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Abstract We built a two-level difference game theoretic model "federal
state universities" in open-loop strategies. The leading player (Principal) is
the state or its representative bodies, the followers (agents) are competing
a la Cournot universities. The agents assign their resources to the develop-
ment of new online teaching courses which are considered as their innovative
investments. An optimality principle from the point of view of agents is a
set of Nash equilibria in their game in normal form, and from the point of
view of the Principal it is a solution of the direct or inverse Stackelberg game
"Principal-agents". The respective dynamic problems of conflict control are
solved by means of the Pontryagin maximum principle and simulation mod-
eling. The received results are analyzed, and the main conclusion is that
two-level system of control of the innovative educational products promo-
tion in the universities is necessary.
Keywords: difference Stackelberg games, economic corruption, resource al-
location, simulation modeling.

1. Introduction

Problems of innovative development of the universities require new educational
methods and online teaching courses that support the methods.

Cellini and Lambertini (2002,2004) consider a dynamic one-level game theoretic
model of the development of new courses in the universities. They propose an equa-
tion of dynamics that describe a change of substituability between pairs of courses.

In this paper in modeling the process of innovations promotion we use an au-
thors’ concept of sustainable management in active systems (Ougolnitsky, 2016).
We propose a hierarchical problem setup where the leading player (Principal) is
the state or its representative bodies, and the followers (agents) are competing a la
Cournot universities.

A basic model in the lower level is borrowed from (Cellini and Lambertini, 2004).
The Principal exerts an economic impact (impulsion) to the payoff functionals of the
agents (Basar and Olsder, 1999; Ougolnitsky, 2016; Dockner et al., 2000; Gorelov
and Kononenko, 2015; Mechanism Design and Management, 2013; Geraskin, 2020).

The contribution of the paper is the following. First, we consider a dynamic
model of the innovative development in universities in discrete time (a difference
game). This problem formulation is more adequate to the real academic schedule
in universities than a continuous one. Second, we consider a combination of an ag-
gregative non-cooperative game of the oligopolistic agents with a Stackelberg game
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of the type "Principal-agents". Third, we proposed a description of the dependence
of a parameter of the demand function on the agents’ actions in the form of a
difference equation.

The paper is organized as follows. In the Section 2 we give the setup of the
discrete dynamic problem of hierarchical control, and describe algorithms of its
solution. In the Section 3 we build a Nash equlibrium in open-loop strategies using
the Pontryagin maximum principle in the case of two agents when the Principal’s
strategy is fixed. The Section 4 describes numerical calculations in direct and inverse
Stackelberg games. In Section 5 we conduct a comparative analysis of the received
results, formulate some conclusions, and sum up the investigation.

2. The Problem Setup

We consider a discrete setup of a hierarchical modification of the model from
(Cellini and Lambertini, 2002, 2004), proposed in (Malsagov et al., 2020). We study
a two-level discrete dynamic model that includes the Principal (a federal state or
its representative bodies) and several agents (universities). The agents develop
online education courses for selling. The development of courses, its differenti-
ation by means of the modern teaching methods and information technologies
are considered as innovative investments of the agents. The differentiation of the
courses is treated as production of a public good, and the agents’ investments
as a private production of the public good (Cellini and Lambertini, 2002, 2004;
Ougolnitsky and Usov, 2019). The Principal tries to increase the public good with
additional consideration of her own private interests. The principal subsidizes the
agents with consideration of budget constraints. Both Principal and agents use
open-loop strategies. The period [0, T ] is equal to several years, and the discounting
is not considered. The model with n agents has the following form:
- Principal’s payoff functional

J0(·) =
T∑

t=1

n∑
i=1

(πit − sit) +G0T → max (1)

- agents’ payoff functionals

Ji(·) =
T∑

t=1

(πit − sit) +GiT → max (2)

πit = pitqit − citq
2
it − kit (3)

- current payoff function of the i-th agent. In the Principal’s payoff function a
profit πi evaluates a positive externality from the activity of universities; namely,
an increase of GNP due to a greater social education level;

pit = A−Bqit −Dt

∑
j ̸=i

qjt (4)

- an inverse demand function (Cellini and Lambertini, 2002, 2004);

GiT = (A−BqiT −DT

∑
j ̸=i

qjT )qiT − ciT q
2
iT ; i = 1, 2, . . . , n
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G0T =

n∑
i=1

GiT =

n∑
i=1

((A−BqiT −DT

∑
j ̸=i

qjT )qiT − ciT q
2
iT );

- terminal payoffs of the Principal and agents in the moment of time T ; Dt ∈ [0, B]
- a symmetrical degree of substitutability between a pair of courses. If Dt = B then
the courses are completely homogeneous. If Dt = 0 then the courses are completely
unique, and each agent becomes a monopolist; qit - an amount of courses produced
by the i-th agent (his first control variable); kit - the i-th agent’s individual invest-
ments to the innovative development (his second control variable), Kt - summary
innovative investments of the higher education industry, Cit = citq

2
it; cit ∈ [0, A] -

summary operation costs; functions sit reflect the Principal’s subsidies to the i-th
agent for development of courses; this is the Principal’s control strategy that is to
be determined; T - a length of the game; A > 0; B > 0 – demand parameters.
- Principal’s budget constraints

0 ≤ sit;

n∑
i=1

sit ≤ S; t = 1, 2, . . . , T (5)

- agents’ control constraints

0 ≤ kit ≤ Kmax; 0 ≤ qit ≤ Qmax; i = 1, 2, . . . , n; t = 1, 2, . . . , T (6)

Kmax = const - a maximal feasible amount of one agent’s investments, Qmax =
const - a maximal feasible amount of courses produced by him; S - the Principal’s
budget;
- difference equation of dynamics similar to the differential equation of dynamics
from (Cellini and Lambertini, 2002, 2004)

Dt+1 = Dt/(1 +

n∑
i=1

(kit + sit)); D0 = B; t = 0, 1, . . . , T − 1. (7)

The difference dynamics equation (7) may be interpreted as a production function.
Di is a non-increasing function of time that tends to zero when the investments
tend to infinity (Cellini and Lambertini, 2004).

It is possible to analyze the model (1)-(7) from the point of view of different
players. From the point of view of the agents there is a game of n persons in normal
form where Nash equilibria are found. From the point of view of the Principal a
direct or inverse Stackelberg game is played where the agents’ best response is the
Nash equilibrium in their game.

A direct Stackelberg game has the following information structure
(Ugol’nitskii and Usov 2014).

1. The Principal chooses her open-loop strategies {sit}T−1;n
t=0;i=1 .

2. Given the strategies {sit}T−1;n
t=0;i=1 agents play a game in normal form (2), (6),

(7). Its solution is a set of Nash equilibria

NE({sit}T−1;n
t=0;i=1) = {kit(sit), qit(sit)}T−1;n

t=0;i=1.

If there are several Nash equilibria then we save the one in which the Principal’s
payoff is minimal.
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3. The found Nash equilibrium is substituted to (1), (7). The Principal maximizes
her payoff functional J0 (1) for a non-benevolent agents’ best response from the set
NE({sit}T−1;n

t=0;i=1) .
4. The received set of strategies {s∗it, k∗it, q∗it, }

T−1;n
t=0;i=1 forms a Stackelberg equi-

librium.
An algorithm of solution of the inverse Stackelberg game is the following

(Basar and Olsder, 1999; Ugol’nitskii and Usov 2014).
1. We found the Principal’s punishment strategies if the agents refuse to coop-

erate:

{kPit({sit}T−1
t=0 ), qPit ({sit}T−1

t=0 )} =

arg max
0≤kit≤Kmax; 0≤qit≤Qmax

Ji({sit}T−1
t=0 , {kit}

T−1
t=0 , {qit}

T−1
t=0 )

{sPit}T−1
t=0 = arg min

0≤sit;
∑n

i=1 sit=S
Ji({sit}T−1

t=0 , {kPit}
T−1
t=0 , {qPit}

T−1
t=0 )

The guaranteed payoff of an agent if he refuse to cooperate is equal to (i =
1, 2, . . . , n ):

Li = Ji({sit}T−1
t=0 , {kPit}

T−1
t=0 , {qPit}

T−1
t=0 ) =

max
0≤kit≤Kmax; 0≤qit≤Qmax

min
0≤sit

Ji({sit}T−1
t=0 , {kit}

T−1
t=0 , {qit}

T−1
t=0 )

2. We solve an optimal control problem (1), (5)-(7) with constraints

Li < Ji({sit}T−1
t=0 , {kit}

T−1
t=0 , {qit}

T−1
t=0 ); i = 1, 2, . . . , n. (8)

A maximum is found at the same time by three grid functions

{sit, kit, qit}T−1;n
t=0;i=1.

Denote a solution of this optimal control problem by

{sRit, kRit , qRit}
T−1;n
t=0;i=1,

where {sRit}
T−1;n
t=0;i=1 is a reward strategy for the i-th agent if he chooses {kRit , qRit , }

T−1;n
t=0;i=1

3. The Principal reports to each agent the feedback strategy (t = 0, 1, . . . , T −
1; i = 1, 2, . . . , n):
sit = sRit, if kit = kRit , qit = qRit and sit = sPit, otherwise.

The condition (8) makes for the agents the reward strategy more profitable than
the punishment strategy. The solution has the form

({sRit}
T−1;n
t=0;i=1}; {k

R
it}

T−1;n
t=0;i=1}; {q

R
it}

T−1;n
t=0;i=1);

3. Nash Equilibrium

Consider an indifferent Prinipal having no her own interests. Let the Princi-
pal’s strategies be fixed. Then we receive a difference game of n persons (2), (6),
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(7) in which a Nash equilibrium in open-loop strategies is built by means of a dis-
crete Pontryagin maximum principle (Pontryagin et al., 1962; Intriligator, 1971).
A Hamilton function of the i -th agent in the moment of time t has the form:

Hit(kit, qit, λi, Dt) =

(A−Bqit −Dt

∑
j ̸=i

qjt)qit − citq
2
it − kit + sit + λitDt/(1 +

n∑
j=1

(kjt + sjt))

where λit is a conjugate variable. From a necessary condition of extremum (i =
1, 2, . . . , n)

∂Hit

∂kit
= 0 and

∂Hit

∂qit
= 0

in the case of symmetrical agents

cit = ct; Hit = Ht; sit = st; kit = kt; qit = qt; λit = λt; Git = Gt; i = 1, 2, . . . , n

we receive a system of equations for determination of their optimal strategies

∂Ht

∂kt
= −1− λtDt

(1 + n(st + kt))2
= 0;

∂Ht

∂qt
= A− 2(B+C)qt−Dt(n− 1)qt = 0 (9)

Thus,

kt = (−1 +
√

−λtDt)/n− st; qt = A/(2(B + C) +Dt(n− 1)) (10)

Besides, we have a system of difference equations

Dt+1 = Dt/(1 + n(kt + st)); D0 = B; t = 0, 1, . . . , T − 1

λt = (n− 1)q2t − λt+1/(1 + n(kt + st));λT = (n− 1)/q2T (11)

From (9) we receive

∂2Ht

∂k2t
=

2nλtDt

(1 + n(st + kt))3
;
∂2Ht

∂q2t
= −2(B + C)−Dt(n− 1) < 0;

∂2Ht

∂kt∂qt
= 0

Therefore, the following proposition is proved.
Proposition. Formulas (10), (11) determine a point of maximum of the Hamilton
function for a value of t if the system (10), (11) has a solution, values (10) belong
to the domain of feasible solutions (6), and λt < 0.

If the conditions of this proposition are not satisfied for a value of t then the
maximum of Hamilton function is attained on one of the ends of segments (6).

4. Numerical Results

In the numerical calculations we used the following range of variables (Table 1):

A ∈ [100, 10000]; B ∈ [0.5, 500]; ct ∈ [0.01, 100]; st ∈ [0, 3000]; Kmax ∈ [0.1, 500];

Qmax ∈ [1, 700]; S ∈ [0, 10000]
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Table 1. Input data for two agents

N A c1 c2 B Kmax s1 s2 Qmax S

1 700 3 3 3 300 200 200 50 500
2 700 10 1 3 200 200 200 50 500
3 700 5 2 3 100 100 100 100 300
4 700 5 1 1 100 300 100 100 500
5 700 5 1 0.1 100 300 100 100 500
6 700 1 2 3 100 300 100 100 500
7 700 1 0.5 0.5 300 300 100 200 500
8 300 25 15 10 100 300 100 100 500
9 300 25 15 1 100 300 100 100 500

10 500 2 1 1 100 3 1 100 10
11 1000 10 100 3 100 100 100 200 300
12 1000 1 2 3 100 100 100 200 300
13 1000 0.1 0.2 3 100 100 100 200 300
14 1500 1 2 3 100 100 100 200 300
15 1500 1 2 3 300 500 500 400 1500
16 1500 0.1 0.02 3 100 100 100 200 300
17 1000 0.1 0.02 3 100 100 100 200 300
18 1000 1 2 3 1000 1000 1000 2000 3000
19 1000 1 2 100 100 100 100 200 300
20 1000 0.1 0.02 3 1 1 1 2 10
21 1000 0.1 0.02 3 10 100 100 20 300
22 1000 0.1 0.02 5 10 500 500 20 1500
23 1000 0.1 0.02 0.05 10 100 100 20 300
24 1000 0.1 0.02 0.1 10 100 100 20 300
25 3000 0.1 0.02 3 100 100 100 200 300
26 3000 1 2 3 100 100 100 200 300
27 3000 1 2 0.3 10 1000 1000 10 3000
28 3000 1 2 3 10 10 10 20 50
29 3000 1 2 0.1 100 100 100 200 300
30 3000 1 2 6 100 100 100 200 300
31 3000 1 2 0.01 100 100 100 200 300
32 2000 1 2 3 100 100 100 100 300
33 2000 1 2 0.1 100 100 100 100 300
34 2000 1 0.1 3 100 100 100 100 300
35 2000 1 2 3 10 10 10 10 50
36 2000 0.1 1 1 100 100 100 100 300
37 2000 2 1 3 50 1000 1000 50 3000
38 2000 2 1 0.1 10 10 10 10 50
39 2000 0.2 0.5 2 10 10 10 10 50
40 2000 0.2 0.5 1 100 100 100 100 300

The numerical results for two agents and the input data from Table 1 (T = 10)
are presented in Tables 2,3.
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Table 2. Agents’ payoffs in the Nash equilibrium and in the cooperative solution

NE NE CNE

N J1 J2 JNE
c

1 50344 50344 108235
2 14655 53231 73810
3 10765 44344 60122
4 31122 121466 165488
5 51287 138623 211956
6 78845 42286 129865
7 196843 227433 476498
8 300 100 400
9 300 100 400

10 56123 75899 136213
11 100 100 200
12 131112 97232 235621
13 193456 118766 323854
14 403212 228767 649324
15 85623 172378 290321
16 493212 387867 922736
17 212599 147397 377521
18 1000 1000 2000
19 100 100 200
20 4213 4316 9768
21 51298 50876 109324
22 41765 44011 92314
23 53277 54632 112956
24 51667 51897 113076
25 1277000 1156899 2589900
26 1112656 912876 2197000
27 76566 74588 162455
28 152300 147988 315678
29 1466762 1323454 2854466
30 867921 512388 1515877
31 1523466 1398777 3012755
32 447923 391356 852342
33 507221 491977 1022677
34 432112 421322 893344
35 50234 48988 109234
36 498232 472344 1023488
37 232688 233012 488365
38 53211 53566 113455
39 53177 53011 110355
40 523377 507578 1077521
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Table 3. Principal’s and agents’ payoffs for direct and inverse Stackelberg games

N CST/IST ST ST ST IST IST IST

J
ST/IST
C J0 J1 J2 J0 J1 J2

1 215670 99688 50644 50044 104233 52617 52617
2 146820 66886 14386 53500 73112 15754 58358
3 119844 54820 10921 44499 58366 13234 45732
4 330176 151600 30877 121723 162842 32987 130855
5 423112 188919 50988 138931 203865 56672 148193
6 258930 120140 78611 42529 127431 82276 46155
7 952196 423293 196612 227681 458432 200521 258911
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

10 272418 132013 56134 75899 134377 58254 76143
11 0 0 0 0 0 0 0
12 470842 228099 131312 97387 230891 134765 96726
13 647308 311970 193639 118931 318745 194788 124557
14 1298248 631746 403435 228911 637982 407435 231147
15 578642 274124 86123 191001 283205 90211 195994
16 1845072 880766 493155 388211 905678 496111 410167
17 754642 359899 212657 147842 359871 215488 144983
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 19528 8528 4228 4320 9113 4474 4659
21 218248 101681 51523 50756 105643 52132 54111
22 182628 86864 42112 44752 89721 45233 47488
23 225512 107562 53423 54739 109821 55234 55187
24 225752 103169 51812 51957 108756 54231 55125
25 5179466 2433587 1277189 1156998 2523511 1279854 1244257
26 4393600 2025147 1112845 912902 2112457 1121321 991136
27 320910 148809 78321 76488 158432 83256 80176
28 631316 300300 152388 148012 300878 156567 144411
29 5708532 2789722 1466945 1323377 2799941 1472852 1327689
30 3031354 1380087 868232 512455 1410763 875388 523975
31 6025110 2922057 1523745 1398912 2987867 1541234 1447233
32 1704284 839111 447877 391834 843521 451287 392834
33 2044954 998783 507439 491944 999453 516534 483519
34 1786288 853112 432403 421309 867311 438651 429260
35 218428 99198 50277 49021 103678 51012 52766
36 2046576 970332 498521 472411 997522 507671 490451
37 972730 463044 235032 234012 469843 240651 234992
38 226870 106783 53288 53595 109651 54876 54875
39 220670 106155 53212 53043 107564 54378 53286
40 2154642 1030576 523572 507604 1053498 534768 519330

We conducted about 200 numerical calculations for two agents in the cases of
their independent behavior and cooperation. Also, direct and inverse Stackelberg
games with addition of the Principal were modeled numerically by the method of
qualitatively representative scenarios of simulation modeling (the QRS method)
(Ougolnitsky and Usov, 2016; 2018). The solution is built according to the algo-
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rithms described in those papers. The initial sets of QRS for agents and the Prin-
cipal at each time t = 1, 2, . . . , T consist of three elements: the minimal, maximal
allowable controls in accordance with (5), (6) and the arithmetic mean of these val-
ues. The number of elements of the initial QRS set is equal to 27nT . All elements of
the initial QRS set are checked for completeness and redundancy (Ougolnitsky and
Usov, 2016; 2018). If the conditions are not satisfied then the QRS set is reduced
or extended with new elements by an additional dichotomy.

The results from Table 2 imply the following main conclusion. For a small de-
mand for new courses (the values of parameter A are not greater than 400) or big
values of the parameter B (greater than 5-10), and considerable summary operation
costs (values of the parameters Cit = citq

2
it; citin(0, A) greater than 4) the invest-

ments in the development of new courses are not advantageous for the agents. In
this case their control variables are equal to zero, and their payoff is formed only
by subsidies received from the Principal (rows 8-9,11, 18-19). In other cases the
investments are advantageous, and the respective payoffs is greater in exponents.

A comparative analysis of the received results is based on the system of indi-
vidual and collective relative efficiency indices. For this sake a cooperative problem
setting was used.

In the case of an indifferent Principal an optimal control problem of the grand
coalition of agents has the form

JNE
c =

n∑
i=1

Ji =

T∑
t=1

n∑
i=1

(πit − sit) +

n∑
i=1

GiT → max (12)

s.t. (2), (6). Maximum in (12) is found by the variables {kit, qit}T−1;n
t=0;i=1

In the case of cooperation of the Principal with all agents the problem takes the
form

JST/IST
c =

n∑
i=0

Ji = 2

T∑
t=1

n∑
i=1

πit +

n∑
i=0

GiT → max

where the maximum is also found by the variables {kit, qit}T−1;n
t=0;i=1

The solution in both cases is built numerically similar to
(Ougolnitsky and Usov, 2016, 2018). The results are also presented in Tables 2 and
3.

The indices of relative efficiency are presented in Table 4. Collective indices of
relative efficiency compare values of social welfare for different ways of organization
with its maximal cooperative value:

SCINE =
JNE
min

Jmax
; SCIST =

JST

Jmax
; SCIIST =

JIST

Jmax

Here

Jmax = max
{kit,qit}n;T−1

i=1;t=0

n∑
j=1

Ji({kit}n;T−1
i=1;t=0, {qit}

n;T−1
i=1;t=0, s);

JNE
min(s) = min

(kNE(s),qNE(s))∈NE(s)

n∑
i=1

Ji(k
NE , qNE , s);

k = {kit}n;T−1
i=1;t=0; q = {qit}n;T−1

i=1;t=0; s = {sit}n;T−1
i=1;t=0;
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JST = min
(k,q,s)∈ST

n∑
i=1

Ji(k, q, s); JIST = min
(k,q,s)∈IST

n∑
i=1

Ji(k, q, s);

NE(s) = {kNE(s), qNE(s)} is a set of Nash equilibria in the game of agents in
normal form when the Principal’s strategy s is fixed; ST, IST is a set of solutions of
a direct (inverse) Stackelberg game where the first player is the Principal; JST , JIST

a value of the social welfare in the direct (inverse) Stackelberg game.

Individual indices of relative efficiency compare the agents’ payoffs for different
ways of organization with their equal shares in the distribution of the cooperative
payoff:

KNE
i =

JNE
i,min

Jc
i

; KST
i =

γi
JC
i

;

KIST
i =

γ̄i
JC
i

; JC
i =

Jmax
C

2n
; i = 1, 2, . . . , n; JC

0 =
Jmax
C

2
;

JNE
i,min(s) = min

(kNE(s),qNE(s))∈NE(s)
Ji(k

NE , qNE , s); Jmax
C = max

k,q,s

n∑
i=0

Ji(k, q, s)

Here the Principal has zero subscript; γi(γ̄i) is the i-th agent’s payoff in a direct (in-
verse) Stackelberg game where the first player is the Principal; JC

i ; i = 0, 1, 2, . . . , n
are their equal shares in the distribution of the cooperative payoff. Remind that the
Principal’s payoff is equal to the sum of agents’ payoffs.

In the last row of the Table 4 the average values of respective indices are shown.
Thus, the following systems of preferences hold:

Society (collective relative efficiency): C ≻ IST ≻ ST ≻ NE.

Agents (individual relative efficiency): C ≻ NE ≻ ST ≻ IST.

Principal (individual relative efficiency): IST ≻ ST ≻ C.

Thus, cooperation is preferable for the whole society and agents (followers). For
the Principal an inverse Stackelberg game is preferable.



106 Vassily Yu. Kalachev, Guennady A. Ougolnitsky, Anatoly B. Usov

Table 4. Indices of relative efficiency for different information structures

N SCINE KNE
1 /KNE

2 SCIST KST
0 /KST

1 /KST
2 SCIIST KIST

0 /KIST
1 /KIST

2

1 0.93 0.93/0.93 0.93 0.92/0.94/0.92 0.97 0.95/0.97/0.97
2 0.92 0.4/1.44 0.93 0.91/0.39/1.45 0.99 0.99/0.43/1.58
3 0.92 0.36/1.47 0.93 0.91/0.36/1.48 0.98 0.97/0.44/1.52
4 0.92 0.38/1.47 0.92 0.92/0.37/1.47 0.98 0.99/0.4/1.58
5 0.9 0.48/1.31 0.9 0.89/0.48/1.31 0.96 0.96/0.53/1.4
6 0.93 1.21/0.65 0.94 0.93/1.21/0.65 0.98 0.99/1.27/0.71
7 0.89 0.83/0.95 0.89 0.89/0.82/0.96 0.96 0.96/0.84/1.09
8 1 1.5/0.25 1 1/1/1 1 1/1/1
9 1 1.5/0.25 1 1/1/1 1 1/1/1

10 0.97 0.82/1.11 0.97 0.97/0.82/1.11 0.99 0.98/0.86/1.12
11 1 1/1 1 1/1/1 1 1/1/1
12 0.97 1.11/0.83 0.97 0.96/1.11/0.83 0.98 0.98/1.14/0.82
13 0.96 1.19/0.73 0.97 0.96/1.2/0.73 0.98 0.99/1.2/0.77
14 0.97 1.24/0.7 0.93 0.98/1.24/0.71 0.98 0.98/1.25/0.71
15 0.89 0.59/1.19 0.94 0.95/0.59/1.32 0.96 0.98/0.62/1.35
16 0.95 1.07/0.84 0.96 0.95/1.07/0.84 0.98 0.97/1.08/0.88
17 0.95 1.13/0.78 0.96 0.95/1.13/0.78 0.96 0.98/1.14/0.77
18 1 1/1 1 1/1/1 1 1/1/1
19 1 1/1 1 1/1/1 1 1/1/1
20 0.87 0.86/0.88 0.88 0.87/0.87/0.88 0.93 0.93/0.92/0.95
21 0.93 0.94/1.11 0.94 0.93/0.91/0.97 0.97 0.97/0.95/0.99
22 0.93 0.9/0.95 0.97 0.95/0.95/0.97 0.98 0.98/0.98/1.03
23 0.96 0.94/0.96 0.96 0.95/0.95/0.97 0.98 0.97/0.98/0.98
24 0.97 0.91/0.92 0.92 0.91/0.92/0.92 0.97 0.94/0.96/0.98
25 0.94 0.99/0.89 0.94 0.94/0.99/0.89 0.97 0.95/0.99/0.95
26 0.92 1.01/0.83 0.92 0.92/1.01/0.83 0.96 0.96/1.02/0.9
27 0.93 0.94/0.92 0.97 0.93/0.83/0.83 0.98 0.98/1.02/0.9
28 0.95 0.96/0.94 0.95 0.95/0.97/0.94 0.96 0.95/0.99/0.91
29 0.98 1.03/0.93 0.98 0.98/1.03/0.93 0.98 0.98/1.03/0.92
30 0.91 1.15/0.66 0.91 0.91/1.15/0.81 0.93 0.93/1.15/0.68
31 0.97 1.01/0.93 0.97 0.97/1.01/0.93 0.99 0.98/1.02/0.96
32 0.98 1.05/0.92 0.99 0.99/1.05/0.92 0.99 0.99/1.06/0.92
33 0.98 0.99/0.96 0.98 0.98/1.00/0.96 0.99 0.99/1.01/0.95
34 0.96 0.97/0.94 0.96 0.95/0.86/0.94 0.97 0.98/0.98/0.94
35 0.91 0.92/0.9 0.91 0.91/0.92/0.9 0.93 0.95/0.93/0.96
36 0.95 0.98/0.92 0.95 0.95/0.97/0.92 0.98 0.98/0.99/0.96
37 0.95 0.95/0.95 0.97 0.95/0.96/0.96 0.99 0.97/0.99/0.96
38 0.94 0.94/2.36 0.96 0.95/0.94/1.00 0.98 0.98/0.97/0.97
39 0.96 0.97/0.97 0.98 0.95/0.96/0.96 0.99 0.99/0.98/0.97
40 0.96 0.97/0.94 0.96 0.96/0.97/0.94 0.98 0.98/0.99/0.96

Average value 0.95 0.95/0.98 0.96 0.95/0.94/0.97 0.98 0.98/0.93/0.96

5. Conclusion

We propose and investigate a difference game theoretic model that describes the
promotion of innovations in the universities competing a la Cournot. For a small
demand for new courses and considerable summary operation costs the investments
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in the development of new courses are not advantageous for the agents. In this case
their control variables are equal to zero, and their payoff is formed only by subsidies
received from the Principal. In other cases the investments are advantageous, and
the respective payoffs is greater in exponents.

In comparative analysis of the results we use an authors’ concept of the relative
efficiency indices.

The problem of inefficiency of equilibria is well known and discussed in many
papers. For quantitative evaluation of the inefficiency a set of indices is proposed.
They reflect a pessimistic approach (price of anarchy), optimistic approach (price
of stability), dynamic aspects (price of information), altruistic behavior (price of
cooperation).

However, these indices analyze an efficiency of equilibria only from the point of
view of the whole society (social welfare). In this case cooperation is the evident
best outcome, and the indices evaluate only a degree of deviation of the system from
the global optimum. Meanwhile, a real possibility of cooperation depends not only
on the whole society but also on specific economic agents (entrepreneurs, firms,
etc.). The payoff of an agent in the Principal’s position may be greater than his
share in a cooperative distribution, and then a struggle for leadership arises. That’s
why a systematic analysis of inefficiency of equilibria and conditions of cooperation
requires not only collective but also individual indices of relative efficiency.

In this paper we used a system of individual and collective indices of relative
efficiency to the investigation of a difference game theoretic model of the promotion
of innovations in universities. In dynamics for the calculation of indices an averag-
ing on the set of numerical calculations is made. As it was expected, the systems
of preferences for an individual and the society are contradictory. Cooperation is
preferable for the whole society and agents (followers). At the same time, for the
Principal an inverse Stackelberg game is preferable. Moreover, two non-symmetrical
agents have different relations to cooperation: for one of them it is more profitable
than an independent behavior, and vice versa for the second one.
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