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Abstract In this paper, we consider a network game where players are
multi-agent systems (we call them in this paper ′′coalitions′′) under the con-
dition that the trajectories of players (coalitions) should (have no common
arcs, or have no common vertices) i. e. must not intersect. In the same time
the trajectories of players inside coalition can intersect (have common arcs,or
have common vertices). The last condition complicates the problem, since
the sets of strategies turn out to be mutually dependent. A family of Nash
equilibrium is constructed and it is also shown that the minimum total time
(cost) of players is achieved in a strategy profile that is a Nash equilibrium.
A cooperative approach to solving the problem is proposed. Also, another
cooperative mini maximal approach to solving the problem is investigated.
We also consider the proportional solution and the Shapley value to allocate
total minimal costs between players. Two approaches for constructing the
characteristic function have been developed.
Keywords: Nash equilibrium, the Shapley value, the proportional solution.

1. Introduction

Theory of games on networks have been growing in recent years. Mazalov and
Chirkova (2019) provided a comprehensive discussion of the topic. Given that most
practical game situations are more dynamic (intertemporal) rather than static, dy-
namic network games have become a field that attracts theoretical and technical
developments. One special case of network games is transportation game. This prob-
lem was considered in the articles by (Petrosyan, 2011) and by (Seryakov, 2012)
about the game theoretic transportation model in the network. In (Petrosyan, 2011;
Seryakov, 2012) a game theoretic approach is considered for n-player which want to
reach the fixed node of the network with minimal time (cost). It is assumed that the
trajectories of players should have no common arcs, i. e. must not intersect. The last
condition significantly complicates the problem, since the sets of strategies turn out
to be mutually dependent. A family of Nash equilibrium is constructed and it is also
shown that the minimum total time (cost) of players is achieved in Nash equilibrium
strategy profile. A cooperative approach for solving the problem is proposed. We
consider the game theoretic approach (Petrosyan, 2011) where players are coalitions
under the condition that the trajectories of players (coalitions) should have no com-
mon arcs, or have no common vertices i.e. must not intersect. The trajectories of
players inside coalition can intersect (have common arcs, or have common vertices).
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A family of Nash equilibriums is constructed and it is also shown that the mini-
mum total time (cost) of players (coalitions) is achieved in a strategy profile that is
a Nash equilibrium. A cooperative approach for solving the problem is proposed. We
also suggest another cooperative mini maximal approach. The proportional solution
(Barry Feldman, 1999) and The Shapley value (Harold and Albert, 2016) are pro-
posed to allocate the costs inside each coalition. Two approaches for constructing
the characteristic function have been developed. In both cases, to define the char-
acteristic function, approaches are used based on corresponding Nash equilibrium.
It is shown on example that the proposed solutions are not time consistent and the
two level solution concept of the game is developed.

2. Model

The game takes place on the network G = (X,D), where X is a finite set, called
the vertex set andD− set of pairs of the form (y, z), where y ∈ X, z ∈ X, called arcs.
Points x ∈ X will be called vertices or nodes of the network. On a set of arcsD a non-
negative symmetric real valued function is given γ (x, y) = γ (y, x) ≥ 0, interpreted
for each arc (x, y) ∈ D as the time (or cost) associated with the transition from
x to y by arc (x, y) . As mentioned before we consider the case when players are
coalitions M1, . . ., Mk,. . . , Mp.

Define p− player transportation game on network G. The transportation game
Γ is system Γ = ⟨G,P,M(P ), a⟩, where G− network, P = {1, . . . , p}− is set of
players (coalitions), a ∈ X - some fixed node of the network G. M(P ) - subset
of coalitions of network G,M(P ) = {1(M), 2(M), . . . , k(M), . . . , p(M)}, indicating
the coalitions in which players are located in M(P ) at the beginning of the game
process (the initial position of players (coalitions)). We will say that the paths of
players (coalitions) hM ′ and hM ′′ do not intersect, and write hM ′∩hM ′′

= ∅, if they
do not have common (arcs, or vertices). Denote this game by Γ .

The set Mk =
{
ik1 , . . . , i

k
r, . . . , i

k
rk

}
in network G, we call coalition. The Strate-

gies of coalition are defined as any path connecting his initial position (initial posi-
tion of players from Mk) with a fixed node a. The paths of players inside coalition
may intersect.
Denote by hMk =

{
hi

k
1 , . . . , hi

k
r , . . . , hi

k
rk

}
, where

{
hi

k
1 , . . . hi

k
r , . . . , hi

k
rk

}
are

strategies of players
{
ik1, . . . , i

k
r, . . . , i

k
rk

}
in coalition Mk.

hi
k
r =

{(
xk0r, x

k
1r

)
,
(
xk1r, x

k
2r

)
, . . . ,

(
xklr−1, a

)}
, are the strategies of player ikr (inside

coalition Mk) and xk0r is initial position (node) of player ikr inside coalition Mk.
lr is a number of arcs of hi

k
r for player ikr inside coalition Mk. The strategies of

coalition Mk have the form:

hMk = [
{(
xk01, x

k
11

)
,
(
xk11, x

k
21

)
, . . . ,

(
xkl1−1, a

)}
, . . . ,{(

xk0r, x
k
1r

)
,
(
xk1r, x

k
2r

)
, . . . ,

(
xklr−1, a

)}
, . . . ,{(

xk0rk , x
k
1rk

)
,
(
xk1rk , x

k
2rk

)
, . . . ,

(
xklrk−1, a

)}
].

A bunch of all strategies of Mk we denote by HMk . The strategy profiles hM =(
hM1 , . . . , hMp

)
, hM1 ∈ HM1 , . . . , hMp ∈ HMp are called admissible if the paths

hMki and hMkj not intersect (not contain common arcs, or not contain common
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vertices). hMki ∩ hMkj = ∅, ki ̸= kj . The set of all admissible strategy profiles is
denoted by HM .

In this section we define for each arc (xkfm, x
k
f+1m) the cost function

γi
(
xkfm, x

k
f+1m

)
equal to the cost which necessary to reach the node xkf+1m from

node xkfm by player Mk (coalition Mk). The coalition costs are defined as

CMk
(hM ) =

rk∑
r=1

lm−1∑
f=0

γi
(
xkfm, x

k
f+1m

)
= C

(
hM̄k

)
. (1)

3. Nash Equilibrium Between Coalitions in Game

In the game Γ the strategy profile
(
hM̄ = hM̄1 , . . . , hM̄p

)
is called a Nash equi-

librium, if CMk

(
hM̄ ∥ hMk

)
≥ CMk

(
hM̄
)

holds for all admissible strategy profiles(
hM ∥ hMk

)
∈ HM and k ∈ P .

Let π be some permutation of numbers (1, . . . , p), π =
(
Mk1

, . . . ,Mkp

)
. Consider an

auxiliary transportation problem on the network G for player(coalition) Mk1
. Find

the path in the network G, minimizing the player (coalition) Mk1 cost to reach from
initial position to fixed node a ∈ X. Denote the path that solves this problem by
hM̄k1

C
(
hM̄k1

)
= min

hMk1∈H
mk1

C
(
hMk1

)
. (2)

Remind that players inside the coalition may use paths with common arcs (vertices).
Denote by G\hM̄k1 a subnetwork not containing arcs (vertices) hM̄k1 . Consider an
auxiliary transportation problem for player (coalition) Mk2 on network G\hM̄k1 .
Find the path in subnetwork G\hM̄k1 . Minimizing the player (coalition) Mk2 cost
to reach from his initial position to fixed node a ∈ X. Denote the path that solves
this problem by hM̄k2

C
(
hM̄k2

)
= min

hMk2∈H
Mk2

C
(
hMk2

)
. (3)

Proceeding further in a similar way, we introduce into consideration the subnetworks
of the network G, that do not contain arcs (vertices) which belong to paths hM̄k1 ,
. . . , h

¯Mkm−1 . Consider the auxiliary transportation problem of the player Mkm
on

the network G\ ∪m−1
l=1 hM̄kl . Find the subnetwork G\ ∪m−1

l=1
¯hMkl , minimizing the

player (coalition) Mkm
cost to reach the node a ∈ X. Denote the path that solves

this problem by h ¯Mkm

C
(
h

¯Mkm

)
= min

hMkm∈H
Mkm

C
(
hMkm

)
. (4)

As a result, we get a sequence of paths hM̄k1 , . . . , hM̄kp , minimizing players
(coalitions) Mk1

,Mk2
, . . . ,Mkm

, . . . ,Mkp
cost on subnetworks:

G,G\hM̄k1 , . . . , G\ ∪m−1
l=1 h

¯Mkm , . . . , G\ ∪m−1
l=1 hM̄kl .

The sequence of bunches of paths hM̄k1 , . . . , h
¯Mkm , . . . , hM̄kp by construction consist

of pairwise non-intersecting arcs (vertices), and each of them hM̄kl ∈ HM̄kl . There-
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fore the strategy profile
(
hM̄k1 , . . . , h

¯Mkm , . . . , hM̄kp

)
= hM̄ (π) ∈ HM is admissible

in Γ .

Theorem 1. The strategy profile hM̄ (π) ∈ HM is an equilibrium strategy profile in
Γ for any permutation π.

Proof. Consider the strategy profile.
[
hM̄ (π)∥hMkm

]
, where hMkm ̸= h

¯Mkm , hMKm

∈ HMkm ,
[
hM̄ (π)∥hMkm

]
∈ HM . By construction h

¯Mkm is determined from the
condition

C
(
h

¯Mkm

)
= min

hMkm∈G\Um−1
l=1 h

M̄kl

C
(
hMkm

)
,

However, the strategy profile
[
hM̄ (π)∥hMkm

]
is admissible (if hMKm ∈

G\
⋃m−1

l=1 hM̄kl ) and therefore C
(
h

¯Mkm

)
≤ C

(
hMkm

)
= CMkm

[
hM̄ (π)∥hMkm

]
,

C
(
h

¯Mkm

)
= CMkm

(hM̄ (π)), and CMkm
[hM̄ (π)] ≤ CMkm

[
hM̄ (π)∥hMkm

]
for all[

hM̄ (π)∥hMkm

]
∈ HM , which proves the theorem.

This theorem indicates a rich family of pure strategy equilibrium profiles in Γ
depending on permutation π. Thus, in Γ we have at lest p! equilibrium strategy
profiles in pure strategies. If the initial states of players(coalitions) are different.

The strategy profile hM̄ (π̂) is called a best equilibrium if

p∑
k=1

CMk
(hM̄ (π̂)) = min

π

P∑
k=1

CMk
(hM̄ (π)) =W. (5)

4. Cooperative Solution

However, there are other Nash equilibrium profiles in Γ. Consider the strategy
profile h

¯̄M , solving the minimization problem

min
hM

P∑
k=1

CMk
(hM ) =

P∑
k=1

CMk
(h

¯̄M ) = V. (6)

We can simply show that h
¯̄M is also a Nash equilibrium strategy profile. Be-

cause if one player changes his strategy and other players do not change their
strategies his time (cost) under this condition will be more than equal of his time
(cost) in case when has not changed his strategy. Consider the strategy profile(
h

¯̄M = h
¯̄M1 , . . . , h

¯̄MK , . . . , h
¯̄Mp

)
if player MK change his strategy, we get

∑p
k=1 CM (h

¯̄M ∥ hMk) ≥
∑p

k=1 CMk
(h

¯̄M )

C(h
¯̄M1) + C(h

¯̄M2) + . . .+ C(hMk) + . . .+ C(h
¯̄Mp) ≥ C(h

¯̄M1) + C(h
¯̄M2)+

. . .+ C(h
¯̄Mk) + . . .+ C(h

¯̄Mp)soC(hMk) ≥ C(h
¯̄Mk).

We call the strategy profile h
¯̄M a cooperative equilibrium in Γ . In some cases V =

W , (see the example). Consider now another approach to define the cooperative
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solution. For each strategy profile we define the player (coalition) Mk with the
maximal time (cost) necessary to reach from the initial position to fixed node a,
then from all strategy profiles we select such strategy profile for which this maximal
time (cost) is minimal. This strategy profile will call cooperative mini maximal
strategy profile h

¯̄̄
M .

CMk

(
h

¯̄̄
M
)
= min

hM̄

[
max
Mk

(
CM (hM̄ )

)]
, Denote

P∑
k=1

CMk
(h

¯̄̄
M ) = R (7)

Remind the definition of cooperative path (coalition)

h
¯̄M = [

{(̄̄
xM1
01 ,̄̄ x

M1
11

)
,
(̄̄
xM1
11 ,̄̄ x

M1
21

)
, . . . ,

(̄̄
xM1

l1−1, a
)}

,

. . .
{(̄̄
xMk
0i ,̄̄ x

Mk
1

)
,
(̄̄
xMk

1k ,̄̄ x
Mk

2k

)
, . . . ,

(̄̄
xM1

lk−1, a
)}

, . . .{(̄̄
x
Mp

0p ,̄̄ x
M1
1p

)
,
(̄̄
x
Mp

1p ,̄̄ x
Mp

2p

)
, . . . ,

(̄̄
x
Mp

lp−1, a
)}

],

where L = max
1≤k≤p

lk.

Denote by ¯̄̄x(r) cooperative trajectories corresponding to cooperative path ¯̄hM .

¯̄̄x = (¯̄xM1
01 , ¯̄x

M1
11 , ¯̄x

M1
21 , . . . , ¯̄x

M1

l1−1, a), . . . (¯̄x
Mk

0k , ¯̄x
Mk

1k ,

¯̄xMk

2k , . . . , ¯̄x
Mk

lk−1, a), . . . (¯̄x
Mp

0p , ¯̄x
Mp

1p , ¯̄x
Mp

2p , . . . , ¯̄x
Mp

lp−1, a)

The subgame starts from the state ¯̄̄x(r) = (¯̄xM1
r1 , . . . , ¯̄x

Mk

rk , . . . , ¯̄x
Mp
rp ),

where ¯̄xMk

rk = (¯̄xMk

0k , ¯̄x
Mk

1k , ¯̄x
Mk

2k , . . . , ¯̄x
Mk

lk−1, a), k = 1, . . . , P , where r is a stage number
for players (coalitions), (Petrosyan and Karpov, 2012).

In the cooperative version of the game between coalitions we suppose that all
players (coalitions) jointly minimize the total costs and this minimal total cost we
denote by V (P ).
The proportional solution (Barry Feldman, 1999) in cooperative subgame is defined
as:

φ̃Mk
(¯̄̄x(r), r) =

V (Mk; ¯̄̄x(r), r)
p∑

k=1

V (Mk; ¯̄̄x(r), r)

V (P ; ¯̄̄x(r), r); K ∈ P
(8)

φ̃Mk
(¯̄̄x(r), r): is the cost player Mk starting from ¯̄̄x(r) on cooperative trajectory.

V (P ; ¯̄̄x(r), r): is a minimal joint cost for all players (cooperative solution) starting
from ¯̄̄x(r).
V (Mk; ¯̄̄x(r), r): is a minimal joint cost for player Mk along cooperative trajectory
starting from ¯̄̄x(r).
The Shapley value Sh = {ShMk

}k∈N in cooperative game Γ starting from ¯̄̄x(r) is
a vector with components (Harold and Albert, 2016):

ShMk
(¯̄̄x(r), r) =

∑
Mk∈S⊂P

(p− s)!(s− 1)!

p!

(
V
(
S, ¯̄̄x(r), r

)
− V

(
S\{Mk}, ¯̄̄x(r), r

))
.

(9)
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Here V (S; ¯̄̄x(r), r): is defined as minimal total cost for subset of players along coop-
erative trajectories ¯̄̄x(r), starting from ¯̄̄x(r).

Here V
(
S\{Mk}, ¯̄̄x(r), r

)
: is defined as minimal total cost for subset of players

(coalitions) (cooperative solution) without player Mk, starting from ¯̄̄x(r).
Example: for two players (coalitions) formula for the Shapley value will have the
form:

ShM1
(¯̄̄x(r), r) =

V (M1, ¯̄̄x(r), r)−
V (M1, ¯̄̄x(r), r) + V (M2, ¯̄̄x(r), r)− V ((M1,M2), ¯̄̄x(r), r)

2
,

ShM2
(¯̄̄x(r), r) =

V (M2, ¯̄̄x(r), r)−
V (M2, ¯̄̄x(r), r) + V (M1, ¯̄̄x(r), r)− V ((M1,M2), ¯̄̄x(r), r)

2
.

5. Two Stage Solution Concept in Game

We consider two different approaches
First approach: consider cooperative game between players (coalitions), and find
the Proportional solution φ̃Mk

in Γ . This solution shows the loses of every given
coalition, then investigate the problem how to distribute this loses between members
of coalition. For this reason we use the Shapley value but it is necessary to define the
characteristic function for players inside the coalition. The characteristic function
is defined in following way: suppose S ⊂ P then V (S) can be taken as the loses
of S in some fixed Nash equilibrium (under fixed permutation) in the game played
by (coalitions) S with other players as individual players [we may suppose that the
strategies of players do not have common (arcs, or vertices) ]. Denote the Shapley
value inside coalition as shi(Mk); Mk ⊂ S. We propose to allocate the loses as

ψi(Mk) =
shi(Mk)

pk∑
i=1

shi(Mk)

φ̃Mk
; k ∈ {1, . . . , p}. (10)

Second approach: consider cooperative game between players (coalition), and
find the Shapley value shMk

in Γ . This solution consider loses for given coalition,
then the problem how to distribute this loses between members of coalition. For
this reason we compute the proportional solution. Denote the Proportional solution
inside the coalition as φ̃i(Mk); Mk ⊂ S. We propose to allocate the losses

θi(Mk) =
φ̃i(Mk)

pk∑
i=1

φ̃i(Mk)

shMk
; k ∈ {1, . . . , p}. (11)
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6. Example (Time Consistency Problem):

Fig. 1. Two players (coalitions) in game

In this figure we denote nodes by capital Latin letters. The coalitions M =
{M1,M2}; M1 = A,B,M2 = I, F

Two players (coalitions) want to reach the fixed node E under condition (paths
have no common arcs).

The loses are written over the arcs and are equal, respectively to

γ(A,B) = 2, γ(A,F ) = 1, γ(B,C) = 0, γ(B,G) = 0,
γ(C,D) = 2, γ(C,H) = 0, γ(C,G) = 0.7, γ(D,E) = 0,
γ(D,H) = 1, γ(I, F ) = 0, γ(F,G) = 0, γ(F, J) = 2,

γ(J,H) = 1, γ(H,E) = 0.

Non-cooperative solution
For permutation: π = {M1,M2}

hM̄1 = [(A,F ), (F,G)(G,B), (B,C)(C,H), (H,E)], [(B,C), (C,H)(H,E)]

CM1
(hM̄ ) = 1 + 0 = 1

¯hM2 = [(I, F ), (F, J), (J,H), (H,D), (D,E)], [(F, J), (J,H), (H,D), (D,E)]

CM2
(hM̄ ) = 4 + 4 = 8

For permutation: π = {M2,M1}

hM̄2 = [(I, F ), (F,G), (G,B), (B,C), (C,H), (H,E)],
[(F,G), (G,B), (B,C), (C,H), (H,E)]

CM2
(hM̄ ) = 0 + 0 = 0

hM̄1 = [(A,F ), (F, J), (J,H), (H,D), (D,E), (H,E)],
[(B,A), (A,F ), (F, J)(J,H), (H,D), (D,E), (H,E)]

CM1(h
M̄ ) = 5 + 7 = 12.

Thus, both equilibrium hM̄ (M2,M1) and hM̄ (M1,M2) are cooperative equilibrium.
In best Nash equilibrium in Γ we get W = 9.



Game Theoretic Approach to Multi-Agent Transportation Problems on Network 15

Cooperative solution

h
¯̄M1 = [(A,B), (B,C)(C,D), (D,E)], [(B,C), (C,D), (D,E)]

CM1
(hM̄ ) = 4 + 2 = 6

h
¯̄M2 = [(I, F ), (F,G), (G,C), (C,H), (H,E)], [(F,G), (G,C), (C,H), (H,E)]

CM2
(hM̄ ) = 0.7 + 0.7 = 1.4

CM1(h
M̄ ) + CM2(h

M̄ ) = 6 + 1.4 = 7.4 = V = R.

We get the result R = V < W , (see (5), (6), (7)).

The proportional solution in game (apply formula (8))
For r = 0, π = (M1,M2)

φ̃M1
(¯̄̄x(0), 0) = (1/9)7.4 = 0.822, φ̃M2

(¯̄̄x(0), 0) = (8/9)7.4 = 6.578

For r = 0, π = (M2,M1)

φ̃M1
(¯̄̄x(0), 0) = (12/12)7.4 = 7.4, φ̃M2

(¯̄̄x(0), 0) = (0/12)7.4 = 0

For r = 1, π = (M1,M2)

φ̃M1
(¯̄̄x(1), 1) = (0/6)5.4 = 0, φ̃M2

(¯̄̄x(1), 1) = (6/6)5.4 = 5.4

For r = 1, π = (M2,M1)

φ̃M1
(¯̄̄x(1), 1) = (9/9)5.4 = 5.4, φ̃M2

(¯̄̄x(0), 0) = (0/12)5.4 = 0

Compare the results

φ̃M1(
¯̄̄x(1), 1) + 1 = 1 ̸= φ̃M1(

¯̄̄x(0), 0) = 0.822

φ̃M2
(¯̄̄x(1), 1) + 2 = 7.4 ̸= φ̃M2

(¯̄̄x(0), 0) = 6.578

φ̃M1
(¯̄̄x(1), 1) + 3 = 8.4 ̸= φ̃M1

(¯̄̄x(0), 0) = 7.4

φ̃M2(
¯̄̄x(1), 1) + 0 = 0 = φ̃M2(

¯̄̄x(0), 0)

The proportional solution is not time consistent in the game.

The Shapley Value(apply formula (9))
For r = 0, π = (M1,M2)

ShM1(
¯̄̄x(0), 0) = 12− 12 + 8− 7.4

2
= 5.7

ShM2(
¯̄̄x(0), 0) = 8− 8 + 12− 7.4

2
= 1.7

For r = 0, π = (M2,M1)

ShM1
(¯̄̄x(0), 0) = 1− 1 + 0− 7.4

2
= 4.2

ShM2(
¯̄̄x(0), 0) = 0− 0 + 1− 7.4

2
= 3.2
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For r = 1, π = (M1,M2)

ShM1
(¯̄̄x(1), 1) = 9− 9 + 6− 5.7

2
= 2.85

ShM2
(¯̄̄x(1), 1) = 6− 6 + 9− 5.7

2
= 1.35

For r = 1, π = (M2,M1)

ShM1
(¯̄̄x(1), 1) = 1− 1 + 0− 5.7.4

2
= 3.35

ShM2
(¯̄̄x(1), 1) = 0− 0 + 1− 5.7

2
= 2.35

Where r is a stage number for players (coalitions). Compare the results

ShM1
(¯̄̄x(1), 1) + 1 = 2.85 + 1 = 3.85 ̸= 5.7 = ShM1

(¯̄̄x(0), 0)

ShM2(
¯̄̄x(1), 1) + 2 = 1.35 + 2 = 3.35 ̸= 1.7 = ShM2(

¯̄̄x(0), 0)

ShM1
(¯̄̄x(1), 1) + 3 = 3.35 + 3 = 6.35 ̸= 4.2 = ShM1

(¯̄̄x(0), 0)

ShM2
(¯̄̄x(1), 1) + 0 = 2.35 + 0 = 2.35 ̸= 3.2 = ShM1

(¯̄̄x(0), 0)

The Shapley value is not time consistent in the game.

Two stage solutions concept in game
In the case of best Nash equilibrium π = (M1,M2) we get:

The proportional solution for two players (coalitions) M1, M2 :

φ̃M1 = 0.822, φ̃M2 = 6.578.

The Shapley value for the players inside coalitions M1, M2 :
sh1(M1) = 1, sh2(M1) = 0, sh1(M2) = 4, sh2(M2) = 4.

Applying (10) (first approach) we get:

ψ1(M1) = (0.822)(1) = 0.822, ψ2(M1) = (0.82)(0) = 0
ψ1(M2) = (6.578)(4/8) = 3.289, ψ2(M2) = (6.578)(4/8) = 3.289.

Consider now the second approach:
The Shapley value for two players (coalitions) M1, M2 :

shM1 = 5.7, shM2 = 1.7.

The proportional solution for the players inside coalitions M1, M2:

φ̃1(M1) = 1, φ̃2(M1) = 0, φ̃3(M2) = 4, φ̃2(M2) = 4.

Applying (11) (second approach) we get:

θ1(M1) = (5.7)(1/1) = 5.7, θ2(M1) = (5.7)(0) = 0
θ1(M2) = (1.7)(4/8) = 0.85, θ2(M2) = (1.7)(4/8) = 0.85.
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