k)(z
k)

> [cJ(k)(z
k, zk+1) + δl]/aJ(k)(z

k) ≥ δl.

Step 2: For each l the number of changes of the index k is finite.
The assertion follows from (8) and (A2).

Step 3: The sequence {xl} has limit points, all these limit points are solutions of
Problem (P1).
From Steps 1–2 it follows that the sequence {xl} is infinite and is contained in the
compact set Xα due to (A2). It follows that {xl} has limit points. For each l from
the definition we have

a(xl) ∈ A(xl), fI(x
l, y) ≥ −δl ∀y ∈ DI(x

l), ∀I ∈ M. (9)

Let x̄ be an arbitrary limit point of {xl}, i.e. {xls} → x̄. Then x̄ ∈ X since X is
closed. Since the sequence {a(xls)} is bounded, it has limit points. Without loss of
generality we can suppose that

lim
s→∞

a(xls) = ā,

then ā ∈ A(x̄) due to (A4).
Take any coalition I ∈ M and any ȳ ∈ DI(x̄), then there exists a sequence

of points {yls}, {yls} → ȳ such that yls ∈ DI(x
ls) since the mapping DI is lower

semi-continuous on X due to (A3). Setting l = ls and y = yls in (9) and taking the
limit s→ ∞ give

ā ∈ A(x̄), fI(x̄, ȳ) ≥ 0,

i.e. x̄ is a solution of Problem (P1). It follows that {zk} is a solution of Problem
(P2).

The assumptions of Theorem 1 can be modified in a complete metric space
setting. In particular, we can then remove the compactness assumption.

(B1) The set X ⊆ E is nonempty and closed, E is a complete metric space with the
metric bi-function d : X ×X → R, the function φ : X → R is continuous, relation
(4) holds.
(B2) For each I ∈ M the bi-function cI : X ×X → R is non-negative and contin-
uous, there exists an increasing continuous function θ : R → R such that θ(0) = 0
and that for all x, y ∈ X we have θ[d(x, y)] ≤ cI(x, y) for any I ∈ M.
(B3) The cost bi-functions cI : X ×X → R, I ∈ M satisfy the coalitional triangle
inequality, i.e., for any I, J ∈ M and for any x, y, z ∈ X there exists K ∈ M such
that

cI(x, z) + cJ(z, y) ≥ cK(x, y).
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Theorem 2. Let assumptions (B1)–(B3) and (A3)–(A4) be fulfilled. Then the
sequence {xl} generated by Method (TDM) converges to a solution of Problem (P1),
and the sequence {zk} solves Problem (P2).

Proof. The assertion will be proved in several steps.
Step 1: For each fixed k relation (5) implies (7) and (8).

This is proved as in Step 1 of Theorem 1.
Step 2: For each l the number of changes of the index k is finite.

The assertion follows from (8) and (B1).
Step 3: The sequence {zk} converges to a point x̄ ∈ X.

It also follows from (8) and (B1) that

lim
k→∞

φ(zk) = φ̃ < +∞, (10)

besides, (5) now gives

cJ(k)(z
k, zk+1) < aJ(k)(z

k)[φ(zk+1)− φ(zk)] ≤ φ(zk+1)− φ(zk).

Take any indices k and m = k + p, then we have

θ[d(zk, zk+p)] ≤ cI(k)(z
k, zk+p) ≤ cJ(k)(z

k, zk+1) + . . .+ cJ(k+p−1)(z
k+p−1, zk+p)

≤ φ(zk+p)− φ(zk)

for some I(k) ∈ M due to (B2) and (B3). On account of (10) we now obtain
that for any number α > 0 there exists an index k′ such that d(zk, zm) < α if
min{k,m} = k > k′. Hence, {zk} is a Cauchy sequence and it converges to a point
x̄ ∈ X since X is closed.

Step 4: The sequence {xl} converges to a point x̄ ∈ X, which is a solution of
Problem (P1).
Since the sequence {xl} is contained in {zk} and is infinite due to Step 2, Step 3
implies that {xl} converges to the point x̄ ∈ X. The rest part of the proof is the
same as in Step 3 of Theorem 1.

Remark 1. Let us replace condition (A3) with the following.
(A3′) For each I ∈ M the mapping DI : X → Π(X) is lower semi-continuous on
X and x ∈ DI(x) for any x ∈ X.

Similarly, we can take the somewhat stronger formulations of Problems (P1)
and (P2).

Problem (P1′) Find a point x∗ ∈ X such that

x∗ ∈ DI(x
∗), fI(x

∗, y) ≥ 0 ∀y ∈ DI(x
∗), ∀I ∈ M. (11)

Problem (P2′) Find a feasible trajectory {xk} with the initial state x0 ∈ X and
negative pure move expenses estimates for the corresponding active coalitions such
that it either terminates at a solution of Problem (P1′) or its limit points are
solutions of Problem (P1′).

Then the assertions of Theorems 1 and 2 remain true where (A3), (P1), and
(P2) are replaced with (A3′), (P1′), and (P2′), respectively.
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4. The Simple Descent Method

Let us now take the simple descent method (SDM) for Problems (P1) and (P2),
which does not involve any threshold.

Method (SDM).
Initialization: Take the given point x0 ∈ X, set k = 0.

Step 1: Given a point xk ∈ X and a vector a(xk) ∈ A(xk), find a coalition
J = J(k) ∈ M such that

∃xk+1 ∈ DJ(x
k), fJ(x

k, xk+1) < 0, (12)

set k = k + 1 and go to the beginning of Step 1. Otherwise, i.e., if this coalition
does not exist, stop.

This method does not converge to a solution under the assumptions of the
previous section even in case m = 1; see e.g. (Konnov, 2021, Example 4.1). However,
(SDM) can be useful in the case when there exists a lower positive threshold for
move expenses. Then we can relax essentially the other assumptions.

(C1) The set X ⊆ E is nonempty, relation (4) holds. The mapping A : X → Π(Sm
+ )

has non-empty values on X.
(C2) For each I ∈ M the bi-function cI : X ×X → R is non-negative, there exists
a number δ > 0 such that cI(x, y) ≥ δ for all x, y ∈ X, x ̸= y and for any I ∈ M.
(C3) For each I ∈ M the mapping DI : X → Π(X) has non-empty values on X.

We can thus remove all the continuity and compactness assumptions. Then,
Method (SDM) solves both the problems in a finite number of iterations, as the
following theorem states.

Theorem 3. Let assumptions (C1)–(C3) be fulfilled. Then the sequence {xk} gen-
erated by Method (SDM) solves Problem (P2). It is finite and stops at a solution
of Problem (P1).

Proof. It suffices to prove the finiteness of Method (SDM). For each k relation (12)
implies aJ(k)(xk) > 0. In fact, otherwise we have

0 ≤ cJ(k)(x
k, xk+1) < 0,

which is a contradiction. Next, by definition,

φ(xk+1)− φ(xk) = [cJ(k)(x
k, xk+1)− fJ(k)(x

k, xk+1)]/aJ(k)(x
k)

> cJ(k)(z
k, zk+1) ≥ δ > 0.

If the sequence {xk} is infinite, the above inequality implies φ(xk) → +∞ as k → ∞,
which contradicts (4).

Remark 2. As in Remark 1, we can replace condition (C3) with the following.
(C3′) For each I ∈ M it holds that x ∈ DI(x) for any x ∈ X.

Similarly, we can take the formulations (P1′) and (P2′) instead of (P1) and
(P2). Then the assertion of Theorem 3 remains true where (C3), (P1), and (P2)
are replaced with (C3′), (P1′), and (P2′), respectively.
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5. Examples of Models

We now describe some applied models, which can be formulated within the
proposed framework.

Example 3. (Dynamic oligopoly with coalitions). In the classical oligopoly
model (see e.g. Okuguchi and Szidarovszky, 1990), it is assumed that there are m
industrial firms supplying a homogeneous commodity and that the price p depends
on its total quantity x, i.e. p = p(x). Next, the value hi(zi) represents the i-th firm
individual expenses of supplying zi units of the product. It follows that

x = x(z) =

m∑
i=1

zi,

where z = (z1, z2, . . . , zm)⊤. In such a way, we obtain a noncooperative static game
where the i-th player (firm) has its particular strategy set R+ and a payoff (profit)
function

µi(z) = zip(x(z))− hi(zi),

i = 1, . . . ,m.
It is natural to suppose that the firms may create coalitions in order to reduce

their common production transition expenses. Then we can define the model of
the system whose states are determined by the total supply quantity x, so that
X = [0, b] gives the set of all the feasible states, and define the common system
utility (profit) function φ : X → R, which is also supposed to be non-decreasing.
In general, φ(x) may involve industrial and pollution treatment expenses at the
production level x. For the sake of simplicity, we take the fixed value of the player
shares set

A(x) ≡ Sm
+ ,

then some chosen a(x) ∈ A(x) gives the i-th individual utility φi(x) = ai(x)φ(x)
at x.

As above, we choose the set of feasible coalitions M ⊆ Π(M) that can change
system states. For each coalition I ∈ M we define the set of feasible states DI(x) =
[x − εI , x + εI ]

⋂
X at state x ∈ X where εI > 0. Also, each move (x → y)

accomplished by coalition I implies its common transition expenses cI(x, y) ≥ 0,
but the move estimate must be profitable, i.e.,

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y) < 0.

The actual vector of player shares a(y) is determined by coalition I after arrival to
the state y, where one of the suitable distribution rules or their combination can be
taken. For instance, the individual utilities can be first calculated as follows:

φi(y) = ai(x)φ(y) if i /∈ I and φi(y) = φi(x) + qi[φ(y)− φ(x)] if i ∈ I,

where qi ∈ (0, 1) is a chosen parameter. It is possible to take qi = 1/|I| where |I|
is the number of elements in I, or set qi = ai(x)/aI(x). Then we can set ai(y) =
φi(y)/φ(y) for i = 1, . . . ,m. We can now formulate Problems (P1) and (P2) that
determine relative equilibrium states and trajectories of the system. The pure profits
will depend on the movement trajectory. If the function φ is continuous, and for
each I ∈ M the bi-function cI : X×X → R is continuous, then assumptions (A1)–
(A4) are fulfilled, and we can apply Method (TDM). Clearly, this approach can be
easily extended to the multi-commodity case.
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Example 4. (Resource allocation in telecommunication networks). We first
describe an optimal flow distribution problem in telecommunication networks; see
e.g. (Kelly et al., 1998). The network contains n transmission links (arcs) and ac-
complishes some submitted data transmission requirements from n selected pairs
of origin-destination vertices within a fixed time period. Denote by ui and di the
current and maximal value of data transmission for pair demand i, respectively, and
by xj the current network capacity of link j. Each pair demand is associated with a
unique data transmission path, hence each link j is associated uniquely with the set
N(j) of pairs of origin-destination vertices, whose transmission paths contain this
link. For each pair demand i we denote by hi(ui) the network profit value at the
data transmission volume ui. Then we can write the network income maximization
problem as follows:

max →
m∑
i=1

hi(ui) (13)

subject to ∑
i∈N(j)

ui ≤ xj , j = 1, . . . , n; (14)

0 ≤ ui ≤ di, i = 1, . . . ,m. (15)

Denote by α(x) the optimal value of problem (13)–(15) depending on the right-hand
sides x of the constraints as parameters. Also, let β(x) denote the network facility
maintenance expenses at the capacity vector x. Then we can define the network
utility (profit) function value

φ(x) = α(x)− β(x).

Let X denote the set of all the feasible capacity profiles, for instance, we can take

X = {x ∈ Rn 0 ≤ xj ≤ bj , j = 1, . . . , n} .

That is, X stands for the set of feasible states of the system. Here bj denotes the
maximal capacity of link j.

However, it is natural to suppose that each link can be served by different
telecommunication providers (see e.g. Alpcan et al., 2014), which leads to a more
general setting of the choice of the link capacities. Hence, the providers may create
coalitions in order to reduce their common capacity transition expenses. More pre-
cisely, it is assumed that there are m providers (players), they can supply telecom-
munication services to the users. For the sake of simplicity, we again take the fixed
value of the player shares set

A(x) ≡ Sm
+ ,

then some chosen a(x) ∈ A(x) gives the i-th individual utility φi(x) = ai(x)φ(x) at
x ∈ X.

As above, we choose the set of feasible coalitions M ⊆ Π(M) that can change
system states. For each coalition I ∈ M we define the set of feasible states DI(x) =
[x − εIe, x + εIe)]

⋂
X at state x ∈ X where e = (1, . . . , 1)⊤ ∈ Rm and εI > 0.

Next, each move (x→ y) accomplished by coalition I implies its common capacity
transition expenses cI(x, y) ≥ 0. This requires for the move estimate to be profitable,
i.e.,

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y) < 0.



120 Igor Konnov

The actual vector of player shares a(y) is also determined by coalition I after arrival
to the state y, where a suitable distribution rule can be taken. Some of these distri-
bution rules are given in Example 3. We can formulate Problems (P1) and (P2)
that determine equilibrium allocations and trajectories of the system. The pure
profits will depend on the movement trajectory. If the function φ is continuous, and
for each I ∈ M the bi-function cI : X × X → R is continuous, then assumptions
(A1)–(A4) are fulfilled, and we can apply Method (TDM).
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