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Abstract This paper summarizes the list of our works that contain re-
searches about optimality principles for the "n-person prisoner’s dilemma"
game. The classic model is considered through the new payoff function for
each player that allows to consider it without restrictions for the number of
players. The new characteristic function gives an opportunity to introduce
the time-consistent subset of the core of the dynamic game. In accordance
with this type of game we consider some specific properties of players’ payoffs
and construct the new way of their interactions. Using the network represen-
tation, the classic model is modified to the wider class of games that allows
to specify players’ influence to each other’s payoff function. These investiga-
tions can be used for the description of cooperation in the other multi-agent
systems.
Keywords: n-person prisoner’s dilemma, cooperative game, characteristic
function, network game, Shapley value.

1. Introduction

These days the most of people interactions can be approximated by the game
theory models. One of the fundamental model is a "prisoner’s dilemma". The game
allows to consider rational agents’ interactions in terms of mutually advantageous
concessions, that means the rejection of strictly dominant strategy to achieve the
Pareto optimal solution. Hamburger (Hamburger, 1973) involved "n-person pris-
oner’s dilemma" game to construct the interactions of the wider range of people.
His problem statement represents the cumulative effect of players’ influence on each
other results. The game contains all the main properties of the classical model that
show the possibility of the higher joint gain if all of them abandon personal inter-
ests. Analysis of such kind of games is usually represented in the search of Nash
equilibrium and, moreover, there can be investigated various principles of optimality
of the cooperative type of the game.

This problem exhibits the confrontation of the own gains and the social welfare.
All players are asked about their joint crime. Each of them has two pure strategies
"to stay silent" or "to betray".

The higher number of players makes the game more interesting for the cooper-
ative game theory, since it gives an opportunity to analyze players’ interactions in
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terms of the network. The construction of population structure through cooperation
in social dilemmas can be represented using the "n-person prisoner’s dilemma" type
of game.

The great amount of researches of the model aims to explore the following four
items:

– theoretical analysis of one-stage models;
– the study of multi-stage and repetitive models;
– the analysis of evolutionarily stable strategies;
– the representation of empirical results.

Straffin (Straffin, 1993) conducted the experiments with partially cooperative
behavior in the repeated "n-person prisoner’s dilemma" game. Since people interact
during several stages and, moreover, each choice of strategies leads to changes in the
relationships between them, it makes sense to expand the research of a repeated or
multi-stage version of the proposed model. In the paper Straffin provides a general
description of the one-stage model of "n-person prisoner’s dilemma" and introduces
the following basic principles for construction of players’ payoff functions:

1. The strategy D ("to betray") is dominant for each player.
2. If all players choose the dominant strategy D, the sum of their payoffs is lower

than if all of them choose the strategy C ("to stay silent").

Aumann (Aumann, 1959) attempts to analyze the equilibrium behaviour of the
players in regards with an unknown number of repetitions of the given type of
game. He provides an example of construction of a characteristic function for the
one-stage three-person prisoner’s dilemma game. Moreover, both non-cooperative
and partially cooperative behaviour for some coalitions in the model are analysed.
Examples of well-known economic issues, such as the "tragedy of the commons",
were suggested that could be analysed using the model.

To sum up the results of the final stage model, Carroll (Carroll, 1988) introduces
the restricted probability function of the next stage of the game. He proves the
theorem that there is a noncooperative Nash equilibrium in the repeated "n-person
prisoner’s dilemma" with a probability-constrained function that can be considered
as the other type of the final game.

The paper of Petrosjan and Grauer (Petrosjan and Grauer, 2002) examines a
repeated game and contains the discount factor that provides an effective punish-
ment in the infinite version of the game. There is provided the theorem that shows a
strong Nash equilibrium for the restricted range of discount factor. It is proved that
for an infinitely repeated "n-person prisoner’s dilemma" game the core is nonempty.

This paper researches the new equilibrium principle of behavior in terms of "n-
person prisoner’s dilemma" game. We investigate the new characteristic function
(Petrosyan, 2019) to consider the different optimality principles in the dynamic
"n-person prisoner’s dilemma" model, particularly the subcore of dynamic game
(Petrosyan and Pankratova, 2018) that contains the Shapley value.

As a result, the analysis of optimality principles for the multi-stage games
and their time-consistency for the variety of models for the "n-person prisoner’s
dilemma" game are provided.
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2. The Model of "n-Person Prisoner’s Dilemma" Game without
Differentiation of Players’ Relationships

2.1. Model Description for "n-Person Prisoner’s Dilemma" Game
Let γ be a static game. A set of players is N that has a cardinality |N | = n.

Each player has two pure strategies: C ("to stay silent") and D ("to betray").
Suppose players have the same impact to each other payoff, so that all of them can
be considered as symmetric players.

Let x be the number of players from the set N that chooses the strategy C.
The payoff function of the player i for the static game γ without differentiation

of players’ relationships is hi that depends on the strategy of the player i and the
number of other players from the set N that choose the strategy C, ∀ i ∈ N :

hi (x1, . . . , xi, . . . , xn) =



Ci (x) = a1x+ b1, ∀ x ∈ (0, n] , if xi = C and x
is number of players from the set N that chooses
strategy C,
Di (x) = a2x+ b2, ∀ x ∈ [0, n) , if xi = D and x
is number of players from the set N that chooses
strategy C.

(1)

The payoff function hi (x1, . . . , xi, . . . , xn) satisfies the following conditions:

1. Di(x− 1) > Ci(x),∀x ∈ [1, n], i. e. the strategy "to betray" strictly dominates
the strategy "to stay silent";

2. Ci(n) > Di(0), so the strategy profile (C, . . . , C) is Pareto effective in contrast
to (D, . . . , D).

3. Di (x) ≥ Di (0) ,∀x ∈ [0, n− 1] and Ci (x) ≥ Ci (1) ,∀x ∈ [1, n], therefore,
payoffs of the players in the case of the x silent players are at least not less than
in case of the absence of silent players.

4. Ci(x) = Cj(x) and Di(x) = Dj(x), this means that the players are symmetric.

A considerable ammount of literature uses the table form of writing the payoff
function. However, our investigation allows us to simplify the calculations of charac-
teristic function and then describe the construction of the core and the calculating
of the Shapley value. Moreover, such form of payoff function is useful for future
research.

2.2. An Effective Punishment for the Infinitely Repeated Game
Denote by Γ infinitely repeated stage game γ. For this game a strong Nash

equilibrium (Petrosjan and Grauer, 2002) is found includes the new way of player’s
behaviour that provides players higher payoffs. Also this behavior is stable against
the deviations of coalitions.

Suppose that each player chooses the strategy C during the first ki − k∗ stages.
The sum of their payoffs on each stage equals to:

A (N) =

n∑
i=1

Hi (C, . . . , C) =

n∑
i=1

Hi (x) .

Since the strategy D is the strictly dominant for every stage of the "n-person
prisoner’s dilemma" game in accordance with the first property of the model, each
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of the players tends "to betray", because their payoffs increase regardless of the
strategies of other players. Therefore, choosing strategy D is preferable for each
player i, because when all other players choose strategy C payoff of player i will be
equal to:

V (i) = Hi (x||xi) > Hi (x) = A (i) .

Thus, there should be a "punishment" for "betraying" players to ensure coop-
erative behaviour throughout the whole game. Choose k∗ in such a way that the
"betrayal" of any coalition would not be advantageous to that coalition, so that
strategy "to betray" of each player in the coalition would significantly reduce the
sum of players’ payoffs.

Definition 1. The strong Nash equilibrium in the game Γk is n-dimensional strat-
egy profile x∗ (.) = (x∗1 (

.) , . . . , x∗n (
.)) which satisfies to the inequality

∑
i∈M

Hi (x
∗ (.)) ≥

∑
i∈M

Hi (x
∗ (.) ||xM (.))

for all M ⊂ N , xM (.) ∈
∏

j∈M Xj (Petrosyan and Grauer, 2004).

Theorem 1. The strategy profile X is strong Nash equilibrium for infinitely repeated
"n-person prisoner’s dilemma" type of game, when all players choose strategy D on
stage ki only if not all players from set N chose strategy D on stage ki − k∗ and all
players choose strategy C on the stage ki otherwise.

Proof (of theorem). Construct an equilibrium in the n-person prisoner’s dilemma
that satisfies the condition of strong Nash equilibrium, that means it is stable rela-
tive to the deviation of any coalition.

Consider Xi as a strategy that consists of the following: a player chooses to play
"against each who betrayed" for the next k∗ stages as soon as he got less than with
full cooperation. Since the player’s payoff with both theD and C strategies increases
while the more other players choose the strategy C, the only way to minimize any
player’s payoff is to choose the strategy D. Remarkably, the strategies of the game
"against all" and "against each who betrayed" (Petrosyan, 2019) are the same for
"n-person prisoner’s dilemma". That means that the only important fact is the
betrayal of any player or coalition, however, it doesn’t matter who was it. Thus, let
all n players at each stage play the following strategy:

xqi =

{
D on the stage kq, if ∃ j ∈ N : xq−1

j = D and ∃ l ∈ N : xq−1
l = D

C, otherwise.

Find such a number of stages k∗, that can guarantee the cooperation and "ef-
fectively punish" the betrayed coalition.

Consider the coalition S ⊆ N, that has cardinality |S| = S. In accordance with
our approximation, all n players play the strategy C ("to stay silent") at the initial
stages. Therefore, the coalition S get the following sum of players’ payoffs:

A (S) = (a1n+ b1) s = a1ns+ b1s.
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This coalition may try to deviate from the strategy XS for maximization of the
sum of the payoffs of its players. Suppose that the rest of the N \S players continue
to play the strategy XN\S . Then, xi = C for all i ∈ {N \ S} at the stage of other
deviation. When coalition S deviates from the cooperative behavior, the maximum
sum of its players’ payoffs equals:

W (S) = max
xS∈

∏
i∈S xi

∑
i∈S

hi
(
xS , xN\S

)
.

In our case, this represents the sum of s players payoffs DS , if n − s players
choose the strategy "to stay silent" (C)

W (S) =
∑
i∈S

Di (n− s)

And since all the players are symmetric from the forth property about payoffs
in the "n-person prisoner’s dilemma", then

W (S) = sDi (n− s) = s (a2 (n− s) + b2) = a2ns− a2s
2 + b2s.

Remarkably, the only coalition S with the cardinality not exceeded s can get the
sum of its players’ payoffs bigger than for cooperative behavior, so W (S) > A (S)

a2ns− a2s
2 + b2s > a1ns+ b1s.

That means that the cardinality of the coalition that betrayed follows the con-
dition:

s <
a2n+ b2 − a1n− b1

a2
.

Therefore, it is enough to prove that the "punishment" is effective for the coalition
with cardinality that is less than s.

When all the players from the coalition S chose the strategy D, on the next
stage players from the coalition {N \ {S}} choose the strategy "to betray" (D) in
accordance with the strategy X̄i. In that terms, the strategy of the coalition S at
this stage should be decided based on a function that maximizes the amount of
mathematical expectations of the payoffs of players from the coalition S:

V (S) = max
xS

[∑
i

hi
(
xS , xN\S

)]
.

Since (n− s) players choose the strategy D at the stage, this value can be
counted as

V (S) = max

{∑
i∈S

Di (0) ,
∑
i∈S

Ci (s)

}
.

The simmetry of the players allows us to calculate this value as

V (S) = max {s (a1s+ b1) , sb2} .
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Therefore, at the "punishment" stage the sum of the payoffs of the players from
the betrayed coalition is

V (S) =

{
a1s

2 + b1s, if s ≥ b2−b1
a1

,

b2s, otherwise.

Define the number of stages that can guarantee the cooperative behavior of the
players. Therefore, it can divide the sum of the coalition’s players’ payoffs for the
whole period of the game in such a way, that it can be smaller than if all the players
from the set N choose the strategy Xi during the whole game.

k∗
(
V (S)−A (S)

)
≤ A (S)−W (S) ,

that means that if k∗ ≥ W (S)−A(S)

A(S)−V (S)
, the "punishment" is effective.

Since V (S) is different for some kind of a coalition’s cardinality, find k∗ for each
of them.

For the coalition S that has less than b2−b1
a1

players the number of stages equals:

k∗ (a1n+ b1 − b2) > a2n− a2s+ b2 − a1n− b1.

In this case, if the number of players in the coalition is s < b2−b1
a1

, it is unprof-
itable for them to deviate during the stages K − k∗:

k∗ >
a2n− a2s+ b2 − a1n− b1

a1n+ b1 − b2
.

Then, there should be found the number of stages for the "punishment" that
provides protection for coalition with cardinality b2−b1

a1
≤ s < a2n+b2−a1n−b1

a2
against

deviations from cooperative behavior. Remember that coalitions with cardinality
s ≥ a2n+b2−a1n−b1

a2
have no reason to deviate even in the absence of punishment. If

the number of stages for the "punishment" satisfies the condition

k
∗ (
a1ns+ b1s− a1s

2 − b1s
)
> a2ns− a2s

2 + b2s− a1ns− b1s,

then the betrayal is unprofitable for coalitions with cardinality b2−b1
a1

≤ s <
a2n+b2−a1n−b1

a2
.

Then, for the cardinality b2−b1
a1

≤ s < (a2n+b2−a1n−b1)n
a2

we can get

k
∗ ≥ a2ns− a2s

2 + b2s− a1ns− b1s

a1ns− a1s
.

Since for the considered intervals the number of stages required to achieve an ef-
fective cooperation has decreased with the increase of the cardinality of the coalition,
we can define the number of stages k∗ that can provide the punishment efficiency
for any coalition max (k∗) = k∗(1):

max (k∗) =

{
a2(n−1)+b2−a1n−b1

a1(n−1) , if b2−b1
a1

≤ 1,
a2(n−1)+b2−a1n−b1

a1n+b1−b2
, otherwise.

⊓⊔
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Example 1. Construct a "three-person prisoner’s dilemma" repeated game Γ that
corresponds the previous assumptions. It is possible to introduce the game in matrix
form, where the first player is the row-player and choose his strategy as the row
C or D of the table, the second player is the column-player and the third player
is the page-player. The order of payoffs corresponds to the number of players (see
Table 1).

Table 1. Three-Person Prisoner’s Dilemma (the first player is a row-player, the second
one is a column player and the third one is a page-player)

C C D

C (6, 6, 6) (4, 12, 4)
D (12, 4, 4) (8, 8, 2)

D C D

C (4, 4, 12) (2, 8, 8)
D (8, 2, 8) (4, 4, 4)

Consider each player’s payoff as a function of the number of players choosing
the strategy C:

Hi (x1, x2, x3) =



Ci (x) = 2x, ∀ x ∈ (0, 3] , if xi = C

and x players choose
the strategy C;
Di (x) = 4x+ 4, ∀ x ∈ [0, 3) , if xi = D

and x players choose
the strategy C.

Since b2−b1
a1

> 1, the number of stages that can guarantee the cooperative be-
havior equals

k∗ =
4 ∗ (3− 1) + 4− 2 ∗ 3− 0

2 ∗ 3 + 0− 4
= 3,

therefore, three stages is enough to "effectively punish" the "coalition that be-
trayed".

Thus, the new Nash equilibrium is the profile of strategies Xi for all players.
Moreover, this is the strong Nash equilibrium.

In this multi-stage game Γ , there was found the number of stages k∗ that can
guarantee that deviation from the cooperative behavior is disadvantageous for any
coalition.

2.3. The Model of Cooperation in the Dynamic Game

Suppose that there are the finite number f of "n-person prisoner’s dilemma"
games: (γ1, . . . , γf ). During the infinite number of stages one of these games is
realized. Define the number of stages k∗f that are necessary for the "effective pun-
ishment" of the "coalition that betrayed" in the given game Γf .

The payoff function for each of the game of the set of f games is defined as



Cooperation in the Multi-Agent System with Different Types of Interactions 67

h
γj

i (x1, . . . , xi, . . . , xn) =



C
γj

i (x) = a
γj

1 x
γj + b

γj

1 , ∀ xγj ∈ (0, n] , if xγj

i = C

and xγj players choose
the strategy C,
D

γj

i (xγj ) = a
γj

2 x+ b
γj

2 , ∀ xγj ∈ [0, n) , if xγj

i = D

and xγj players choose
the strategy C.

The whole payoff of each player i, HΓf

i (X1, . . . , Xi, . . . , Xn) can be calculated
as the sum of payoffs for each stage of the game Γf .

Construct the gain from deviation for coalition S in the game with these coeffi-
cients, as the difference between its payoffs for deviating behavior and on cooperative
trajectory.

W
γj∗ (S)−Aγj∗ (S) = a

γj∗

2 ns− a
γj∗

2 s2 + b
γj∗

2 s− a
γj∗

1 ns+ b
γj∗

1 s.

The maximum gain from betraying can be calculated as:

max
s∈(1,n)

(
a
γj∗

2 (n− s) + b
γj∗

2

)
s−

(
a
γj∗

1 n+ b
γj∗

1

)
s

s

This is the gain of the coalition S with the cardinality |S| = 1, since the payoff
increases while the number of players with the strategy C increases.

An effect of the punishment equals the difference between the payoff for the
whole cooperation and the guaranteed payoff of the deviated coalition.

Aγj (S)− V
γj

(S) = a
γj

1 ns+ b
γj

1 s−max
{
a
γj

1 s
2 + b

γj

1 s; b
γj

2 s
}
,

but it is necessary to understand that these are at different stages of the game,
therefore, at the stage of "punishment" j > j∗.

The least effect of the punishment can be achieved if the difference between the
deviating and cooperative behaviour is maximized at the stage of deviation, so

max
j∈[1,f ]

(W γj (1)−Aγj (1)) ,

and the difference between the singleton’s payoff with cooperative behavior of all
players and the payoff for this player at the punishment stage is minimal

min
j∈[1,f ]

(Aγj (1)− V γj (1)) .

In this case, we can find the number of stages for the "effective punishment",
when the gain from the deviation is less than the loss from the punishment during
the k∗ stages, i.e.

max
j∈[1,f ]

(
Wγj

(1)−Aγj
(1)
)
≤ k∗f min

j∈[1,f ]

(
Aγj

(1)− Vγj
(1)
)
.

In the given game, it can be reached, if
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max
j∈[1,f ]

((
a
γj

2 n− a
γj

2 + b
γj

2

)
−
(
a
γj

1 + b
γj

1

))
≤ k∗f min

i∈[1,f ]
((aγi

2 n− aγi

2 + bγi

2 )− bγi

2 ) .

Therefore, there are not coalition that tends to deviate from the cooperative
behavior, if the number of stages for the "punishment" is at least:

k∗f ≥
maxj∈[1,f ]

(
a
γj

2 n− a
γj

2 + b
γj

2 − a
γj

1 − b
γj

1

)
mini∈[1,f ] (a

γi

2 n− aγi

2 )
.

2.4. The Core of the "n-Person Prisoner’s Dilemma"
Consider a dynamic game Γf which is played during Kf stages. This game

consists of the set of f static games (γ1, . . . , γf ), which can be described as the
model of "n-person prisoner’s dilemma". The games are realised with probabilities
p1, . . . , pf on each stage of the game Γf ,

∑f
j=1 pj = 1.

The payoff functions for each possible static game are:

h
γj

i (x1, . . . , xi, . . . , xn) =


C

γj

i (x) = a
γj

1 x
γj + b

γj

1 , ∀ xγj ∈ (0, n] , if xγj

i = C and
xγj is a number of players, who plays the C strategy,
D

γj

i (xγj ) = a
γj

2 x+ b
γj

2 , ∀ xγj ∈ [0, n) , if xγj

i = D and
xγj is a number of players, who plays the C strategy.

Let

V γj (N) = max
x1,...,xi,...,xn

∑
i∈N

h
γj

i (x1, . . . , xi, . . . , xn)

is equal for all γj : j ∈ [1, f ].

Definition 2. A core of the game Γf is a set of possible allocations (α1, . . . , αn)
which doesn’t contradict to the following statements:

1. individual rationality: αi ≥ V Γf (i) , ∀i ∈ N ;
2. coalitional rationality:

∑
i∈S αi ≥ V Γf (S) , ∀S ⊂ N ;

3. efficiency:
∑

i∈N αi = V Γf (N) .

The value of the characteristic function of each individual player at each stage
of Γf equals to

V γj (i) = D
γj

i (0) = b
γj

2 .

Suppose, that S is a coalition: S ⊂ N, |S| = s. It can guarantee the payoff

V γj (S) = max
r∈[0,s]

(
r
(
a
γj

1 r + b
γj

1

)
+ (s− r)

(
a
γj

2 r + b
γj

2

))
,∀S ⊂ N.

V γj (N) is the same in all games (γ1, . . . , γf ) and it is equal to

V γj (N) = max
s∈[0,n]

(
s
(
a
γj

1 s + b
γj

1

)
+ (n − s)

(
a
γj

2 s + b
γj

2

))
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So, the core of the game Γf is the set of allocations which meets with the
following conditions:


∑N

i=1 αi = Kf

∑f
j=1 pj maxs∈[0,n]

(
a
γj

1 s
2 + b

γj

1 s+ a
γj

2 ns− a
γj

2 s
2 + b

γj

2 n− b
γj

2 s
)
;

∑S
i=1 αi ≥ Kf

∑f
j=1 pj maxr∈[0, s]

(
a
γj

1 r
2 + b

γj

1 r + a
γj

2 sr − a
γj

2 r
2 + b

γj

2 s− b
γj

2 r
)
.

Definition 3. Define W (S), S ⊂ N , as follows: W (S) = maxj V (γj , S). Denote
by D (γj) the set of imputations αγj =

(
α
γj

1 , . . . , α
γj
n

)
in Γf , satisfying the con-

dition ∑
i∈S

α
γj

i ≥W (S) , S ⊂ N, S ̸= N,

∑
i∈N

α
γj

i = V (γj , N) ,

here V (γj , N) is the maximum sum of players’ payoffs in the game Γf .
(Petrosyan and Pankratova, 2018)

Definition 4. A set D (γ1) is called to be strongly time consistent in Γf if

1. D (γl+1) ̸= ø, j ∈ [1, f ];
2. there exists imputation distribution procedure (See Petrosyan, 1993)
β =

(
β1, . . . , βj , . . . , βKf

)
: D (γ1) ⊃

∑l
j=1 βj ⊕ D (γl+1) for all allocations

αγ1 ∈ D (γ1).

Here the sign ⊕ means

βj⊕D (γl+1) =
{
βj ⊕ d (γl+1) : d (γl+1) ∈ D (γl+1)

}
( Petrosyan and Grauer, 2004) .

Theorem 2 (Time-Consistent Subset of the Core). 3-person game Γf has
time-consistent subset of the core D which can be described by the following inequal-
ities

αD
i ≥ Kf max

j∈[1,f ]
b
γj

2 ,

αD
i +αD

j ≥ Kf max

(
max
j∈[1,f ]

(
4a

γj

1 + 2b
γj

1

)
; max
j∈[1,f ]

(
a
γj

1 + b
γj

1 + a
γj

2 + b
γj

2

)
; max
j∈[1,f ]

(
2b

γj

2

))
,

αD
i + αD

j + αD
k = Kf max

j∈[1,f ]

(
9a

γj

1 + 3b
γj

1

)
, ∀ i, j, k ∈ N.

Proof (of theorem). Since the dominant strategy for each player is D ("to betray"),
the value of characteristic function for singleton in the game γj , ∀j ∈ [1, f ] is

V γj (i) = H
γj

i (D,D,D) = b
γj

2 , ∀ i ∈ N.

All players are symmetric, so the value of characteristic function for two-person
coalition is the maximum of three sums

∑
i∈S H

γj

i (D, D, D),∑
i∈S H

γj

i (C, D, D) or
∑

i∈S H
γj

i (C, C, D), where S = {1, 2}. Therefore,
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V γj (1, 2) = V γj (1, 3) = V γj (2, 3) = max
(
4a

γj

1 + 2b
γj

1 ; a
γj

1 + b
γj

1 + a
γj

2 + b
γj

2 ; 2b
γj

2

)
Since as the profile of strategies (C, C, C) is more effective than (D, D, D),

V γj (N) = max
{
9a

γj

1 + 3b
γj

1 ; 4a
γj

1 + 2b
γj

1 + 2a
γj

2 + b
γj

2 ; a
γj

1 + b
γj

1 + 2a
γj

2 + 2b
γj

2

}
.

Assume that

W (S) = max
j∈f

V (γj , S) , S ⊂ N

Define γj as a subgame of Γf with the starting point j, where j ∈ [1,Kf ]. Thus,
the subgame γ1 coincides with Γf .

Next define a new characteristic function W (Γf , S):

W
(
γj , S

)
= (Kf − j + 1)W (S) ,

where j ∈ [1,Kf ].
Since V γj (N) = maxx1,...,xi,...,xn

∑
i∈N H

γj

i (x1, . . . , xi, . . . , xn) is equal for all
γj , j ∈ [1, f ],

αD
i ≥ Kf max

j∈[1,f ]
b
γj

2 .

αD
i + αD

j ≥W (S) , where |S| = 2 and

W (S) = Kf max

(
max
j∈[1,f ]

(
4a

γj

1 + 2b
γj

1

)
; max
j∈[1,f ]

(
a
γj

1 + b
γj

1 + a
γj

2 + b
γj

2

)
; max
j∈[1,f ]

(
2b

γj

2

))
.

∑
i∈N

αD
i = Kf max

j∈[1,f ]

{
9a

γj

1 + 3b
γj

1 ; 4a
γj

1 + 2b
γj

1 + 2a
γj

2 + b
γj

2 ; a
γj

1 + b
γj

1 + 2a
γj

2 + 2b
γj

2

}
,

∀j ∈ [1, f ] .

These inequalities prove that D is a subset of the core.
But as far as W (N) is equal for all γj in Γf , W (N) = KfW (N).
Therefore, we can define an imputation distribution procedure, as

βi1 =
α
γ1
i

Kf
.

Then, for all subgames of the Γf

βij =
α
γj

i

Kf − j + 1
,

where j ∈ [1,Kf ].
The allocation α can be written using IDP (Petrosyan, 1993) which gives us



Cooperation in the Multi-Agent System with Different Types of Interactions 71

∑
j∈[1,Kf ]

∑
i∈S

α
γj

i

Kf − j + 1
=

l∑
j=1

∑
i∈S

α
γj

i

Kf − j + 1
+

Kf∑
j=l+1

∑
i∈S

α
γj

i

Kf − j + 1
≥

≥ lW (S) + (Kf − l)W (S) =W (S) .

Hence, we construct the strongly time-consistent D-subset of the core.
⊓⊔

Example 2 (D-subset of the core).
Consider a dynamic 3-person prisoner’s dilemma Γf , where V γj (N) are equal

for all j ∈ [1, f ]. Define Kf = 5, f = 3.

Table 2. Game γ1 (the 1st is row-player, the 2nd is column player and the 3rd is page-
player)

C C D

C (100, 100, 100) (90, 115, 90)
D (115, 90, 90) (100, 100, 90)

D C D

C (90, 90, 115) (80, 100, 100)
D (100, 80, 100) (85, 85, 85)

Table 3. Game γ2 (the 1st is row-player, the 2nd is column player and the 3rd is page-
player)

C C D

C (100, 100, 100) (50, 105, 50)
D (105, 50, 50) (90, 90, 0)

D C D

C (50, 50, 105) (0, 90, 90)
D (90, 0, 90) (75, 75, 75)

Table 4. Game γ3 (the 1st is row-player, the 2nd is column player and the 3rd is page-
player)

C C D

C (100, 100, 100) (90, 110, 90)
D (110, 90, 90) (98, 98, 80)

D C D

C (90, 90, 110) (80, 98, 98)
D (98, 80, 98) (86, 86, 86)

The values of characteristic funtions of the games (γ1, γ2, γ3) for each coalitions
are:

Table 5. The values of the characteristic functions of the games γ1–γ3

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

V γ1 85 85 85 180 180 180 300

V γ2 75 75 75 150 150 150 300

V γ3 86 86 86 180 180 180 300

Then we construct D-subset of the core for the game Γf
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αi ≥ 430, ∀ i ∈ N ;
αi + αj ≥ 900, ∀ i, j ∈ N, i ̸= j;
αi + αj + αk = 1500, ∀ i, j, k ∈ N, i ̸= j ̸= k.

Consequently, D-subset of the core for this dynamic 3-person prisoner’s dilemma
contains imputations like (430, 470, 600), (500, 500, 500) (430, 535, 535), etc.

2.5. The Shapley Value of Dynamic "n-Person Prisoner’s Dilemma"

Definition 5. The Shapley value for Γf is called an imputation
(
Sh

Γf

1 , . . . , Sh
Γf
n

)
of the payoff V Γf (N) such that

Sh
Γf

i =
∑
S⊆N

(s− 1)! (n− s)!

n!

[
V Γf (S)− V Γf (S \ {i})

]
(Shapley, 1953) .

It is well-known that the Shapley value satisfies:

1) efficiensy: ∑
i∈N

Sh
Γf

i

(
V Γf

)
= V Γf (N) ;

2) symmetry: if players i and j are symmetric in accordance with V Γf

Sh
Γf

i

(
V Γf

)
= Sh

Γf

j

(
V Γf

)
;

3) additivity: for two games V Γf and WΓf

Sh
Γf

S

(
V Γf

)
+ Sh

Γf

S

(
WΓf

)
= Sh

Γf

S

(
V Γf +WΓf

)
;

4) null-player: if V Γf (S ∪ {i})− V Γf (S) = 0, ∀S ⊆ N \ {i}

Sh
Γf

i

(
V Γf

)
= 0

Consider now the generalisation of the finitely repeated game Γf , where V γj (N)
can be not equal in different stages. Define the values of the characteristic functions
of each games γj , j ∈ [1, f ] for the coalition N :

V γj (N) = max
x1,...,xi,...,xn

∑
i∈N

H
γj

i (x1, . . . , xi, . . . , xn) .

Assume that Sj is a coalition |Sj | = sj , which select the strategy D. This
coalition we call deviating coalition. Then |N \ Sj | = n− sj .

The maximum of the characteristic function for the game γj is achieved when
the benefit from the deviation of each additional player

D
γj

i (x = n− (s+ 1))−Cγj

i (x = n− s) =
(
a
γj

2 (n− s− 1) + bγj2
)
−
(
a
γj

1 (n− s) + b
γj

1

)
is less than the amount of losses of all other players, including those who have
already deviated
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n−sj−1∑
i=1

(
C

γj

i (x∗)− C
γj

i (x∗∗)
)
+

sj∑
i=1

(
D

γj

i (x∗)−D
γj

i (x∗∗)
)
,

where x∗ = n− sj , and x∗∗ = n− s− 1.
We shall find the number of players in the deviated coalition sj that gives the

maximum values of the characteristic functions for each of f possible realizations
of γj in Γf :

a
γj

1 n− a
γj

1 sj − a
γj

1 + a
γj

2 sj > a
γj

2 n− a
γj

2 sj − a
γj

2 + b
γj

2 − a
γj

1 n− a
γj

1 sj − b
γj

1 .

Then, the number of diviating players is

sj =

[(
2a

γj

1 − a
γj

2

)
n+

(
a
γj

2 − b
γj

2 + b
γj

1 − a
γj

1

)(
2a

γj

1 − 2a
γj

2

) ]
,∀γj ∈ Γf .

Therefore, the values of the characteristic functions on each stage of the game
Γf we can just share as

V γj (N) =
(
a
γj

1 (n− sj) + b
γj

1

)
(n− sj) +

(
a
γj

2 (n− sj) + b
γj

2

)
sj ,

where sj =
[
(2a

γj
1 −a

γj
2 )n+(a

γj
2 −b

γj
2 +b

γj
1 −a

γj
1 )

(2a
γj
1 −2a

γj
2 )

]
, j ∈ [1, f ] .

Due to the efficiency and the symmetry axioms we can just shared equally the
expected value of the characteristic function of Γf for the grand coalition.

Shi
(
V Γf

)
=

= Kf

f∑
j=1

((
a
γj

1 − a
γj

2

)
s2j +

(
a
γj

2 n+ b
γj

2 − a
γj

1 n− b
γj

1

)
sj + a

γj

1 n
2 + b

γj

1 n
)
pj

n
,

for ∀i ∈ N , sj =
[
(2a

γj
1 −a

γj
2 )n+(a

γj
2 −b

γj
2 +b

γj
1 −a

γj
1 )

(2a
γj
1 −2a

γj
2 )

]
.

And furthermore, on the each stage of Γf , the Shapley value is equal to

Shi (V
γj ) =

f∑
j=1

((
a
γj

1 − a
γj

2

)
s2j +

(
a
γj

2 n+ b
γj

2 − a
γj

1 n− b
γj

1

)
sj + a

γj

1 n
2 + b

γj

1 n
)
pj

n
,

for ∀i ∈ N , sj =

[
(2a

γj
1 −a

γj
2 )n+(a

γj
2 −b

γj
2 +b

γj
1 −a

γj
1 )

(2a
γj
1 −2a

γj
2 )

]
. It does not change during the

transition from one stage of the game to the next one, given that the probability
of each possible game (γ1, . . . , γf ) remains at all stages. Accordingly, the Shapley
value of this game is time-consistent and belongs to the D-subset of the core.
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3. The Model of "n-Person Prisoner’s Dilemma" on the Network

3.1. The Description of "n-Person Prisoner’s Dilemma" on the
Network

Let M be the network. Its nodes represent players of the n-person prisoner’s
dilemma game. The path from i to j is a sequence of players connected by the edges
of the network M . Then the path length is the number of edges on the path from i
to j. If the path from i to j contains the minimal possible number of edges, then it
is the shortest path from i to j. Thus, the distance between players i and j is the
length of the shortest path from i to j.

Let γM be the static noncooperative n-person prisoner’s dilemma network game.
We denote the set of all players as N . Each of them has two possible pure strategies:

– the strategy "C" means "to stay silent";
– the strategy "D" means "to betray".

Therefore, the set of pure strategies of each player in the static n-person pris-
oner’s dilemma network game can be represented as xi = {C,D}, ∀i ∈ N .

Let xim,S be the number of players from the set S for which the following con-
ditions are fulfilled:

– They use the strategy "C";
– The distance between them and the player i equals to m.

The payoff function hi (x1, . . . , xi, . . . , xn), (2), of the player i in the n-person
prisoner’s dilemma network game depends entirely on its strategy and the number
xim,N .

hi (x1, . . . , xi, . . . , xn) =


(∑∞

m=0 a1δ
mxim,N

)
+ b1, if xi = C;

(∑∞
m=1 a2δ

mxim,N

)
+ b2, if xi = D.

(2)

Hereinafter, the parameters a1, a2, b1, b2, δ are the same for all players.
The payoff function of n-person prisoner’s dilemma network game meets the

following conditions:

1.
(∑∞

m=0 a1δ
mxim,N

)
+ b1 <

(∑∞
m=1 a2δ

mxim,N

)
+ b2,∀i ∈ N , so the strategy D

strictly dominates the strategy C;
2.
∑

i∈N

((∑∞
m=0 a1δ

mx̄im,N

)
+ b1

)
>
∑

i∈N (b2), where x̄im,N means all the play-
ers from the set N choose the strategy C. This unequality shows that the joint
"silence" brings the bigger sum of all players payoffs than the joint "defection";

3.
(∑∞

m=0 a1δ
mxim,N

)
+ b1 ≥ b1 ГЁ

(∑∞
m=1 a2δ

mxim,N

)
+ b2 ≥ b2, so the "defec-

tion" of any of the other player makes the payoff of the player i lower.

This type of "n-person prisoner’s dilemma" allows to consider a wider class of
games, where the previous game without differentiation of players’ relationships can
be represented as the game on the complete network.
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3.2. An Effective Punishment for "n-Person Prisoner’s Dilemma" on
the Network

Let ΓM be the infinitely repeated prisoner’s dilemma game γM on the network
M . The payoff of the player i in the game ΓM equals to the sum of its payoffs on
each stage-games.

It can be seen that the subgame perfect Nash equilibrium for ΓM is the set of
players strategies that consist of repetition of the action "D" in all subgames of
ΓM , since for each stage of this game the strategy "D" is strictly dominant.

Definition 6. The Grim-Trigger strategy of the player i in the n-person pris-
oner’s dilemma game on the network M is the strategy that consists of the choosing
action "C" on all the stage of game ΓM till the stage, when one of the other players
chooses the action "D". After that stage the player i will choose the action "D"
regardless the actions of all other players.

Lemma 1. The set of Grim-Trigger strategies of all the players constitutes the
Nash equilibrium for the n-person prisoner’s dilemma game ΓM on the network M

Proof (of lemma).
From the conditions 2–3 of the payoff functions in one-stage prisoner’s dilemma

game γM it follows that
∑∞

m=0 a1δ
mx̄im,N + b1 > b2.

Suppose that all the players choose the Grim-Trigger strategies. Then, the dif-
ference between the payoffs that player i can achieve on each stage using the Grim-
Trigger strategy and that he can achieve after the deviation from Grim-Trigger
strategy equals to

∑∞
m=0 a1δ

mx̄im,N + b1 − b2. This difference is bigger than 0, so,
for the infinite period the player i looses infinite gain. The future loses is bigger
than the benefit from the deviation, therefore, the set of Grim-Trigger strategies is
the Nash equilibrium for the n-person prisoner’s dilemma game ΓM on the network
M .

However, the set of Grim-Trigger strategies leads to uncertainty as a consequence
of slight deviation of the current strategies. As a result, each player will get the worst
payoffs for an infinite period.

Let introduce the "effective punishment" for the game ΓM on the network M .

Definition 7. The "punishment" is choosing by the non-deviating players the
actions that gives the minimal possible payoffs to the deviated players.

Theorem 3. The number of stages, that provides an "effective punishment" in the
game ΓM on the network M and makes all the players to follow the actions "to stay
silent" during all stages of the game, equals to (3).

k̄ = max
i∈N

⌈
a2
∑∞

m=1 δ
mx̄im,N

a1 + b1 − b2 + a1
∑∞

m=1 δ
mx̄im,N

⌉. (3)

Proof (of theorem). Let ki be the minimal number of stages that provides an "effec-
tive punishment" for the player i. If he decide to use the action "D" on any stage
of the game ΓM , all the other players will try to minimize his payoffs on the next
ki stages to punish him for such behaviour. Since the strategy "to defect" in con-
trast with the strategy "to stay silent" brings to all the other players lower payoffs,
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non-deviating players will choose it as a punishment. Then the number of stages ki
satisfies the inequality (4).

kib2 +

∞∑
m=1

a2δ
mx̄im,N <

( ∞∑
m=0

a1δ
mx̄im,N + b1

)
ki (4)

Since ki is the minimal number that satisfies 4, it is equal to (5).

ki = ⌈
a2
∑∞

m=1 δ
mx̄im,N

a1 + b1 − b2 + a1
∑∞

m=1 δ
mx̄im,N

⌉ (5)

Therefore, the number of stages k̄ that provides an "effective punishment" to the
n-person prisoner’s dilemma ΓM game on the network M is the maximal number of
stages that provides an "effective punishment" for the players from the set N (6).

k̄ = max
i∈N

ki (6)

⊓⊔

Example 3. Let Fig.1. be the networkM for 3-person prisoner’s dilemma ΓM , where
the second player is a head of criminal group.

2

1 3

Fig. 1. An example of the network M for three-person prisoner’s dilemma ΓM game

The one-stage payoff functions equal to (7).

hi (x1, x2, x3) =


(∑∞

m=0 0, 8
mxim,N

)
+ 3, if xi = C;

(∑∞
m=1 2 ∗ 0, 8mxim,N

)
+ 5, if xi = D.

(7)

The number of stages for "effective punishment" for each player is (8–10).

k1 = ⌈ 2 ∗ (0, 8 + 0, 64)

1 + 3− 5 + 1 ∗ (0, 8 + 0, 64)
⌉ = 7 (8)

k2 = ⌈ 2 ∗ (0, 8 ∗ 2)
1 + 3− 5 + 1 ∗ (0, 8 ∗ 2)

⌉ = 6 (9)

k3 = ⌈ 2 ∗ (0, 8 + 0, 64)

1 + 3− 5 + 1 ∗ (0, 8 + 0, 64)
⌉ = 7 (10)

Therefore, an "effective punishment" for the game ΓM can be realized during
(11) stages.
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k̄ = max {7, 6, 7} = 7 (11)

Thus, the deviation from the strategy "to stay silent" during all stages of the
game ΓM on the network M , that provides the maximum of the sum of all players
payoffs, can be surely punished during k̄ = 7 stages.

3.3. Cooperative network game "n-Person Prisoner’s Dilemma"
Let N = {1, 2, . . . , n} be the set of players. Any nonempty subset S ⊆ N is

called a coalition.

Definition 8. The cooperative solution is the strategy profile that maximizes the
sum of all player’s payoffs.

Definition 9. By characteristic function of an n-person game we mean a function
V (S) that assigns a value to each subset of players V : 2N → R in such a way, that
V (S) is the payoff to the subset S ⊆ N if they maximize the sum of the payoffs of
the players from the subset S, whereas the players from the set N \ S act against
S. V (S) is called the value of the coalition S:

V (S) = max
µS

min
νN\S

HS

(
µS , νN\S

)
, S ⊆ N,

where µS ∈ XS , νN\S ∈ XN\S and Γ =
(
XS , XN\S , HS

)
is a mixed extension of

the zero-sum game Γ .

The characteristic function represents the guaranteed total payoff for the players
in a given coalition.

Let x̄iN for the player i be the number of the adjacent players on the network
M .

Theorem 4 (Cooperative Solution). In the cooperative solution player i will
choose his pure strategy C, if the number of the adjacent players on the network M
satisfies the condition

x̄iN ≥ b2 − b1
2a1 − a2

. (12)

Proof (of theorem). Player i should use the strategy D, if the gain of the player
i from choosing of the dominant strategy, in contrast to the strategy C is greater
than losses of the adjacent players from his "betraying".

Therefore, the player i chooses the strategy D to maximize the sum of payoffs of
all the players from the coalition N , if the unequality a1x̄Ni < (a2 − a1) x̄

N
i +b2−b1

holds.
Then, the player i will choose the strategy C in the cooperative solution, if

a1x̄
N
i ≥ (a2 − a1) x̄

N
i + b2 − b1. (13)

Consequently, if b2−b1
2a1−a2

is less than the number of players from the set N that
are adjacent to the player i, then this player will choose the strategy C in the
cooperative solution.

⊓⊔
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The same ratio can be found for the coalition S ⊆ N :
If the number of players from the set S ⊆ N that are adjacent to the player i

satisfies the relation x̄iN ≥ b2−b1
2a1−a2

, then in the cooperative solution the player i will
choose the strategy C. Otherwise, he will choose D.

Therefore, the characteristic function of a cooperative game for n-person pris-
oner’s dilemma on the network can be written as:

V (i) = b2; (14)

V (S) =
∑
i∈S

Hi

(
xj = C, if x̄jS ≥ b2 − b1

2a1 − a2
and j ∈ S, otherwise xj = D

)
; (15)

V (N) =
∑
i∈N

Hi

(
xj = C, if x̄jN ≥ b2 − b1

2a1 − a2
, otherwise xj = D

)
. (16)

Example 4 (3-person game).
Consider the payoff function for the 3-person prisoner’s dilemma game on the

network M :

hMi (x1, x2, x3) =


Ci (x) = 16xiN + 1, if xi = C;

Di (x) = 16xiN + 18, if xi = D.

The network M for this game is represented in the Figure 1.

2

1 3

Fig. 2. An example of network M for the 3-person prisoner’s dilemma game

Next, we construct the characteristic function of the resulting game on the basis
of ratios relative to the neighbors of each player. In accordance with the payoff
function, a player from the coalition S should choose the strategy C, if the number of
the adjacent to him players from this coalition is not less, than b2−b1

2a1−a2
= 18−1

2∗16−16 =
17
16 .

As we see from 1, this ratio can be met only for the second player if all players
belong to the coalition S.

We can see that the maximal sum of players’ payoffs for the grand coalition is not
necessarily achieved by all players choosing a strategy C. This is not an obligatory
condition for players’ payoffs in the n-person prisoner’s dilemma on the network
game. As we can see, we still have all the basic features of the game’s prototype
that is the two-person prisoner’s dilemma.
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Table 6. This is the example table

S Unequalities V (S)

ø 1 /∈ S, 2 /∈ S, 3 /∈ S 0

1 x̄1
S < 18−1

2∗16−16
, 2 /∈ S, 3 /∈ S 18

2 1 /∈ S, x̄2
S < 18−1

2∗16−16
, 3 /∈ S 18

3 1 /∈ S, 2 /∈ S, x̄3
S < 18−1

2∗16−16
18

(1, 2) x̄1
S < 18−1

2∗16−16
, x̄2

S < 18−1
2∗16−16

, 3 /∈ S 36

(1, 3) x̄1
S < 18−1

2∗16−16
, 2 /∈ S, x̄3

S < 18−1
2∗16−16

36

(2, 3) 1 /∈ S, x̄2
S < 18−1

2∗16−16
, x̄3

S < 18−1
2∗16−16

36

N x̄1
S < 18−1

2∗16−16
, x̄2

S ≥ 18−1
2∗16−16

, x̄3
S < 18−1

2∗16−16
69

4. Conclusion

Thus, there are summarized our papers that consider "n-person prisoner’s dilem-
ma" type of games. The publication also provides an analysis of a new equilibrium
behavior of players under the conditions of the dynamic model.

The article identifies the function of players’ payoffs in the model that depends
on the number of cooperating players and the strategy of the player. The most
recent complete consideration of the distinctive properties of the model for each
player is presented. The characteristic function for dynamic type of the game is
constructed.

We consider the new strong Nash equilibriums for both types of the repeated
game: without relationship’s differentiation and on the network. There is found the
"effective punishment" for the dynamic types of the "n-person prisoner’s dilemma"
model.

There is constructed the core of the dynamic model. The D subset of the core
for the dynamic "n-person prisoner’s dilemma" game shows the time-consistent
solution. It’s time-consistency is proved in terms of the considered model.

There is provided the search of the optimality principles, such as the Shapley
value in the repeated and dynamic games that are based on the properties of the
"prisoner’s dilemma".

We consider two types of non-cooperative "n-person prisoner’s dilemma" game
on the network that take into account the distance between the nodes of the network
(players with their relationships) as the degree of influence on each other’s payoff
function. This helps to construct a cooperative type of the game that considers
pairwise interactions of players on the network and, moreover, discounted influences
based on the network interaction. The key principle of player’s behavior to achieve
the maximum sum of players’ payoffs from the coalition is presented taking into
account the number of adjacent players (in this research, the term of "adjacent
players" refers to the nodes of the players that are connected by network edges).
The construction of the game makes it possible to investigate such a principle of
optimality as the Shapley value that is presented in several ways depending on the
coefficients of the initial game.
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