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Abstract Due to the development of wireless communication technologies
and the increase of integrated wireless networks, the problem of spectrum
bandwidth management has become a hot research field in recent years. In
this paper, we consider this problem as hierarchical game with three types of
players: spectrum holder (provider), primary and secondary user. Provider
assigns the price for bandwidth resource to maximize its own profit, whereas
the primary user tries to find balance between using the bandwidth resource
for its own needs and renting spectrum band to secondary users for profit
gain. Secondary users can access to the network and transmit their signals by
using the spectrum band of the primary user paying for that in proportion
to the power of the transmitted signal. For this game the optimal strategies
of the players are found. Numerical modelling demonstrates how the equi-
librium strategies and corresponding payoffs depend of network parameters.

Keywords: spectrum market, bandwidth resource, Stackelberg game, power
control.

1. Introduction

Bandwidth resource management is an important issue in wireless networks.
Spectrum, which is a scarce resource, is comparatively efficiently used in wireless
technologies such as WiMAX and UMTS. The quality of service (QoS) reached by
a user, which is communicating a signal, heavily depends on the value of bandwidth
provided by a spectrum holder.

From economic point of view, holders and users (primary, secondary, etc) form a
spectrum market, within which spectrum bands are considered as a resource flowing
from owners to consumers regulated by market mechanisms. Users are able to rent
the spectrum band purchased from the holders. Thus, for holders it is important
to find the optimal price to sell the band spectrum, whereas users try to find bal-
ance between using the bandwidth resource for its own needs and renting unused
bandwidth capacity for profit gain.

The problem of such hierarchical spectrum bandwidth sharing has become a
hot research field in recent years due to the development of wireless communi-
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cation technologies and the increase of integrated wireless networks. In the study
(Niyato and Hossain, 2007), the network model, when a WiMAX base station serves
both WiMAX subscriber stations and WiFi access points/routers in its coverage
area, is considered. The WiMAX and WiFi service providers try to maximize its
own profits by defining the optimal price on spectrum bands. This problem is formu-
lated as a Stackelberg leader-follower game in which the WiMAX base station and
the WiFi routers are the leader and the followers, respectively. The network which
is comprised by two-level architecture (WiMAX and UMTS networks serve WLAN
as backbone) is considered in (Ming et al., 2009), and Vickrey-Clarke-Groves auc-
tion mechanism is used to allocate the bandwidth resource efficiently among various
entities in this network. An access pricing schemes for multi-hop wireless communi-
cations are investigated in (Lam et al., 2006). The pricing is used as an incentive for
the relay node to forward traffic to the gateway. A game-theoretic approach is used
to analyze interactions of the access point, wireless relaying nodes, and clients from
one-hop to multihop networks and when the network has an unlimited or limited
channel capacity. Three level pricing scheme authority-provider-user where tariff of
access to internet is proportional to throughput is studied in (Garnaev et al., 2010).

In this paper we introduce the following hierarchical game with three different
types of players: spectrum holder (provider), a primary and several secondary users.
The provider assigns the price for bandwidth resource to maximize its own profit.
The primary user buys a license for using frequency bandwidth from the provider to
transmit signals. The primary user can also earn some extra money giving unused
frequencies capacity for rent to secondary users charging them by assigned tariff for
interference. Each secondary user can either buy the frequency bandwidth or it can
choose the service of the other provider based on comparing of the suggested QoS
and prices which is set for the network access. For this game the optimal strategies
of the players are found. Numerical modelling demonstrates how the equilibrium
strategies and corresponding payoffs depend of network parameters.

The rest of the article is organized as follows. Section 2. presents system model
for hierarchical spectrum sharing considered in this paper. The optimal strategies
of the players are found in Section 3.. After that dependence of the equilibrium
strategies and corresponding payoffs on network parameters is presented in Section
4.. Section 5. concludes the paper.

2. System model and assumptions

In this section, we present the market model and corresponding assumptions.
Let us consider a case in which there is only one the frequency spectrum provider,
one primary user which purchases a spectrum band from the provider and several
secondary users which can pay for the possibility to use the spectrum of the primary
user.

As a rule, in such the spectrum markets the provider is large commercical or
governmental organization which possess the rights on the spectrum license and try
to share this spectrum optimally. On the other hand, primary user is service distrib-
utor which provides the access to the network for end subscribers - secondary users.
The provider is trying to maximize its own profit by assigning the optimal price for
the bandwidth resource, whereas users are maximizing the quality of services which
they provide by utilizing this resource taking into account the resource costs.
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We formulate this problem as the hierarchical game with three types of players: a
provider, a primary and a secondary user. The provider sets the price for bandwidth
resource to maximize its own profit. Thus, the provider’s payoff πprov is the profit
obtained by selling the bandwidth resource to the primary user:

πprov(CW ) = CWW, (1)

where W ≥ 0 is the spectrum band bought by the primary user and CW > 0 is its
price assigned by the provider. Thus, the strategy of the provider is to choose CW ,
which is unbounded non-negative value.

The primary user purchases a spectrum band directly from the provider, af-
terwards it allows several secondary users to use the spectrum band so that to
maximize its own payoff. The payoff of the primary user πP is its throughput plus
profit it obtains by giving access to the network for secondary users minus how
much it costs to buy the bandwidth resource from the holder. Let us assume that
the primary user charges secondary users proportional to their interfering power:

πP (W,CP ) = αW log

(
1 +GP hPPP

σ2W +
∑n

i=1 h
S
i P

S
i

)
− CWW + CPh

S
i P

S
i , (2)

where α > 0 is coefficient which shows the economic efficiency of throughput
for the primary user, GP > 0 is is the spreading gain of the CDMA system for the
primary user, hP > 0 and hSi > 0 are the fading channel gains for the primary and
the i-th secondary user respectively, σ2 ≥ 0 is the background noise, PP ≥ 0 is the
transmitting power employed by the primary user, CP ≥ 0 is the tariff for access
to the network for the secondary user, PS

i ≥ 0 is the power employed by the i-th
secondary user. The primary user is trying to maximize (2) by finding optimal W
and CP .

Similarly, a secondary user payoff is the throughput value provided by it minus
bandwidth resource costs, i.e.

πSi (P
S) = βW log

(
1 +GS hSi P

S
i

σ2W + hPPP +
∑

j 	=i h
S
j P

S
j

)
− CPh

S
i P

S
i , (3)

where PS = (PS
1 , . . . , P

S
n ) is vector of secondary users transmitting powers,

β > 0 is coefficient which shows the economic efficiency of throughput for each
secondary user and GS > 1 is is the spreading gain of the CDMA system for
secondary users. The i-th secondary user is looking for non-negative PS

i ≥ 0 which
maximizes its own payoff. Let us assume that maximal power which can be used by
secondary users to transmit the signals is very high and in this study we will not
take into account the upper limit for secondary users transmitting power.
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Let us consider the problem defined as a sequence of two Stackelberg games
(Romp, 1997). In the first stage, the provider maximizes its own profit by assigning
the price for bandwidth resource, and the primary user buys a license for using
frequency bandwidth from the provider to transmit own data without taking into
account secondary users:

max
CW

πprov(CW ) = max
CW

CWW,

subject to CW > 0.

max
W

πP (W ) = max
W

αW log

(
1 +GP h

PPP

σ2W

)
− CWW,

subject to W ≥ 0.

In the second stage, the primary user allows secondary users to use the spectrum
band purchased in order to increase its own prifit. We assume that the spectrum
band is fixed and the primary user charges secondary users proportional to their
interfering power. Each secondary user transmits its own signal in such power mode
that maximizes its payoff function:

max
CP

πP (W,CP ) =

= max
W,CP

αW log

(
1 +GP hPPP

σ2W +
∑n

i=1 h
S
i P

S
i

)
− CWW + CP

n∑
i=1

hSi P
S
i ,

subject to CP > 0.

max
PS

πSi (P
S) = max

PS
βW log

(
1 +GS hSi P

S
i

σ2W + hPPP +
∑n

j=1,j 	=i h
S
j P

S
j

)
− CPh

S
i P

S
i ,

subject to PS
i ≥ 0, ∀i ∈ {1, . . . , n}.

3. Solution of the game

3.1. Game between the provider and the primary user

First, let us consider the case when there are only the provider and the pri-
mary user: the provider maximizes its own profit by assigning the optimal price for
frequency band:

max
CW

πprov(CW ) = max
CW

CWW,

subject to CW > 0.
(4)

and the primary user maximizes its own payoff by purchasing the optimal amount
of this band:

max
W

πP (W ) = max
W

αW log

(
1 +GP h

PPP

σ2W

)
− CWW,

subject to W ≥ 0.

(5)

The following theorem allows to obtain the Nash equilibrium of the frequency spec-
trum game (4,5).
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Theorem 1. Under the assumptions made in the previous section, the spectrum
band game between the provider and the primary user (4,5) admits a unique Nash
equilibrium (NE). The corresponding to that NE optimal spectrum band price as-
signed by the provider C∗

W can be found as unique root of following equation:

(L(−e−
CW
α −1) + 1)2 =

CW
α

. (6)

and optimal spectrum band bought by the primary user W ∗ can be calculated as
follows:

W ∗ = −
GPhPPPL

(
−e−

C∗
W
α −1

)
σ2
(
1 + L

(
−e−

C∗
W
α −1

)) . (7)

Proof. In order to solve for the game (4,5) we use a backward induction technique.
We start with the optimization problem of the primary user and derive the best
response for this user as a function of the price CW set by the service provider.

The objective function in (5) is continuously differentiable concave and inequal-
ity constraint is continuously differentiable convex function. Therefore, Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality, i.e. the
frequency band W is optimal if and only if the following conditions are satisfied:

CW + α
GPhPPP

σ2W +GPhPPP
− α log

(
1 +

GPhPPP

σ2W

){
≥ 0,W = 0,

= 0,W ≥ 0.
(8)

For any finite CW > 0 the optimal frequency band purchased by the primary user
from the provider can be found as the following reaction function:

W (CW ) = −
GPhPPPL

(
−e−

CW
α −1

)
σ2
(
1 + L

(
−e−

CW
α −1

)) , if CW < +∞, (9)

where L(x) is Lambert function which is implicit function which is defined by the
following equation:

x = L(x)eL(x). (10)

In the case of finite CW , the argument of Lambert function is on the following
interval (−e−1, 0), i.e. it is at least greater than [−e−1. In order to satisfy the
constraint W ≥ 0, the Lambert function values have to be located on the interval

[−1, 0], i.e. L
(
−e−

CW
α −1

)
is at least greater or equal to zero. Thus, we can restrict

to single-valued Lambert function with real values.
Thus, the provider profit as a function of spectrum band price CW can be found

as follows:

πprov(CW ) = CWW (CW ) = −
GPhPPPCWL

(
−e−

CW
α −1

)
N
(
1 + L

(
−e−

CW
α −1

)) . (11)

This function is continuous function of CW . When 0 < CW < ∞, this func-

tion is increasing when (L(−e−
CW
α

−1) + 1)2 ≥ CW

α , and it is decreasing when
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(L(−e−
CW
α −1) + 1)2 ≤ CW

α , i.e. this function reaches its maximal value when the
following condition is satisfied:

(L(−e−
CW
α −1) + 1)2 =

CW
α

. (12)

Since L(x) is strictly increasing for x > −e−1, the left part of this equation is
continuous increasing concave function on the interval 0 < CW <∞. In addition, it
is equal to zero at the point CW = 0 and converges to 1 when CW →∞. Thus, the
equation eq1 can not have more than one root. We can easily check that the value

of the function (L(−e−
CW
α −1) + 1)2|CW=0.4α > CW

α |CW=0.4α. On the other side,

(L(−e−
CW
α −1) + 1)2|CW=α < CW

α |CW=α. Thus, there is a unique root C∗
W of (12)

for CW > 0 and it lies in the interval 0.4α < C∗
W < α. This root C∗

W corresponds
the maximal value of the provider profit. Let us notice that optimal price which
assigned by the provider does not depend on average received power to noise power
spectral density ratio. We can easily find C∗

W numerically.
The optimal spectrum band bought by the primary user W ∗ can be calculated

according to the reaction function (9) W ∗ = W (C∗
W ). Obtained solution (W ∗, C∗

W )
is NE point of the game (4,5) found by backward induction. This point is unique
since the reaction function (9) is single-valued and the root of the equation (12) is
unique.

3.2. Game between primary user and secondary users

Let us assume that after finding optimal price CW of frequency band, the
provider does not care about how the primary user uses purchased frequency band,
i.e. CW found from previous section is fixed. The primary user allows secondary
users to use purchased frequency band and assigns the price in proportion to the
power of the transmitted signals of secondary users. Thus, the following two-stage
game is considered. The primary user buys a license for using frequency bandwidth
from the provider to transmit signals and rent frequency band to the secondary user
so that to maximize its own payoff:

max
W,CP

πP (W,CP ) =

= max
W,CP

αW log

(
1 +GP hPPP

σ2W +
∑n

i=1 h
S
i P

S
i

)
− CWW + CP

n∑
i=1

hSi P
S
i ,

subject to

{
W ≥ 0,

CP > 0.

(13)

Each secondary user tries to maximize its own payoff by using the primary user
frequency band:

max
PS

πSi (P
S) = max

PS
βW log

(
1 +GS hSi P

S
i

σ2W + hPPP +
∑n

j=1,j 	=i h
S
j P

S
j

)
− CPh

S
i P

S
i ,

subject to PS
i ≥ 0, ∀i ∈ {1, . . . , n}.

(14)

First, let us consider the optimization problem of finding optimal transmitting
powers for secondary users (14). The objective functions in (14) are continuously
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differentiable concave and inequality constraints are continuously differentiable con-
vex functions. Therefore, Karush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient for optimality, i.e. the transmitting powers PS

i are optimal if and only if
the following conditions are satisfied for any i ∈ {1, . . . , n}:

βWGShSi
σ2W + hPPP +

∑n
j=1,j 	=i h

S
j P

S
j +GShSi P

S
i

− CPh
S
i

{
≤ 0, if PS

i = 0,

= 0, if PS
i ≥ 0,

(15)

The optimal strategy of the i-th secondary user can be found from (15) as follows:

PS∗

i =

⎧⎨⎩ 1
hS
i

(
βW
CP

− σ2W+hPPP

GS −
∑n

j=1,j �=i h
S
j P

S
j

GS

)
, if CP ∈ Ii1,

0, if CP ∈ Ii0,
(16)

where

Ii0 =

[
βWGS

σ2W + hPPP +
∑n

j=1,j 	=i h
S
j P

S
j

,+∞
)
,

Ii1 =

(
0,

βWGS

σ2W + hPPP +
∑n

j=1,j 	=i h
S
j P

S
j

)
.

(17)

In order for the i-th secondary user to transmit a signal, i.e. PS
i > 0 the following

conditions from (16) have to hold:

βW

CP
− σ2W + hPPP

GS
> 0 (18)

and
βW

CP
− σ2W + hPPP

GS
−
∑n

j=1,j 	=i h
S
j P

S
j

GS
> 0. (19)

An intuitive interpretation for these conditions is the following: if the price CP is
set too high for a secondary user, this secondary user prefers not to transmit at
all, depending on its channel gain, utility parameter, the spreading gain, etc. In
equation (16), the i-th secondary user transmitting power depends not only on the
user-specific parameters, like hSi , but also on the network parameter GS , and total
power level received by the primary user base station

∑n
i=1 h

S
i P

S
i .

For any equilibrium solution, the set of fixed point equations can be written in
matrix form. The rows and columns corresponding to users with zero equilibrium
power are deleted, and the equation below involves only the users with positive
powers. It is obvious that if condition (18) does not hold none of the secondary
users does not transmit any signals. Assuming that (18) is satisfied and all n users
have positive power levels at equilibrium, we have the following equation for finding
oprimal secondary users powers PS∗ = (PS∗

1 , PS∗
2 , . . . , PS∗

n ):⎛⎜⎜⎜⎜⎜⎝
1

hS
2

hS
1G

S

hS
3

hS
1G

S . . .
hS
n

hS
1G

S

hS
1

hS
2G

S 1
hS
3

hS
2G

S . . .
hS
n

hS
2G

S

...
...

...
. . .

...
hS
1

hS
nG

S

hS
2

hS
nG

S

hS
3

hS
nG

S . . . 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
PS∗
1

PS∗
2
...

PS∗
n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

1
hS
1

(
βW
CP

− σ2W+hPPP

GS

)
1
hS
2

(
βW
CP

− σ2W+hPPP

GS

)
...

1
hS
n

(
βW
CP

− σ2W+hPPP

GS

)

⎞⎟⎟⎟⎟⎟⎟⎠ . (20)
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We denote the vector in the right side as c = (c1, c2, . . . , cn)
T =

(
a1

hS
1
, a2

hS
2
, . . . , an

hS
n

)T
.

Let us state the following proposition by adopting the results in (Alpcan et al., 2001):

Theorem 2. In the defined power game with n users, let the indexing be done such
that i > j if ai < aj, with the ordering picked arbitrarily if ai = aj. Let m

∗ ≤ n be
the largest integer m for which the following condition is satisfied:

am >
1

GS +m− 1

m∑
i=1

ai. (21)

Then the power game admits a unique Nash equilibrium, which has the property that
users m∗ + 1, . . . , n have zero power levels, i.e.

PS
i = 0, if i ∈ {m∗ + 1, . . . , n}. (22)

The equilibrium power levels of the firstm∗ secondary users can be calculated uniquely
from (20) as follows:

PS∗
i =

GS

hSi (G
S − 1)

(
ai −

∑m∗

j=1 aj

GS +m∗ − 1

)
. (23)

One can easily notice that in the game between the primary user and n secondary
users (13,14) all variables ai are equal to each other, i.e. a1 = a2 = . . . = an =
βW
CP

− σ2W+hPPP

GS . Therefore inequality (21) can be rewritten as follows:

βW

CP
− σ2W + hPPP

GS
>

1

GS +m− 1

m∑
i=1

(
βW

CP
− σ2W + hPPP

GS

)
. (24)

Since we assumed that the spreading gain of the CDMA system for secondary users
GS > 1, the inequality (24) is satisfied for any 1 ≤ m ≤ n, and the largest such m
is equal to n. Thus, we can formulate the following corollary which defines optimal
strategies of secondary users:

Corollary 3.1. Under the assumption that GS > 1, in the game between the pri-
mary user and n secondary users (13,14) secondary users have following optimal
strategies depending on the price assigned by the primary user:

If 0 ≤ CP <
βWGS

σ2W + hPPP
, then PSopt

i (CP ) =
GS

(
βW
CP

− σ2W+hPPP

GS

)
hSi (G

S + n− 1)
,

If CP ≥ βWGS

σ2W + hPPP
, then PSopt

i (CP ) = 0,

(25)

for any i ∈ {1, . . . , n}.
The i-th secondary user payoff can be calculated as follows:

πS∗i (CP ) = βW log

(
βW (GS + n− 1)

CP (σ2W + hPPP ) + (n− 1)βW

)
−

− GSβW − CP (σ
2W + hPPP )

GS + n− 1
, if 0 ≤ CP <

βWGS

σ2W + hPPP
,

πS∗i (CP ) = 0, if CP ≥ βWGS

σ2W + hPPP
.

(26)
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If secondary users apply their optimal strategies the payoff of the primary user can
be rewritten in the following form:

πP∗(CP ,W ) = αW log

(
1 +

(GS + n− 1)GPhPPP

σ2W (GS − 1)− nhPPP + 1
CP

nGSβW

)
−

− CP
n(σ2W + hPPP )

GS + n− 1
+W

(
nGSβ

GS + n− 1
− CW

)
, if 0 ≤ CP <

βWGS

σ2W + hPPP
,

πP∗(CP ,W ) = αW log

(
1 +GP h

PPP

σ2W

)
− CWW, if CP ≥

βWGS

σ2W + hPPP
.

(27)

Let us introduce the following notations:

a := (GS + n− 1)GPhPPP , b := σ2W (GS − 1)− nhPPP , c := nGSβW,

d :=
n(σ2W + hPPP )

αW (GS + n− 1)
, C̄P =

βWGS

σ2W + hPPP
,

P̄S
i (CP ) =

GS
(
βW
CP

− σ2W+hPPP

GS

)
hSi (G

S + n− 1)
, ∀i ∈ {1, . . . , n},

π̄P (CP ) = αW log

(
1 +

(GS + n− 1)GPhPPP

σ2W (GS − 1)− nhPPP + 1
CP

nGSβW

)
−

− CP
n(σ2W + hPPP )

GS + n− 1
+W

(
nGSβ

GS + n− 1
− CW

)
, if 0 ≤ CP <

βWGS

σ2W + hPPP
.

(28)

The following theorem defines the conditions when the game between the primary
user and secondary users (13,14) has inner NE point, i.e. CP > 0 and PS

i > 0, ∀i ∈
{1, . . . , n}.

Theorem 3. If parameters defined in (28) satisfy one of the following sets of con-
ditions: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b < 0,

4b2 + 4ab+ acd > 0,

0 <

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) < C̄P ,

π̄P
(√

acd(4b2+4ab+acd)−(a+2b)

2bd(a+b)

)
< π̄P

(
C̄P
)
,

(29)

{
b = 0,

0 < 1
d −

c
a < C̄P ,

(30)

or {
b > 0,

0 <

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) < C̄P ,
(31)
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then the game between the primary user and n secondary users (13,14) admits a
unique inner NE point (C∗

P , P
S∗) such that

If conditions (30) hold, then

{
C∗
P = 1

d −
c
a ,

PS∗
i = P̄S

i (C
∗
P ), ∀i ∈ {1, . . . , n}

If conditions (29) or (31) hold, then

{
C∗
P =

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ,

PS∗
i = P̄S

i (C
∗
P ), ∀i ∈ {1, . . . , n}

(32)

Proof. The proof of the theorem is deferred to the Appendix.

Corollary 3.2. If the following set of conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b < 0,

4b2 + 4ab+ acd > 0,

0 <

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) < C̄P ,

π̄P
(√

acd(4b2+4ab+acd)−(a+2b)

2bd(a+b)

)
= π̄P

(
C̄P
)
,

(33)

is fulfilled, then

C∗
P = 0 or

√
acd(4b2 + 4ab+ acd)− (a+ 2b)

2bd(a+ b)
,

and each secondary user transmission power is PS∗
i = PSopt

i (C∗
P ).

Corollary 3.3. If none of the conditions (29), (30), (31) or (33) is fulfilled, then
the optimal price C∗

P assigned by the primary user can be calculated as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
C∗
P = 0, if nGSβ

GS+n−1
> α log

(
1 +GP hPPP

σ2W

)
,

C∗
P = C∗∗

P , if nGSβ
GS+n−1 < α log

(
1 +GP hPPP

σ2W

)
,

C∗
P = 0 or C∗∗

P , if nGSβ
GS+n−1 = α log

(
1 +GP hPPP

σ2W

)
,

where C∗∗
P is any CP from the interval [C̄P ,+∞). In this case, each secondary user

transmitting power is PS∗
i = PSopt

i (C∗
P ).

Let us conclude that the Theorem 3 and its corollaries allow to calculate the optimal
price assigned by the primary user. Thus, after buying optimal spectrum band from
the provider, the primary user allows secondary users to transmit their signals in
the same spectrum band and assigns the price C∗

P . The solution CP = 0 means
that provider aims to assign the minimum possible price whereas secondary users
transmission power values are maximum possible, i.e. PS∗

i → +∞. When C∗
P ≥ C̄P ,

the primary user in fact forbids secondary users to transmit signals in the same
spectrum band.

4. Numerical examples

The provider payoff πprov(CW ) for α = 1 and different values of average received
power to noise power spectral density ratio are shown in Fig. 1. The optimal value
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of CW is equal to 0.468. One can notice that the payoff of the provider does not
depend on network parameters but depends only on the primary user willingness
to pay factor. The function πP for different values of average received power to
noise power spectral density ratio when CW is equal to optimal is shown in Fig. 2.
Thus, the primary user grows when its SINR increases. Figure 3 depicts how the

Figure1: Provider profit for different values of average received power to noise power
spectral density ratio.

primary user payoff depends on the price assigned by him as a fee for secondary users
to transmit signals in the same spectrum band. For all examples considered, the
optimal strategy of the primary user is to assign very high price so that secondary
users prefer not to transmit their signals in the primary user frequency band.

5. Conclusion

In this paper, we have introduced the hierarchical game between provider, a
primary and several secondary users. The provider assigns the price for bandwidth
resource to maximize its own profit, whereas the primary user buys a license for
using frequency bandwidth from a provider to transmit signals. The primary user
can also earn some extra money giving unused frequencies capacity for rent to sec-
ondary users charging them by assigned tariff for interference and each secondary
user can either stay inactive or transmit a signal using the frequency band rented
from the primary user. We have considered this hierarchical game as a sequence of
two Stackelberg games: one between the provider and the primary user, and one
between the primary user and secondary users. For each such game optimal strate-
gies of the players have been found. Numerical modelling has demonstrated how the
equilibrium strategies and corresponding payoffs depend of network parameters.

In the future, we are planning to consider also the case when the provider takes
into account activity of secondary users when it sells the spectrum band to the
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Figure2: Primary user payoff for different values of average received power to noise
power spectral density ratio when CW is optimal.

Figure3: Primary user payoff for different values of the spectrum band purchased.
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primary user. There is possibility when it is beneficial for the primary user to inform
the provider that secondary users transmit their signals in the same spectrum band.

Appendix

In this section we give a proof of Theorem 3:

Proof. Based on the assumptions listed in Section 2. we can easily see that

a > 0, c > 0, d > 0, a+ b > 0,

If b < 0, then − c

b
<

c(a+ 2b)

2b(a+ b)
< − c

a+ b
,

If b > 0, then − c

a+ b
<

c(a+ 2b)

2b(a+ b)
< −c

b
.

(34)

Let us notice that functon π̄P (CP ) is continuous function of CP and equal to
πP (CP ,W ) when CP ∈ (0, C̄P ). Further in this proof we consider function π̄P (CP )
and focus on the behavior of this function in the interval CP ∈ (0, C̄P ).

When CP → − c
b function π̄

P (CP )→ +∞ and when CP → − c
a+b then π̄

P (CP )→
−∞. The first and second order derivatives of function π̄P (CP ) with respect to CP
can be found as follows:

∂π̄P (CP )

∂CP
=

ac

(c+ bCP )(c+ aCP + bCP )
− d,

∂2π̄P (CP )

∂2CP
= −ac(ac+ 2bc+ 2b2CP + 2abCP )

(c+ bCP )2(c+ (a+ b)CP )2
.

(35)

First we consider the case when b < 0. Let us notice that in this case − c
a+b < 0

and C̄P < − c
b . If 4b

2 + 4ab + acd ≤ 0 then function π̄P (CP ) is increasing in the
interval CP ∈ (− c

a+b ,−
c
b ) and the optimal CP for the primary user is equal to C̄P .

Otherwise, since function π̄P (CP ) is concave when CP ≤ c(a+2b)
2b(a+b) and convex when

CP ≥ c(a+2b)
2b(a+b) , and the point CP = c(a+2b)

2b(a+b) belongs to the interval (− c
b ,−

c
a+b ), there

is one local maximum at the point CP =

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) and one local min-

imum at the point CP =
−
√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) . We can conclude that function

π̄P (CP ) is strictly increasing in the interval CP ∈ (− c
a+b ,

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ],

strictly decreasing when CP ∈ [

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ,
−
√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ]

and strictly increasing in the interval CP ∈ [
−
√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ,− c
b ). Thus,

if local maximum CP =

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) belongs to the interval (0, C̄P )

and the value of function π̄P (CP ) at this point is greater than in the case when
CP = C̄P , then the optimal price assigned by the primary user C∗

P is equal to√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) .

If b = 0, then ∂2π̄P (CP )
∂2CP

< 0 and therefore the function π̄P (CP ) is strictly
concave in the interval CP ∈ (− c

a+b ,+∞). One can notice that − c
a+b < 0 and

function π̄P (CP ) is strictly increasing in the interval CP ∈ (− c
a+b ,

1
d −

c
a ] and



Stackelberg Tariff Games between Provider, Primary and Secondary Users 411

strictly decreasing in the interval CP ∈ [ 1d −
c
a ,+∞). Thus, if 1

d −
c
a belongs to the

interval (0, C̄P ), then the optimal price assigned by the primary user C∗
P = 1

d −
c
a .

Finally, in the case b > 0 we can see that − c
b < − c

a+b < 0. Function π̄P (CP ) is

convex when CP ≤ c(a+2b)
2b(a+b) and concave when CP ≥ c(a+2b)

2b(a+b) , and point CP = c(a+2b)
2b(a+b)

belongs to the interval CP ∈ (− c
b ,−

c
a+b ). One can notice that 4b2 + 4ab + acd >

0 when b > 0, and therefore function π̄P (CP ) has one local minimum CP =
−
√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) in the interval CP ∈ (−∞,− c
b and one local maximum

CP =

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) in the interval CP ∈ (− c
a+b ,+∞). In particular it

means that function π̄P (CP ) is strictly increasing when

CP ∈ (− c
a+b ),

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ] and strictly decreasing when

CP ∈ (

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) ],+∞. Thus, if local maximum

CP =

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) belongs to the interval (0, C̄P ), then the optimal

price assigned by the primary user C∗
P is equal to

√
acd(4b2+4ab+acd)−(a+2b)

2bd(a+b) .

One can easily notice that in each case described above optimal price C∗
P as-

signed by the primary user is unique, i.e. there is no such ĈP ∈ (0, C̄P ) for which
π̄P (ĈP ) ≥ π̄P (C∗

P ) if one of the conditions (29), (30) or (31) is satisfied. Conversely,
if none of the conditions (29), (30) or (31) is fulfilled, then C∗

P is not optimal or not
unique. In order to maximize own payoff, the i-th secondary user applies its best
response strategy P̄S

i (CP ) and therefore PS∗
i = P̄S

i (C
∗
P ).
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