
Contributions to Game Theory and Management, XV, 18–31

Modeling of the City’s Transport Network Using
Game-Theoretic Methods on the Example of Petrozavodsk ∗

Nikolay A. Ermolin1, Vitalia A. Khitraya1,2, Andrey V. Khitryi1,
Vladimir V. Mazalov1, Natalia N. Nikitina1

1 Institute of Applied Mathematical Research,
Karelian Research Center of the Russian Academy of Sciences,

11, Pushkinskaya ul., Petrozavodsk, 185910, Russia
2 Petrozavodsk State University,

33, Lenina pr., Petrozavodsk, 185910, Russia
E-mail: dobvitalia@yandex.ru

Abstract The paper presents the results of modeling of the city’s trans-
port network. The effectiveness of the game-theoretic method for estimating
the centrality of graph vertices using the Myerson value is demonstrated
on the transport graph. Correspondences in the given graph are found with
gravitational and entropy approaches, using the information about citizens
and companies distributed by vertices in the graph. The results of com-
puter calculations are represented on the transport network of the city of
Petrozavodsk.
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1. Introduction

One of the important factors in the socio-economic development of the region is
the state of its transport system, which connects all the city resources, residential
areas, companies, stores, public transport, etc. Improving the transport system en-
hances the quality of life, reduces the price of goods transportation, reduces traffic
accidents, enables the economic efficiency of the region.

There are various ways to improve the transport system. This can be done
through the upgrade of the road surface, the construction of new interchanges,
bypasses, bridges, and pedestrian crossings, increasing the traffic lanes, addition
of new traffic lights. Furthermore, improvement can be achieved by changes to
the traffic regulations, the restriction of entry to the city center, implementing
one-way traffic on certain streets and special lanes for public transport, rational
determination of public transport routes.

Resolving these kinds of issues requires the mathematical modeling of the city’s
transport system (Sheffy, 1985; Nagurney, 1999; Kerner, 2009; Gasnikov, 2013; Nes-
terov and Palma, 2003; Nurminsky and Shamray, 2010). The modeling of the trans-
port system consists of several stages. The first stage is the construction of a road
network graph. The flows on the road segments of the transport network are then
defined. This scheme is based on the correspondence matrix that contains the in-
formation of citizens movement from one vertex of the graph to another. The corre-
spondence matrix allows to find equilibrium transport flows (Wardrop, 1952), create
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optimal public transport schedules, determine the optimal locations of the public
transport stops, identify rational routes for public transport, as well as cycle lanes
(Ford et al., 2019), estimate the number of passengers transported and the revenue
of public transport companies.

The correspondence information can be obtained from population surveys or
using public street cameras. However, this information is generally difficult to obtain
or may be inaccurate. Traditionally, gravitational and entropy models are used
to construct a correspondence matrix (Gasnikov, 2013; Shvetsov, 2003; Shvetsov,
2009). Clearly, they must be combined with the results of the population survey.

This paper presents the results of computer modeling of the city’s transport
network on the example of Petrozavodsk. In section 2 the transport network model
construction is described as well as the distribution of citizens and companies by
city districts. Section 3 contains the results of the computation based on the grav-
itational and entropy models. Section 4 analyses the structure of the transport
network graph. Based on the well-known PageRank method and the game-theoretic
approach proposed by the authors (Mazalov and Trukhina, 2014; Avrachenkov et
al., 2018; Mazalov and Khitraya, 2021) the centrality of vertices in a graph was
found.

2. Transport Network Model Construction

The road graph presented in the OpenStreetMap, a non-profit project aimed
at creating a free geographical world map by Internet users, was used to build the
basis of the transport network model of Petrozavodsk.

Fig. 1. Petrozavodsk urban district
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The class of roads “roads on which road traffic is possible” was chosen to be
significant. The intersections of these roads are selected as vertices of the graph.

According to the summary report on the results of the monitoring of the perfor-
mance efficacy of the local government bodies of the urban districts and municipal
areas of the Republic of Karelia in 20211, permanent average population of the
Petrozavodsk urban district was 280 801. To distribute the city’s residents accord-
ing to the nodes of the graph, information was required on the number of living
quarters located on the territory of Petrozavodsk. Web portal “Housing reform (Re-
forma ZHKKH)” presents information about the houses of the Republic of Karelia
that is provided under government decree #731 of 23 September 2010. The exported
data contains the address of each house according to the federal information address
system, as well as the technical specifications of the building.

In the first stage, residents were distributed evenly over all living quarters, based
on information from open sources. If the number of living quarters for the house
was not specified, the parameter “total number of rooms” was chosen.

total_ppl
total_quarters

= residents_per_quarter,

where total_ppl is the total city population,
total_quarters is the total number of living quarters,
residents_per_quarter is the number of residents per quarter.

The number of the house residents is calculated as the product of the number
of residents per quarter and the number of living quarters in the house:

residents_per_quarter · living_quarters_count,

where living_quarters_count is the number of living quarters in the house.
Next, for each house by the address received on the portal, geographic coordi-

nates were obtained using the Yandex Maps service. These coordinates are used
to find the nearest node of the graph to which the house was attached. According
to this binding, the weight of each vertex represents the total number of residents
living in houses in the vicinity of the graph node, i.e. the intersection of urban roads.

At this stage, the transport network graph included 1615 vertices and 2185 edges.
Since some of the vertices had negligible weight, it was decided to combine closely
spaced vertices with more significant vertices to simplify the model. In addition,
the vertices of the graph, obtained from processing complex intersections, bilateral
roads and entrances to the yards, were combined. Thus, a graph with 875 vertices
and 1181 edges was obtained (Figure 2).

Figure 3 shows the distribution of the city residents by the graph vertices. A
larger vertex size corresponds to a larger weight value. The largest size of the nodes
corresponds to the suburbs and places with new dense buildings.

The next stage of work was to search for data on organizations located in the
territory of the Petrozavodsk City District. Data from the OpenStreetMap project

1Summary report on the results of the monitoring of the perfor-
mance efficacy of the local government bodies of the urban districts
and municipal areas of the Republic of Karelia in 2021, available at:
https://gov.karelia.ru/upload/medialibrary/7d2/inatqynw9blv2ib412inu0u9lwcijshk/SVO
DNYY-DOKLAD.pdf (accessed 13.11.2022).
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Fig. 2. Transport network graph

were used first. All objects described as, for instance, an office, an educational
institution, a shopping center, etc. have been selected. For each type of facility, a
weight was chosen based on both the approximate number of employees typically
employed by that type of establishment and the attendance of such establishments
by visitors. Thus, the number of staff and the visitor flow to the city clinic or school
will exceed the same for the trade organization. The weight value was chosen from
the half-interval (0, 1].

Organizations were bound to the graph nodes according to the geographical
coordinates, just like the residential buildings before. Each node was assigned an
additional characteristic ”weight of organizations”, which is a type-weighted sum of
the number of organizations associated with this vertex.

Figure 4 visualizes the distribution of organizations over the vertices of the
transport graph. The larger vertex size corresponds to the larger weighted sum of
organizations. The figure shows that a large number of organizations are concen-
trated in the city center.

To construct the correspondence matrices, the vertices of the original transport
graph were subdivided into disjoint subsets corresponding to the city districts. The
information on the city districts is presented in the Table 1.

Figure 5 shows the transport graph, with the city districts as vertices. Here
the vertex labels correspond to the numbering in the first column of the table 1.
If two regions are directly connected by roads, then there is an edge between the
corresponding vertices. The lengths of the edges are proportional to the lengths of
the corresponding shortest paths in the original graph.
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Fig. 3. Distribution of the city residents by the graph vertices

Table 1. Petrozavodsk city districts

№ City districts Number
of inhabitants

Weight
of organizations

Number
of vertices

1 Golikovka 25723.8 69.3 60
2 Drevlyanka 51134.7 123.7 98
3 Zheleznodorozhny 3414.4 6.9 14
4 Zareka 15482.9 36.1 44
5 Kamenny bor 5057.4 10.0 16
6 Kirpichnny zavod 1006.1 0.5 21
7 Klyuchevaya 26689.4 46.2 64
8 Kukkovka 36887.5 77.5 86
9 Oktyabrsky 35685.6 80.1 44
10 Pervomaisky 17684.1 91.0 42
11 Perevalka 26275.2 41.5 113
12 Peski 0.0 0.8 7
13 Ptizefabrika 850.8 0.7 16
14 Rybka 4017.6 4.6 37
15 Sainavolok 582.9 0.0 7
16 Severnaya promzona 747.2 19.4 18
17 Solomennoe 2419.6 5.3 27
18 Sulazhgora 4665.8 18.7 44
19 Teplichny 326.4 4.0 12
20 Tomici 47.3 0.6 15
21 Center 21526.2 264.1 89



Modeling of the City’s Transport Network 23

Fig. 4. Distribution of organizations over the vertices of the transport graph

Fig. 5. City districts transport graph

3. Correspondence Matrix

3.1. Gravity model
A gravity model of transportation flows (Gasnikov, 2013; Shvetsov, 2003; Shvetsov,

2009) is based on an analogy with Newton’s law of universal gravitation: the force of
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gravitational attraction between two material points with masses m1 and m2, sep-
arated by a distance r, is proportional to both masses and inversely proportional
to the square of the distance. In the gravity model modified in accordance with
the specifics of traffic flows (Wilson, 1967; Arrowsmith, 1973), the elements of the
correspondence matrix are calculated as

Tij = sidjf(cij)

∑
j

Vjf(cij)

−1

, (1)

∑
j

Tij = si, (2)

∑
i

Tij = dj . (3)

Here, si is the total number of trips starting in i, dj is the total number of trips
ending in j, cij is the cost of a trip between i and j. Constraints (2) and (3) ensure
the adequacy of the mathematical model: the sum of each row of the correspondence
matrix must match the number of trips starting at the corresponding point i; the
sum of each column must match the number of trips ending at the corresponding
point j.

The function f(cij) is some generalization of the distance between the points i
and j. It was shown in (Wilson, 1967) that the best fit for this model is the function
f(cij) = exp(−β cij), where β is the calibration coefficient. In the literature, when
modeling work trips, β = 0.065 is often used.

The algorithm for calculating the correspondence matrix according to the grav-
itational model is presented in (Arrowsmith, 1973). To implement the algorithm in
relation to the transport graph of the city of Petrozavodsk, we will consider the
cost of a trip between the vertices i and j to be directly proportional to the dis-
tance between i and j along the shortest path in the graph, taking into account the
weights of the edges (lengths of road sections). We use the value of the calibration
coefficient β = 0.065.

With a given partition of the transport graph vertices into city districts, we
define the travel costs as follows: cRiRj

is the average distance between all possible
pairs of vertices i and j from the districts Ri and Rj : i ∈ Ri, j ∈ Rj ; cRiRi

is the
average distance between all possible pairs of vertices i and j inside the region Ri:
i, j ∈ Ri.

Let the vector s contain the distribution of residents over the vertices of the city,
and the vector d be the total weight of organizations. If the correspondence matrix
is calculated between districts, then the Ri-th component of the vector s is the sum
of the number of residents at the vertices of the district Ri, the Ri-th component of
the vector d is the sum of the weights of organizations at the vertices of the district
Ri.

To calculate the correspondence matrix between 21 districts of the city based
on the gravity model, 6 iterations of the algorithm were required. The resulting
correspondence matrix is shown in Figure 6.

3.2. Entropy model
An entropy model of transportation flows (Gasnikov, 2013) is based on the sec-

ond law of thermodynamics, which states that any closed physical system tends to
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reach a stable equilibrium state, which is characterized by the maximum entropy of
this system. A correspondence matrix should maximize the entropy. A correspon-
dence matrix depends on priori probabilities vij wich is a probability of choosing
the communication ij by an individual. Furthermore balance restriction on incom-
ing and outcoming flow should be satisfied: si =

∑N
j=1 Tij and dj =

∑N
i=1 Tij . It is

shown [4] that a correspondence matrix can be calculated by the following iterative
scheme.

T k
ij = T k−1

ij si

 N∑
j=1

T k−1
ij

−1

, T k+1
ij = T k

ijdj

[
N∑
i=1

T k
ij

]−1

The matrix of a priori probabilities is used as the initial matrix T 0 = v, then at
each iteration the fulfillment of the balance constraints for incomes and outcomes
is alternately achieved.

The input parameters for the entropy model are: si, the outgoing flow for each
source i; dj , the incoming flow for each sink j; the probability matrix vij which is
a priori probability of choosing the communication ij. In a transport graph, each
vertex acts as both a source and a sink. si is equal to the number of people living
at i, dj is equal to the number of people working at j.

If we take into account only information about the outgoing and incoming flows
at the vertices, and consider a priori probability of a trip between any pair of graph
vertices to be the same, i.e. vij = 1

N2 , where N is the number of vertices, then the
entropy model gives the following correspondence matrix:

Tij =
sidj
P

,

where P =
∑
sk =

∑
dt is the total number of individuals making the trip.

Let us construct a matrix of a priori probabilities based on the poll results. For
each respondent, we can determine which vertices correspond to the addresses of
work and residence indicated by them (provided that they were filled in correctly).
But to estimate vij directly from the poll results, the number of respondents should
be much more than N2, which is practically impossible. Therefore, we construct
a matrix Q, the rows and vertices of which correspond to city districts, and the
element Qhw is equal to the proportion of respondents whose residential address is
in district h, and whose work address is in district w. Let R(i) be the district where
i is located. We define the matrix of a priori probabilities as follows:

vij =
QR(i)R(j)∑

k:R(k)=R(i) sk
∑

t:R(t)=R(j) dt

Simply put, the proportion of respondents who move between a pair of districts is
evenly distributed among all possible pairs of vertices from those districts.

The correspondence matrix was calculated according to the iterative scheme
(Gasnikov, 2013). The calculation of the correspondence matrix for the entire graph
was completed in 12 iterations. The resulting matrix is needed for further modeling,
but for a visual presentation of the results, we group the rows and columns by
districts. Let us construct a matrix:

Dkp =
∑

i:R(i)=k

∑
j:R(j)=p

Tij

The resulting correspondence matrix is shown in Figure 7.
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3.3. Comparison of the correspondence matrices

Fig. 6. Correspondence matrix based on the gravity model
(% of the total population of the city).

Fig. 7. Correspondence matrix based on the entropy model
(% of the total population of the city).

The average difference between the elements of the correspondence matrices
calculated on the basis of the gravity and entropy models (Figure 6 and 7) was
0.1%, the maximum difference was 2.35% of the total population of the city. Thus,
the correspondence matrices are in good agreement with each other and represent
similar patterns of distribution of work trips.

Figure 8 represents the difference between the correspondence matrices calcu-
lated on the basis of the gravity and entropy models, normalized row-wise by the
population of the city districts.

The maximal difference between the elements of the correspondence matrices is
observed for city districts with a relatively large population or the weight of orga-
nizations, which is explained by the specifics of each mathematical model and the
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Fig. 8. The difference between the correspondence matrices calculated on the basis of the
gravity and entropy models, normalized row-wise by the population of the city districts.

absence in the gravitational model (and the presence in the entropy one) of individ-
ual preferences of people. Thus, in the gravity model, more trips are concentrated
within the densely populated Drevlyanka district (matrix element T2,2), more trips
are directed to the Center district with the maximum weight of organizations (col-
umn 21), with the exception of the Drevlyanka district (T2.21), a remote district
Klyuchevaya (T8.21) and the densely populated district Kukkovka (T9.21).

4. Centrality Measures

Centrality measure describes how well a considered vertex is located on the paths
connecting other vertices and, accordingly, how important the node is for the whole
transport system.

As an approach to calculate the centrality of graph vertices, we can consider
ranking of vertices using the PageRank method. This method can be related to
the random walk process. On the set n of web pages, a hyperlink is followed with
some probability α. At the same time, with probability 1 − α, the process can go
to a random web page. Then, the stationary distribution of the process can be
interpreted as the final probability of being in vertices of the graph. The greater
the probability, the more important the vertex for the system, and the greater its
centrality value.

The matrix of the transition probabilities P̃ is calculated as

P̃ = αP + (1− α)(
1

n
E),

where the value α is selected from (0, 1), En×n is the unity matrix, Pn×n is the
matrix of elements:

pij =


1
k vertex i has k > 0 outgoing links and j is one of them,
0 vertex j is not an outgoing link for i,
1
n vertex i does not have outgoing links k = 0.

Figure 9 presents the results of ranking graph vertices using the PageRank
method (α = 0.85). A larger centrality value corresponds to a larger node size
on the map.



28 N.A. Ermolin, V.A. Khitraya, A.V. Khitryi, V.V. Mazalov, N.N. Nikitina

Fig. 9. Vertices centralities by the PageRank method

Also, the PageRank method can be used for a weighted graph with a weight
matrix W and a degree matrix D, then the matrix is P = D−1W . In this study, we
select road lengths as the edge weight values. Figure 10 shows the results of ranking
the vertices of a weighted graph.

Fig. 10. Vertices centralities by the PageRank method taking into account edge weights

A game-theoretic approach can be used to determine vertex centralities in a
graph. Consider a graph G = (V,E) where V is the set of vertices and E is the
set of edges. Define a cooperative game Γ =< V, v >, |V | = n on the graph as
follows. The vertices are the players, and the characteristic function v(K),K ⊂ V ,
is defined as the number of simple paths of length m in the subgraph corresponding
to the coalition K. The number m = 1, 2... is fixed. Obviously, the function v(K) is
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monotonic, i.e., v(K1) ≤ v(K2) for K1 ⊂ K2. Then the graph vertices can be ranked
using the solution of the cooperative game in the form of the Shapley-Myerson value.

The papers (Mazalov and Trukhina, 2014; Avrachenkov et al., 2018) showed
that if the characteristic function v(K),K ⊂ V is defined as the number of simple
paths of length m in the subgraph K, then the Myerson value for player i can be
calculated as

φm
i =

am(i)

m+ 1
, (4)

where am(i) denotes the number of simple paths of length m passing through vertex
i. Paths i1, i2, . . . , ik and ik, . . . , i2, i1 are considered to be the same.

To calculate the value using the formula (4), you need to find the number of
all simple paths of a certain length passing through a given vertex. However, in
the general case, it’s not an easy problem. To calculate the value using formula
(4), one needs to find the number of all simple paths of a certain length passing
through a given vertex. This is not a simple computational task. A modification
of the Myerson value (Mazalov and Khitraya, 2021) was proposed, which is easier
to calculate. The idea of this representation is that each simple path contains the
vertex i, for which the Myerson vector is calculated, only once. Then am(i) can be
treated as the number of occurrences of the vertex i in all simple paths of length m.
In (Mazalov and Khitraya, 2021), a modification of Myerson centrality is described,
where the centrality of the kth order of a vertex i is the number of occurrences of
the vertex i in paths of length k, including cycles. The vector σ(k) is the vector of
vertex centralities of the graph G whose i-th component is equal to

σi(k) =
si(k)

k + 1
, i = 1, . . . , n,

where si(k) is the total number of appearances of vertex i in the paths of length k
calculated by formula

si(k) =

n∑
j=1

a
(k)
ij +

n∑
l=1

ali n∑
j=1

a
(k−1)
ij + a

(2)
li

n∑
j=1

a
(k−2)
ij + . . .+ a

(k)
li

 .
Here a(k)ij are the elements of the adjacency matrix raised to the corresponding

power k.
Figure 11 shows a visual representation of vertex centrality values of the road

network of the city of Petrozavodsk. A larger vertex size corresponds to a larger
Myerson centrality value.

Centrality values were also calculated for a graph whose vertices are city dis-
tricts (Figure 5). Figure 12 shows a comparison diagram of the centrality values of
city districts. The district numbers correspond to the numbering in Table 1. The
resulting Myerson centrality values are multiplied by 10−7; the PageRank values are
multiplied by 102 for ease of comparison. Myerson centrality values were calculated
for paths of length k = 10 (M on the diagram). When ranking the vertices of a
weighted graph using the PageRank method and choosing the edge weight equal
to the length of the corresponding road segment, large centrality values arise for
remote regions (PRw on the diagram). In this regard, it was decided to choose the
values reciprocal of the road lengths (PR 1

w
in the diagram) as the edge weights.

This made it possible to balance the obtained values.
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Fig. 11. Myerson centrality

Fig. 12. Comparison of centrality values for the graph of city districts.

5. Conclusion

The paper presents the results of numerical calculations for the analysis of the
transport network of a city on the example of Petrozavodsk. To determine the traffic
flows in the city, a poll of residents was conducted, which provided preliminary
information about the correspondence matrix. These results were taken into account
when using the entropy model to evaluate working trips in the city. Correspondence
matrices calculated by the entropy model and the gravity model were compared.
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The structure of the transport graph was analyzed using the PageRank methods and
the Myerson value. The obtained results were analyzed and interpreted in relation
to the transport network of the city of Petrozavodsk.
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