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1. Introduction

The class of big boss games was introduced to model economic, social and po-
litical situations in which one of the participants has a greater possibilities (power)
than others (see, for example (Hubert and Ikonnikova, 2011)), (Tijs, et al., 2005)
(O’Neill, 1982), (Tijs, 1990), (Aumann and Maschler, 1985), (Branzei, et al., 2006)).
In (Muto, et al., 1988) the big boss games as well as strong big boss games were
determined by means of three conditions: monotonicity, boss property and union
property. Later appeared the work (Tijs, 1990) in which monotonicity condition
was replaced by nonnegativity of characteristic function and marginal vector. The
general (Branzei and Tijs, 2001) and total (Muto, et al., 1988) big boss games were
also introduced. All types of big boss games are extensively studied. Moreover, the
results received for clan games (Potters et al., 1989) are applicable to big boss games
because the cone of each type of big boss games is a subset of cone of corresponding
clan games. One of cooperative game theory problems is the characterization of
extreme directions of polyhedral cones of various classes of games and description
the behavior of solution concepts defined on these cones (Tijs and Branzei, 2005).
The extreme directions of cone of non-monotonic clan games were described in
(Potters et al., 1989). If the clan consists of one player these and only these di-
rections define the cone of non-monotonic big boss games. To our knowledge the
extreme elements of set of monotonic big boss games are not yet characterized.

Since big boss games can be converted to (0-1)-normal form without changing
their essential structure and the most solution concepts satisfy on this class games
the relative invariance with respect to strategic equivalence, this paper focus on
(0-1)-normalized big boss games. At normalization the cone of monotonic big boss
games will be transformed to (2n−1 − 2)-dimensional polytope Pn which can be
described by its extreme points. From Theorem 4.1 in (Potters et al., 1989) it follows
that only simple games are the extreme points of polytope of nonmonotonic (0-1)-
normal big boss games. But for Pn this is hot true.
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The paper has the following contents. Next section recall the facts of cooperative
game theory which are useful later. The system of non-redundant constraints for
Pn is described in Section 3. Section 4 is denoted to extreme points of Pn and their
Shapley and consensus values. The characterization of extreme elements of set of
monotonic (0-1)-normal big boss games with symmetric weak players is given in
last section.

2. Preliminaries

A cooperative TU-game is a pair (N, ν) where N = {1, 2, . . . , n} is a player
set and ν ∈ GN = {g : 2N → R | g(*) = 0} is a set function. Often ν and
(N, ν) will be identified. A subset of N is called a coalition and ν(S) is the worth
of coalition S. A vector x ∈ Rn is called an allocation. For any S ∈ 2N and x ∈ Rn

let x(S) =
∑

i∈S xi and x(∅) = 0. Two players i, j ∈ N are symmetric in (N, ν) if
ν(S ∪ i) = ν(S ∪ j) for every S ⊆ N \ {i, j}. We say that players of coalition S with
|S| ≥ 2 are symmetric in (N, ν) if each pair of players of the coalition is symmetric
in (N, ν). Denote by M(ν) ∈ Rn the marginal vector (marginal) of game ν ∈ GN ,
i.e. Mi(ν) = ν(N)− ν(N \ i), i ∈ N . A TU-game is called:
• monotonic if ν(T ) ≤ ν(H) for all T ⊂ H ⊆ N ,
• simple if ν(S) ∈ {0, 1} for all S ⊆ N and ν(N) = 1,
• (0-1)-normal if ν(N) = 1 and ν(i) = 0 for all i ∈ N ,
• essential if

∑
i∈N ν(i) < ν(N),

• clan game with nonempty coalition CLAN as clan (Potters et al., 1989) if:
ν ≥ 0 and M(ν) ≥ 0,
ν(S) = 0 if CLAN �⊂ S,
ν(N)− ν(S) ≥

∑
i∈N\SMi(ν) if CLAN ⊂ S.

Later we need formulas for the Shapey value Sh (Shapley, 1953), the equal sur-
plus division solution E and the consensus value K (Ju, et al., 2006). These values
are given by

Shi(ν) =
∑
S:i/∈S

ρS(ν(S ∪ i)− ν(S)), ρS =
|S|!(n− |S| − 1)!

n!
,

Ei(ν) = ν(i) +
ν(N)−

∑
j∈N ν(j)

n
, i ∈ N, K(ν) =

E(ν) + Sh(ν)

2
.

For simple game the Shapley value formula boils down to

Shi(ν) =
∑
S⊆Ri

ρS , i ∈ N,

where Ri = {S ⊆ N \ i : ν(S) = 0, ν(S ∪ i) = 1}. For (0-1)-normal game the
consensus value is determined by

Ki(ν) =
1

2n
+
Shi(ν)

2
, i ∈ N,

because Ei(ν) =
1
n , i ∈ N .

For any set G ⊆ GN a value on G is a function φ : G → Rn which assigns to
every ν ∈ G a vector φ(ν), where φi(ν) represents the payoff to player i in ν. We
shall use two axioms to be satisfied by φ(ν).
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Efficiency:
∑

i∈N φi(ν) = ν(N) for all ν ∈ G.
Symmetry: for all ν ∈ G and every symmetric players i, j ∈ N , φi(ν) = φj(ν).

Known that the Shapley value and the consensus value satisfy this axioms. The
core (Gillies, 1953) of game ν ∈ GN is a bounded polyhedral set (polytope) C(ν) =
{x ∈ Rn : x(N) = ν(N), x(S) ≥ ν(S), S ⊂ N}. The sets of integer and non-
integer extreme points of polytope P will be denoted by extI(P) and extNI(P)
respectively. The cardinality of set S is written as |S|. The rank of matrix A is
denoted as rank(A).

3. Minimal test for big boss game

A game ν ∈ GN (n ≥ 3) is called a big boss game with player 1 as big boss
(Muto, et al., 1988) if:
(a) ν is monotonic,
(b) ν(T ) = 0 for all T ⊂ N with 1 /∈ T (boss property),
(c) ν(N)− ν(T ) ≥

∑
i∈N\T Mi(ν) for all T ⊆ N with 1 ∈ T (union property).

Inessential games are not interesting. Any essential game has the unique (0-1)-
normal form. Denote by Pn the polytope of all monotonic (0-1)-normal big boss
games with player 1 as big boss. This set is determined by

ν(N) = 1, ν(T ) = 0 whenever 1 /∈ T ore T = {1}, (1)

ν(H) ≥ ν(T ), T ⊂ H ⊆ N, (2)

−ν(T ) +
∑

i∈N\T
ν(N \ i) ≥ n− |T | − 1, T  1, T ⊆ N. (3)

The following lemma shows that (1)-(3) is equivalent to a restricted system.

Lemma 1. Let ν ∈ GN . Then ν ∈ Pn iff it satisfies (1) and conditions

ν(H) ≥ ν(T ), T  1, T ⊂ H ⊆ N, 1 ≤ |T | = |H | − 1, |H | �= n− 1, (4)

−ν(T ) +
∑

i∈N\T
ν(N \ i) ≥ n− |T | − 1, T  1, |T | ≤ n− 2, T ⊂ N. (5)

Proof. If ν ∈ Pn then it satisfies (1),(4),(5) because the system (2)-(3) contains
all inequalities in (4)-(5). Now take ν̄ satisfying (1),(4),(5). The constraints in (3)
corresponding to T = N and T = N \ i, i ∈ N \ 1, are trivial. So, the systems (3)
and (5) are equivalent. Obviously ν̄ satisfies (2) for coalitions T = ∅ and H = {i},
i ∈ N . Hence, it suffices to show that ν̄ satisfies (2) for following pairs of T and H .

1. T  1, T ⊂ H ⊂ N , |H | = n − 1, |T | = n − 2. The inequalities in (2)
corresponding to such coalitions are the form

ν(N \ k) ≥ ν(N \ {k, e}, k ∈ N \ 1, e ∈ N \ {1, k}. (6)

From (5) follows −ν̄(N \ {k, e}) + ν̄(N \ k) + ν̄(N \ e) ≥ 1. Due to (1) and (4) it
holds that 1 ≥ ν̄(N \ e). The summing of two last inequalities gives that ν̄ satisfies
(6).

2. T  1, T ⊂ H ⊆ N , |H | > |T |+ 1. The corresponding inequalities in (2) are
satisfied for ν̄ since the binary relation ” ≥ ” is transitive.
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3. T � 1, T ⊂ H ⊂ N . From case 1 we know that ν̄ satisfies the inequalities in
(2) for such T and H that T  1, T ⊂ H ⊆ N , |T | = |H |− 1. Together with (1) this
implies that ν̄(S) ≥ 0 for all S ⊆ N . Because ν̄(S) = 0 for all S � {1}, we obtain
that ν̄ satisfies (2). ��

A constraint in a linear system is called redundant if the removal of this con-
straint from the system does not affect the feasible region. Next theorem provides
the system of non-redundant conditions for Pn.

Theorem 1. The system (1),(4),(5) is non-redundant.

Proof. Let ν̂ ∈ GN be given by

ν̂(S) =

⎧⎨⎩
|S|−1
n , S  1, |S| ≤ n− 2,

|S|
n , S  1, |S| ≥ n− 1,
0, otherwise,

for all S ⊆ N . Obviously ν̂ ∈ Pn and ν̂ is the interior point of system (4),(5) feasible
region. None of constraints in the system (1) is implied by the others because they
are linear independent. The table 1 contains such games ν ∈ GN that satisfy (1),
(4), (5) except the unique constraint (corresponding to coalitions given in the first
column). Vectors ν1-ν3 do not satisfy one of inequalities in (4) and for ν4-ν5 one of
inequalities in (5) is violated. It is assumed that T ⊂ H ⊆ N , |T | = |H | − 1 and
S ⊆ N . ��

Corollary 3.1. The polytope Pn is (2n−1 − 2)-dimensional.

Proof. The number of constraints in (1) is 2n−1 + 2. Using the fact that Pn ⊂ R2n

and non-redundancy the system (1),(4),(5) we obtain dim(Pn) = 2n−1 − 2. ��

Corollary 3.2. P3 and P4 are the integral polytopes.

Proof. Every ν ∈ Pn is (0-1)-normal monotonic clan game with CLAN = 1. But
in cases P 3 and P4 the monotonicity conditions (4) are transformed in bounds on
variables: ν(1, i) ≥ 0, ν(N \ i) ≤ 1, i ∈ N \ 1. Theorem 4.1 in (Potters et al., 1989)
implies that P3 and P4 have only integer extreme points. ��

We have calculated all extreme points of P5 and partitioned the set extNI(P
5)

into seven equivalence classes. The representatives of these classes are given in
Table 2. Each class contains such games that differ only the numbers of players
from N \ 1. Note that (0-1)-normal form of 5-person game given in counterexample
4 in (Potters et al., 1989) coincides with Ψ−1(ν̄1).

4. Extreme points of polytope Pn

Since Pn is contained in the unit hypercube, the simple games belonging to Pn

are its integer extreme points. To make the following analysis simple, consider the
polytope P̄n determined by

ν(T ) ≥ 0 if T ∈ Ω and |T | = 2, ν(T ) ≤ 1 if T ∈ Ω and |T | = n− 1, (7)

ν(H) ≥ ν(T ) if T,H ∈ Ω, T ⊂ H, 2 ≤ |T | = |H | − 1, |H | ≤ n− 2, (8)
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Table1: Non big boss games

Fixed coalitions Games

T  1, |H | ≤ n− 2, ν1(S) =

{
1, (T ⊆ S) ∧ (S �= H) ∨ (|S| = n− 1) ∧ (S �= N \ 1),
0, otherwise.

T  1, H = N , ν2(S) =

⎧⎨⎩
1, S �= T, |S| = n− 1, S �= N \ 1
2, S = T,
0, otherwise.

T = 1, |H | = 2, ν3(S) =

⎧⎨⎩ 1, S = n− 1, S �= N \ 1
−1, S = H,
0, otherwise.

T  1, 2 ≤ |T | ≤ n− 2, ν4(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|S|
n− 1

, S = T,

0, S � 1,
|S| − 1

n− 1
, otherwise.

T = {1}, ν5(S) =

⎧⎪⎨⎪⎩
1, |S| = n,
n− 3

n− 2
, S  1, |S| = n− 1,

0, otherwise.

Table2: Types of non integer extreme points of P̄ 5

{1,2} {1,3} {1,4} {1,5} {1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} N\5 N\4 N\3 N\2

ν̄1 1
2

1
2 0 0 1

2
1
2

1
2

1
2

1
2 0 1 1 1

2
1
2

ν̄2 1
3

1
3

1
3 0 1

3
1
3

1
3

1
3

1
3

1
3 1 2

3
2
3

2
3

ν̄3 1
3

1
3

1
3 0 2

3
1
3

1
3

1
3

1
3

1
3 1 2

3
2
3

2
3

ν̄4 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

3
4

3
4

3
4

4
4

ν̄5 1
4

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
4

1
4

3
4

3
4

3
4

4
4

ν̄6 1
4

1
4

1
4

1
4

1
2

1
2

1
4

1
4

1
4

1
4

3
4

3
4

3
4

4
4

ν̄7 1
4

1
4

1
4

1
4

1
2

1
2

1
4

1
2

1
4

1
4

3
4

3
4

3
4

3
4
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−ν(T ) +
∑

i∈N\T
ν(N \ i) ≥ n− |T | − 1), T ∈ Ω, |T | ≤ n− 3, (9)

∑
i∈N\1

ν(N \ i) ≥ n− 2, (10)

where Ω = {S ∈ 2N : 2 ≤ |S| ≤ n − 1, S  1}. The system (7)-(10) is obtained
from (1),(4),(5) by elimination the variables which have constant value over Pn.
Moreover, the monotonicity condition (4) are decomposed into three parts (in order
to select upper and lower bounds on variables). The inequality corresponding to
coalition T = {1} was selected from system (5). Thus, the polytope P̄n is contained
in the (2n−1− 2)-dimensional Euclidean space whose coordinates refer to the coali-
tions S ∈ Ω. Theorem 1 and Corollary 1 imply that dim(P̄n) = dim(Pn), i.e. the
polytope P̄n is full-dimensional. So, the system (7)-(10) is the unique non-redundant
system which specifies P̄n. The polytopes P̄n and Pn are combinatorially equiva-
lent since there is one-to-one map Ψ : Pn → P̄n saving the adjacency of faces. For
any ν ∈ Pn the vector Ψ(ν) = ( ¯ν(S))S∈Ω is the restriction of vector (ν(S))S∈2N

to those coordinates which correspond to S ∈ Ω. Conversely, having ν̄ ∈ P̄n we
obtain the game Ψ−1(ν̄) = ν ∈ Pn by adding values ν(N) and ν(S), S ∈ 2N \ Ω,
determined by (1). The following theorem describes some elements of extNI(P

n).

Theorem 2. Let n ≥ 5, (i2, ..., in) be an ordering on N \ 1, L = (1, i2, ..., il),
2 ≤ l ≤ n− 2 and for all S ∈ Ω

ν̄0(S) =

⎧⎪⎨⎪⎩
n− 2

n− 1
, |S| = n− 1,

1

n− 1
, otherwise,

ν̄L(S) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, |S| = n− 1, L �⊂ S,
n− |L| − 1

n− |L| , |S| = n− 1, L ⊆ S,

0, |S| < n− 1, S ⊆ L,
1

n− |L| , otherwise.

Then ν0 = Ψ−1(ν̄0) and νL = Ψ−1(ν̄L) are the extreme points of Pn.

Proof. Let us prove that ν̄0 ∈ ext(P̄n). The system (7)-(10) contains d = 2n−1 − 2
variables. The subsystem (8) contains only (d−n+1) of them and its matrix is the
incidence matrix of connected graph in which the set of vertices equals the set of
such coalitions S ∈ Ω that |S| ≤ n− 2. The rank of this matrix is (d− n). Choose
(d− n) linear independent constraints in (8) and denote by Θ the set of associated
pairs of coalitions T and H . The system

ν(H) = ν(T ), (T,H) ∈ Θ, (11)

−ν(T ) +
∑

i∈N\T
ν(N \ i) = n− 3, T ∈ Ω, |T | = 2, (12)

∑
i∈N\1

ν(N \ i) = n− 2, (13)

contains d variable as much as equations. The elimination (d − n) variables from
(11) and substitution them in (12)-(13) gives the system Aν = b where A is square
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matrix of dimension n, b = (n−3, ..., n−3, n−2) ∈ Rn. By transposition of columns
and rows the matrix A can be represented in the form(

−eTn−1 D
0 en−1

)
where en−1 = (1, ..., 1) is the (n − 1)-dimensional row vector and D is the square
matrix of dimension (n− 1) with dij = 0 if i = j, dij = 1 if i �= j. Vector ν̄0 is the
solution of system (11)-(13) and it is unique because rank(A) = rank(D) + 1 = n.
It is easy to see that ν̄0 ∈ P̄n. Hence,

ν̄0 ∈ ext(P̄n) =⇒ ν0 ∈ ext(Pn).

Analogously one proves that ν̄L(S) ∈ ext(P̄n). ��

Propositions 1, 2 (below) provide the explicit Shapley and consensus values
representation for some integer and noninteger extreme points of Pn.

Proposition 1. Let ν̄k is determined for all k ∈ {2, . . . , n− 1} and S ∈ Ω by

ν̄k(S) =

{
1, |S| ≥ k,
0, otherwise.

Then νk = Ψ−1(ν̄k) ∈ extI(P
n) and

K1(ν
k) =

n− k + 2

2n
, Sh1(ν

k) =
n− k + 1

n
,

Ki(ν
k) =

n+ k − 2

2n(n− 1)
, Shi(ν

k) =
k − 1

n(n− 1)
, i ∈ N \ 1.

Proof. Fix k ∈ {2, . . . , n − 1}. The vector ν̄k obviously satisfies (7)-(8). It also
satisfies (9)-(10) since ν̄k(N \ i) = 1, i ∈ N \ 1. So, ν̄k ∈ P̄n. This implies that
νk ∈ Pn. Further, νk ∈ extI(P

n) because it is a simple game. Take i∗ ∈ N \ 1.
Then Ri∗ = {S ⊆ N \ i∗ : |S| = k − 1} and ρS = (k−1)!(n−k)!

n! for all S ∈ Ri∗ .
The substitution ρS and Ri∗ in the Shapley value formula for simple game gives

Shi∗(ν
k) = ρS |Ri∗ | = ρS

(
n−2
k−2

)
= k−1

n(n−1) . All weak players are symmetric in

νk. By Symmetry Shj(ν
k) = Shi∗(ν

k), j ∈ N \ {1, i∗}. From Efficiency follows
Sh1(ν

k) = ν(N) −
∑

i∈N\1 Shi(ν
k) = 1 − k−1

n = n−k+1
n . The consensus value of

game νk is defined by formula for (0-1)-normal games. ��

Proposition 2. The Shapley and consensus values for game ν0 ∈ extNI(P
n) de-

termined in Theorem 2 are

Sh1(ν
0) =

3n− 6

n(n− 1)
, K1(ν

0) =
4n− 7

2n(n− 1)
,

Shi(ν
0) =

n2 − 4n+ 6

n(n− 1)2
, Ki(ν

0) =
2n2 − 6n+ 7

2n(n− 1)2
for i ∈ N \ 1.



On Polytope of (0-1)-normal Big Boss Games 393

Proof. Take i∗ ∈ N \ 1. Then for all S ⊆ N

ν0(S ∪ i∗)− ν0(S) =

⎧⎨⎩
1

n−1 , S = {1} or S = N \ i∗,
n−3
n−1 , S  1, |S| = n− 2, S � i∗,

0, otherwise.

The number of coalitions satisfying S  1, |S| = n − 2, S � i∗ is (n − 2) and
ρS = 1

n(n−1) for such S. Further, ρ{1} = 1
n(n−1) , ρN\i∗ = 1

n . By using the Shapley

value formula we obtain Shi∗(ν
0) = 1

n(n−1)2 + (n−3)(n−2)
n(n−1)2 + 1

n(n−1) = n2−4n+6
n(n−1)2 . By

Symmetry and Efficiency Sh1(ν
0) = 1− n2−5n+7

n(n−1) = 3n−6
n(n−1) . The substitution Sh(ν

0)

in consensus value formula gives K(ν0). ��

The core C(ν) = {x ∈ Rn : x(N) = ν(N), 0 ≤ xi ≤ Mi(ν), i ∈ N \ 1}
of each game ν ∈ Pn is determined by marginal vector only (Muto, et al., 1988).
So, all games in Pn having identical marginals have the same core. If C(ν) is a
singleton, i.e. C(ν) = {xc}, then the bargaining set (Aumann and Maschler, 1964),
kernel (Davis and Maschler, 1965) and lexicore (Funaki, et al., 2007) coincide with
xc. Moreover, any core selector (for example, nucleolus (Schmeidler, 1969), τ− value
(Tijs, 1981), AL−value (Tijs, 2005)) coincides with xc. Thus, xc should reflect many
principles of fairness. However, for games with zero Mi(ν), i ∈ N \ 1, we have
xc = (1, 0, . . . , 0). According to xc the entire unit of surplus is allocated to player 1
(boss) that ignores the productive role of other players. Such games are in particular
νk determined in Proposition 1 and all games in their convex hull and also all
games in GN having corresponding (0-1)-form. At the same time, by formulas from
Proposition 1 we obtain different consensus and Shapley values. For example, take
two 6-person games ν2 and ν5. Then

K(ν2) = (
1

2
,
1

10
, . . . ,

1

10
), K(ν5) = (

1

4
,
3

20
, . . . ,

3

20
)

,

Sh(ν2) = (
5

6
,
1

30
, . . . ,

1

30
), Sh(ν5) = (

1

3
,
2

15
, . . . ,

2

15
)

.

Thus, for ν ∈ co({νk}n−1
k=2 ) the consensus and Shapley values prescribes a rather

natural outcomes.

5. L-symmetrical big boss games

We name a game ν ∈ Pn l-symmetric if each pair of powerless players i, j ∈ N \1
is symmetric in ν. Denote by SPn the class of l-symmetric games ν ∈ Pn. Let X
be the set of all (0, 1)-vectors x = (x2, . . . , xn−2), s = |S|, J = {2, ..., n − 2} and
ν̄ = Ψ(ν) whenever ν ∈ SPn. Next theorem characterizes extreme points of SPn. It
shows also that all non-integer extreme points belongs to (2n − n− 1)-dimensional
face

{ν ∈ SPn : ν(S) =
n− 2

n− 1
, S  1, s = n− 1}

and are in one-to-one correspondence with elements of X.
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Theorem 3. Let ν ∈ GN . Then

(i) ν ∈ extNI(SP
n) iff there is such x ∈ X that ν = νx = Ψ−1(ν̄x), where

ν̄x(S) = fxs for all S ∈ Ω and

fxs =

⎧⎪⎪⎨⎪⎪⎩
o, s = 2, x2 = 0,
n−2
n−1 , s = n− 1,

fxs−1, s ≥ 3, xs = 0,
s−1
n−1 , xs = 1,

(ii) ν ∈ extI(SP
n) iff there is such k ∈ {2, . . . , n − 1} that ν = νk, where νk

was determined in Proposition 1.

Proof. (i) Suppose ν ∈ SPn and ν̄ = Ψ(ν). Then ν̄(S) = f(|S|) = fs, S ∈ Ω. So,
system (7)-(10) takes the form

f2 ≥ 0, n−2
n−1 ≤ fn−1 ≤ 1,

fs−1 ≤ fs, s ∈ J \ 2,
fs − (n− s)fn−1 ≤ s+ 1− n, s ∈ J.

⎫⎬⎭
Let Fn be the polytope specified by this system. Take f̂ ∈ Rn−2 with

f̂s =

{
n−1
n , s = n− 1,

s−1
n , s ∈ J.

Since Fn ⊂ Rn−2 and f̂ is the interior point of Fn then dim(Fn) = |J | = n − 2.
For each x ∈ X, fx ∈ Fn and satisfies following (n− 2) equations

f2 = 0 if x2 = 0, fn−1 = n−2
n−1 ,

fs =
s−1
n−1 if xs = 1, fs−1 = fs if s ≥ 3 and xs = 0.

}
(14)

Obviously, system (14) has the unique solution. This implies

fx ∈ extNI(F
n) =⇒ ν̄x ∈ extNI(P̄n) =⇒ νx ∈ extNI(P

n).

To prove inverse, take f ′ ∈ extNI(F
n). We shall show in the beginning that f ′

n−1 =
n−2
n−1 . Suppose

n−2
n−1 < f ′

n−1 < 1. For each s ∈ J \ 2 denote

ks = max{k ∈ J : f ′
k < f ′

s}

if there is such k ∈ J that f ′
k < f ′

s. From monotonicity conditions follows that
ks < s. Obviously, exists δ > 0 satisfying the inequalities

δ ≤ f ′
n−1 −

n− 2

n− 1
, δ ≤ 1− f ′

n−1,

δ ≤ f ′
s

n− s
for f ′

s > 0, δ ≤
f ′
s − f ′

ks

s− ks
for f ′

s > f ′
ks , s ∈ J.
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Consider vectors f−
s , f+

s determined by

f−
2 =

{
0, f ′

2 = 0,
f ′
2 − (n− 2)δ, f ′

2 > 0,
f+
2 =

{
0, f ′

2 = 0,
f ′
2 + (n− 2)δ, f ′

2 > 0,

f−
s =

⎧⎨⎩
f ′
n−1, s = n− 1,
f ′
s − (n− s)δ, f ′

s > f ′
s−1,

f−
s−1, f ′

s = f ′
s−1,

f+
s =

⎧⎨⎩
f ′
n−1, s = n− 1,
f ′
s + (n− s)δ, f ′

s > f ′
s−1,

f−
s−1, f ′

s = f ′
s−1,

s ∈ J . From the definition of δ and the fact that n−2
n−1 >

n−s−1
n−s for all s ∈ J , follows

δ ≤ f ′
n−1 − n−s−1

n−s , s ∈ J . Moreover, f ′
s − (n− s)f ′

n−1 < s+ 1− n if f ′
s = f ′

s−1 > 0,
s ∈ J \ 2, because otherwise we have

f ′
s − (n− s)f ′

n−1 = s+ 1− n,
f ′
s−1 − (n− s+ 1)f ′

n−1 ≤ s− n,
f ′
s = f ′

s−1,

⎫⎬⎭ =⇒ f ′
n−1 ≥ 1,

which contradicts the assumption f ′
n−1 < 1. Tables 3,4 show that f−, f+ ∈ Fn.

The equality f ′ = f−+f+

2 implies f ′ �∈ ext(Fn). Thus, all non-integer extreme points
of Fn belongs to its facet determined by constraints

fn−1 =
n− 2

n− 1
, f2 ≥ 0, fs−1 ≤ fs if s ∈ J \ {2}, fs ≤

s− 1

n− 1
if s ∈ J. (15)

Since the constraints matrix of system (15) is totally unimodular and f ′ ∈
ext(Fn), the values f ′

s, s ∈ J \ (n− 1), can be equal to 0 or 1
n−1 for s = 2 and s−1

n−1
or fs−1 for s ∈ J \ {2}, i.e. f ′ must be coincides with fxs for some x ∈ X.

Item (ii) is proved analogously.

Table3: Representation f− through f ′.

Cases f−
s f−

s−1 f−
s − (n− s)f−

n−1

s = 2, f ′
2 = 0, 0 − −(n− 2)(f ′

n−1 − δ),

s = 2, f ′
2 > 0, f ′

2 − (n− 2)δ, − f ′
2 − (n− 2)f ′

n−1,

s > 3,f ′
s = f ′

s−1 = 0, 0 f−
s −(n− s)(f ′

n−1 − δ),

s > 3,f ′
s = f ′

s−1 > 0, f ′
ks
− (n− ks)δ, f−

s f ′
ks
− (n− s)f ′

n−1 + (s− ks)δ,

s > 3,f ′
s > f ′

s−1 = 0, f ′
s − (n− s)δ, 0 f ′

s − (n− s)f ′
n−1,

s > 3,f ′
s > f ′

s−1 > 0, f ′
s − (n− s)δ, f ′

ks
− (n− ks)δ, f ′

s − (n− s)f ′
n−1

��
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Table4: Representation f+ through f ′.

Cases f+
s f+

s−1 f+
s − (n− s)f+

n−1

s = 2, f ′
2 = 0, 0 − −(n− 2)(f ′

n−1 + δ),

s = 2, f ′
2 > 0, f ′

2 + (n− 2)δ, − f ′
2 − (n− 2)f ′

n−1,

s > 3,f ′
s = f ′

s−1 = 0, 0 f−
s −(n− s)(f ′

n−1 + δ),

s > 3,f ′
s = f ′

s−1 > 0, f ′
ks

+ (n− ks)δ, f−
s f ′

ks
− (n− s)f ′

n−1 − (s− ks)δ,

s > 3,f ′
s > f ′

s−1 = 0, f ′
s + (n− s)δ, 0 f ′

s − (n− s)f ′
n−1,

s > 3,f ′
s > f ′

s−1 > 0, f ′
s + (n− s)δ, f ′

ks
+ (n− ks)δ, f ′

s − (n− s)f ′
n−1
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