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Abstract We consider multistage bimatrix games with pairwise interac-
tions. On the first stage players chose their neighbours and formed a net-
work. On the later stages bimatrix games between neighbours by network
take places. As a solution consider the τ -value (Tijs, 1987). Earlier we cal-
culated coefficient λ of τ -value in case of two-stage game. Now we consider
a general case of one-stage game with any players and any number of links.
We assumed followings: N is set of players, |N | ⩾ 2, and any type of network
g. It is also assumed, that there are not necessarily paths between every pair
of vertices. We will consider conditions for time-consistency of τ -value in
two-stage game.
Keywords: cooperative games, network games, dynamic games, τ -value,
pairwise interaction, time-consistency.

1. Introduction

The theory of dynamic cooperative network games is an important part of mod-
ern game theory that will be used to construct solutions in conflict-controlled pro-
cesses on networks. This theory includes finding of the cooperative trajectory, the
strategies that generate it, the payoff along the cooperative trajectory, as well as the
distribution of payoff between the players and the analysis of the dynamic stability
of solutions (Petrosyan and Danilov, 1979).

The network is used for illustration of the connections between players and the
possibility of cooperation. The main attention is given to cooperative behavior of
player that is behavior in which the total payoff of players will be maximal.

The principle of pairwise interaction in cooperative games was considered in
(Bulgakova, 2019). This principle implies splitting the game into a family of si-
multaneous games between pairs of players — the vertices of the same edge in the
network. In (Bulgakova, 2021) the Shapley value for two-stage game with pairwise
interactions was found. Two-stage network games and the mechanism of network
formation also was considered in (Petrosyan et al., 2013). The paper (Bulgakova et
al., 2018) is devoted to finding the basic solutions of two-stage cooperative games
with pairwise interaction and also to the investigation of the supermodularity of
the characteristic function is the special class of network, namely, the star-network.
This property significantly increases the value of such a solution as the Shapley
value, since in the case of a convex game it always belongs to the core. In this re-
gard, in games based on pairwise interaction, this solution is of particular interest,
also because of possibility to simplify the corresponding calculations. Considering
the construction of the characteristic function, another solution proposed in (Tijs,
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1987), namely, τ -value. The Shapley value in dynamic network games with shock,
when after the first network formation stage, a particular player with a given prob-
ability may stop influencing other players by removing all her links and receiving
zero payoffs, is considered in (Petrosyan and Sedakov, 2016). The differential games
on networks with partner sets are considered in (Petrosyan et al., 2021). Also coop-
eration in dynamic network games is investigated in (Gao and Pankratova, 2017).

In this paper, a special type of multi-stage cooperative games on the network
is considered, which is distinguished by the way of constructing the characteristic
function. The cooperative trajectory is found, and then the characteristic function
is calculated taking into account the cooperative strategies of players. As a solution,
τ -value is considered, the coefficient λ is calculated for the subgame, starting from
the second stage. This coefficient is the same for any number of players and for any
network design in a given game, which is greatly simplifies the calculations of this
solution. Also a question about time-consistency of the τ -value is considered, and
conditions for time-consistency was found.

2. The Model

Let N be a finite set of players, which make decisions in two stages, |N | = n ≥ 2.
Denote state of game by z . The game starts in state z1, where every player i ∈ N
choose his behavior bi = (bi1, . . . , bin) — n-dimensional vector of communication
offers to other players (Bulgakova, 2014; Petrosyan et al., 2013).

The following notations will be used: Mi ⊆ N \{i} — those players, whom player
i ∈ N can offer a link, while the value ai ∈ {0, . . . , n − 1} is maximal number of
connections, which he can support at the same time. If Mi = N \{i}, then it means,
that player i can offer links to all players. In the case, when ai = n− 1, player i can
support any number of connections.

For every behavior bi there exist such subset of realized link offers Qi ⊂ Mi,
which satisfy following conditions

bij =

{
1, if j ∈ Qi,
0, in other case, (1)

under this additional restriction ∑
j∈N

bij ≤ ai. (2)

Condition (2) means, that the number of possible links is restricted for every player.
Also, obviously, that |Qi| ≤ ai.

Link ij will be realized if and only if when bij = bji = 1. Formed links ij will
create edges of network g, which has players as vertices, i.e., if bij = bji = 1, network
g will has an edge with vertices i and j.

Denote as Ni(g) neighbours of player i in network g, i.e. Ni(g) = {j ∈ N \ {i} :
ij ∈ g}. Further, for brevity, sometimes instead of Ni(g) will be wrote Ni . The
result of the choice of players in the first state is the network g(b1, . . . , bn). After
its formation, the players go to the state z2(g), which is determined by the network
(the set of neighbors depends on the network Ni and hence the rule of interaction
between players). In second state z2(g), neighbors on the network play in pairs in
simultaneous bimatrix games, after which the players receive payoffs and the game
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ends. In other words, a two-stage game ΓS
z1(g) takes place, which is a special case of

multi-stage non-zero sum games. Adapting the definition of strategies to this case, it
is assumed that in the case under consideration, the strategy is a rule that for each
player determines the set of his “desired” neighbors in the first state, namely, the
vector b1i , and behavior in each bimatrix game in the second state in accordance with
the network that is formed in the first state, — b2i . Denote as ui = (b1i , b

2
i ), i ∈ N ,

strategy of player i in two-stage game ΓS
z1(g). Let’s calculate payoff of player i as

hi(z2), where (z1, z2) — trajectory realized be strategy profile u = (u1(·), . . . , un(·))
in game ΓS

z1(g). Since in the first state the players do not receive winnings, the
payoff function in the game ΓS

z1(g) with starting position z1 is defined as follows:

Ki(z1;u) = Ki(z1;ui(·), . . . , un(·)) = hi(z2).

In the second state, the game is a family of pairwise simultaneous bimatrix games
{γij} between neighbours by network. Namely, let i ∈ N, j ∈ Ni. Then player i
play with j in bimatrix game γij with payoff matrices Aij and Cij of players i and
j correspondingly.

Aij =


aij11 aij12 · · · aij1k
aij21 aij22 · · · aij2k
...

...
. . .

...
aijm1 a

ij
m2 · · · aijmk

 , (3)

Cij =


cij11 cij12 · · · cij1k
cij21 cij22 · · · cij2k
...

...
. . .

...
cijm1 c

ij
m2 · · · cijmk

 , (4)

apl ≥ 0, cpl ≥ 0, p = 1, . . . ,m, l = 1, . . . , k.

Constants m and k are similar for all i and j. When the game γji takes place,
i.e. player i is the second player, then he plays with the matrix Cji which is equal
to AT

ij , and player j, who is now the first player plays with the payoff matrix Aji,
or, equivalently, CT

ij . Denote as ΓS
z2(g) subgame of game Γ , which happens in the

state z2. Consider such game in a cooperative form. Let us find the characteristic
function for each subset (coalition) S ⊂ N as the lower (maximin) value of the
antagonistic of two persons game in the coalition S and additional coalition N \ S,
game-based ΓS

z2(g), in this case, the gain of the coalition S is considered as the sum
of the payoffs of the players included in S. The superadditivity of the characteristic
function follows from its definition. Following notations are assumed

wi
ij = max

p
min
ℓ

aijpℓ, p = 1, . . . ,m; ℓ = 1, . . . , k, (5)

wj
ij = max

ℓ
min
p

cjipℓ, p = 1, . . . ,m; ℓ = 1, . . . , k, (6)

and v(z2;S), S ⊂ N , — lower value of zero-sum game ΓS
z2(g).

Function v(z2;S) calculated by following formulas:

v(z2; {∅}) = 0, (7)
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v(z2; {i}) =
∑
j∈Ni

wi
ij , (8)

v(z2;S)=
1

2

∑
i∈S

∑
j∈Ni∩S

max
p,ℓ

(aijpℓ + cijpℓ) +
∑
i∈S

∑
k∈Ni\S

wi
ik, S ⊂ N, (9)

v(z2;N) =
1

2

∑
i∈N

∑
j∈Ni

max
p,ℓ

(aijpℓ + cijpℓ). (10)

Consider the cooperative form of two-stage game ΓS
z1(g). Let it be supposed,

that players choose strategies ūi, i ∈ N , which maximize their total payoff in game
ΓS
z1(g), i. e. ∑

i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑
i∈N

Ki(z1;u1, . . . , un).

We will call strategy profile ū = (ū1, . . . , ūn) cooperative behavior, and correspond-
ing trajectory (z̄1, z̄2) — cooperative trajectory, which content two states in this
case.

As previous, for coalition S ⊆ N define characteristic function v(z̄1;S) as a
lower value in two player zero-sum game between coalition S, which plays as first
(maximizing) player and additional coalition N \ S, which plays as (minimizing)
player. In this case, the best behavior on the first stage for minimizing player, is
not to create connections with players from coalition S. This will reduce the payoff
of coalition S on a value

∑
i∈S

∑
k∈Ni\S

wi
ik. Let’s keep in mind that here the coalition

S payoff also is equal to summarized payoff of its members and the strategy of S —
element of the Cartesian product of the sets of strategies of the players included in
S.

Denote as v(z1;S), S ⊂ N , lower value of zero-sum game ΓS
z1(g).

Function v(z1;S) defines by following expressions:

v(z1; {i}) = 0, v(z1; ∅) = 0, (11)

v(z1;S) = max
g

1

2

∑
i∈S

∑
j∈Ni(g)∩S

max
p,ℓ

(aijpℓ + cjipℓ)

 , S ⊂ N, (12)

v(z1;N) = v(z̄2;N) = max
g

1

2

∑
i∈N

∑
j∈Ni

max
p,ℓ

(aijpℓ + cjipℓ)

 . (13)

3. The τ -value

Earlier we showed that the game ΓS
z1(g) is convex game.

The formula for calculating of components of τ value for convex game:

τi(N, v) = λ(v(N)− v(N \ {i})) + (1− λ)v({i}), (14)

when coefficient λ is determined from the equation∑
j∈N

(λ((v(N)− v(N \ {j})) + (1− λ)v({j})) = v(N). (15)
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In (Bulgakova, 2021) we get, that the coefficient λ for τ -value in two-stage game

with pairwise interactions ΓS
z1(g) is equal to

1

2
and the formula for τ -value has form

τi(N, v) =
1

2

∑
j∈Ni

max
p,ℓ

(aijpℓ + cjipℓ). (16)

Now consider τ -value as a solution of subgame ΓS
z2(g).

To calculate coefficient λ (15), we need to know the difference (v(N)−v(N \{j}).
Substituting formulas for characteristic function of Γz2(g) (10) in the difference

we get

(v(N)− v(N \ {j}) =
1

2

∑
i∈N

∑
k∈Ni

max
p,ℓ

(aikpℓ + ckipℓ)−
(1
2

∑
i∈N,i̸=j

∑
k∈Ni

max
p,ℓ

(aikpℓ + ckipℓ) +
∑
t∈Nj

wt
tj

)
. (17)

The first term in right part of equation contents the second one.

1

2

∑
i∈N

∑
k∈Ni

max
p,ℓ

(aikpℓ + ckipℓ) =
1

2

∑
i∈N,i̸=j

∑
k∈Ni

max
p,ℓ

(aikpℓ + ckipℓ) +
∑
t∈Nj

max
p,ℓ

(atjpℓ + cjtpℓ).

After opening brackets in (17) we will get

(v(N)− v(N \ {j}) =
∑
t∈Nj

max
p,ℓ

(atjpℓ + cjtpℓ)−
∑
t∈Nj

wt
tj .

Sum this expression over j∑
j∈N

(v(N)− v(N \ {j}) =
∑
j∈N

(
∑
t∈Nj

max
p,ℓ

(atjpℓ + cjtpℓ)−
∑
t∈Nj

wt
tj) = 2v(N)− v({j}).

Substituting calculated difference in (15) we get

λ · (2v(N)−
∑
j∈N

v({j})) + (1− λ)
∑
j∈N

v({j}) = v(N).

Group the terms

2λv(N)− 2λ
∑
j∈N

v({j})) +
∑
j∈N

v({j}) = v(N),

2λ(v(N)−
∑
j∈N

v({j})) = v(N)−
∑
j∈N

v({j}),

λ =
1

2
.

Substitute calculated coefficient λ in (14):

τi(N, v) =
1

2
(v(N)− v(N \ {i})) + 1

2
v({i}),
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And also substitute the value of difference v(N)− v(N \ {i})

τi(N, v) =
1

2
(
∑
t∈Ni

max
p,ℓ

(aitpℓ + ctipℓ)−
∑
t∈Ni

wt
ti) +

1

2
v({i}).

So we proved following result:

Theorem 1. In subgame ΓS
z2(g) the coefficient for calculating τ -value λ = 1

2 , and
formula for component of τ -value for arbitrary player i:

τi(N, v) =
1

2
(
∑
t∈Ni

max
p,ℓ

(aitpℓ + ctipℓ)−
∑
t∈Ni

wt
ti) +

1

2
v({i}). (18)

4. Time-consistency

Denote the set of all imputations in game ΓS
zt(g) as

M[v(z̄t)] = {x = (x1, . . . , xn) :

n∑
i=1

xi = v(z̄t;N), xi ≥ v(z̄t; {i}), i ∈ N}.

As a solution, we will consider the τ -value τ [v(z̄t)] = (τ1[v(z̄t)], . . . , τn[v(z̄t)]),
t = 1, 2.

Following cooperative game theory, the maximum total payoff of all players
v(z̄1;N) in case of cooperation, it must be divided among all players after the end
of the game. To do this, the characteristic function v(z̄1;S) is used, according to
which the imputation is determined as a vector ξ[v(z̄1)] = (ξ1[v(z̄1)], . . . , ξn[v(z̄1)])
which, firstly, it satisfies the efficiency condition, i.e.,

∑
i∈N ξi[v(z̄1)] = v(z̄1;N) and,

secondly, the condition of individual rationality, i.e., ξi[v(z̄1)] ⩾ v(z̄1; {i}) for every
i ∈ N . Let us denote the set of all imputations in the game ΓS

z1(g) as M[v(z̄1)].
Cooperative solution I[v(z̄1)], is a rule, which maps the set M[v(z̄1)] cooperative
game ΓS

z1(g).
Before starting the game ΓS

z1(g), players enter into a cooperative trajectory
agreement (z̄1, z̄2), i.e., such trajectory, which leads to the maximum total pay-
off v(z̄1;N), and it is assumed that the players share this payoff in accordance with
the chosen imputation ξ[v(z̄1)] from the adopted cooperative solution I[v(z̄1)]. It
means that in game ΓS

z1(g) every player i ∈ N expects his payoff will be equal to
ξi[v(z̄1)]. If the players recalculate the solution after network formation stage (at
the second stage), this will lead to the fact that the recalculated set I[v(z̄2)] will
differ from the previous I[v(z̄1)]. It happens because the characteristic function in
the subgame ΓS

z̄2(g) is different. Thus, this change may lead to the fact that some
of the players will leave the cooperative agreement and deviate from cooperative
strategies. Next, a mechanism will be used that provides consistency against devia-
tion from cooperative solution I[v(z̄1)]. Cooperative solution I[v(z̄1)] in two-stage
game is time consistent [9], if for any imputation ξ[v(z̄1)] ∈ M[v(z̄1)] there exists
imputation ξ[v(z̄2)] ∈ I[v(z̄2)] such, that

ξ[v(z̄1)] = ξ[v(z̄2)], (19)

since the players do not receive their payoffs at the network formation stage. Other-
wise, the cooperative solution is time inconsistent.
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Based on the above definitions, we can conclude that the τ -value τ [v(z̄1)] is time
consistent cooperative solution, if

τ [v(z̄1)] = τ [v(z̄2)], (20)

Substituting calculated formulas for τ -value for game ΓS
z1(g) and subgame, ΓS

z2(g)
we get

1

2

∑
j∈Ni

max
p,ℓ

(aijpℓ + cjipℓ) =
1

2
(
∑
t∈Ni

max
p,ℓ

(aitpℓ + ctipℓ)−
∑
t∈Ni

wt
ti) +

1

2
v(z2; {i}).

After reduction of similar terms we will get following conditions for time-consistency
of τ -value in two-stage network game with pairwise interactions ΓS

z1(g)∑
t∈Ni

wt
ti = v(z2; {i}), ∀i ∈ N. (21)

In other words, this condition is as follows: the payoff of an arbitrary player
i, which he can get individually, without cooperation with other players, must be
equal to the total payoffs of his neighbors along the edges of the network, which
they get by playing against this player i . One can also impose a constraint that
the individual payoff of players i and j playing a bimatrix game along a common
edge must be the same. In this case, the above condition will be satisfied, which
guarantees the time consistency of the τ -value, but such a restriction is only a
particular, more natural case of the obtained condition.

5. Example

To illustrate our results consider four-person two stage game. N = {1, 2, 3, 4},
sets of players whom every player can offer a connection are given: M1 = M4 =
N,M2 = M3 = {1, 4}, also given restrictions for total number of connections for
every player a1 = a4 = 3, a3 = 2, a2 = 1.

Payoff matrices for all possible pairs of players are given

A12C21 =

(
(3; 1) (1; 4)
(5; 4) (2; 2)

)
, A13C31 =

(
(2; 5) (4; 1)
(3; 2) (1; 1)

)
,

A14C41 =

(
(2; 2) (3; 0)
(1; 3) (6; 1)

)
, A24C42 =

(
(1; 0) (0; 1)
(1; 1) (0; 0)

)
,

A34C43 =

(
(5; 5) (4; 7)
(4; 4) (5; 0)

)
.

To maximize total payoff on the second stage of game players should choose
following vector of communication offers:

b1 = (0, 1, 1, 1), b2 = (1, 0, 0, 0), b3 = (1, 0, 0, 1), b4 = (1, 0, 1, 0).

After choosing these behaviors the following network will be formed (see Fig-
ure 4):
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Fig. 1. Network on the second stage of game.

Now calculate values wi
ij to construct characteristic function v(z2;S). These

values will be equal to zero in two-stage game ΓS
z1(g).

w1
12 = 2, w1

13 = 2, w1
14 = 2, w2

21 = 2, w3
31 = 2, w4

41 = 2, w3
34 = 4, w4

43 = 4.

Also calculate maximal total payoff for every pair of players on the formed
network mij = maxp,ℓ(a

ij
pℓ + cjipℓ). These values will be equal to each other in both

games, ΓS
z1(g) and subgame ΓS

z2(g)

m12 = 9, m13 = 7, m14 = 7, m24 = 2, m34 = 11.

And the values of characteristic function for maximal coalition N (equal for both
games).

v(z1;N) = v(z2;N) = m12 +m13 +m14 +m34 = 34.

Condition (21) for time-consistency of τ -value holds
For player 1:

v(z2, {1}) = w2
21 + w3

31 + w4
41 = 6.

For player 2:
v(z2, {2}) = w1

12 = 2.

For player 3:
v(z2, {3}) = w1

13 + w4
43 = 6.

For player 4:
v(z2, {4}) = w3

34 + w1
14 = 6.

Calculate the τ -value for games ΓS
z1(g) and ΓS

z2(g), using formulas (16), (18).

τ(v(z̄1)) = (11, 5; 4, 5; 9; 9),

τ(v(z̄2)) = (11, 5; 4, 5; 9; 9).

And in respect to (20) we get that τ -value in two-stage network game with
pairwise interactions is time-consistent.
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6. Conclusion

We proved very important property — the time-consistency of cooperative so-
lution — for solution of two-stage games with pairwise interactions. It was possible
because of specified form of characteristic function, where the game was consider-
ing as a family of small bimatrix games between neighbours by network. This result
can be generalized on multistage games with using IDP — imputation distribution
procedure (Petrosyan and Danilov, 1979).
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