
Subgame Consistent Cooperative Solutions in Stochastic
Differential Games with Asynchronous Horizons

and Uncertain Types of Players

David W. K. Yeung

Department of Business Administration,
Hong Kong Yan University, Hong Kong;

Center of Game Theory, St Petersburg University,
St Petersburg, Russia

E-mail: dwkyeung@hksyu.edu

Abstract This paper considers cooperative stochastic differential games in
which players enter the game at different times and have diverse horizons.
Moreover, the types of future players are not known with certainty. Subgame
consistent cooperative solutions and analytically tractable payoff distribu-
tion mechanisms leading to the realization of these solutions are derived.
This analysis widens the application of cooperative stochastic differential
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1. Introduction

In many game situations, the players’ time horizons differ. This may arise from
different life spans, different entry and exit times in different markets, and the
different duration for leases and contracts. Asynchronous horizon game situations
occur frequently in economic and social activities. Moreover, only the probability
distribution of the types of future players may be known. In this paper, we consider
cooperative stochastic differential games in which players enter the game at different
times and have diverse horizons. Moreover, the types of future players are not known
with certainty.

Cooperative games suggest the possibility of socially optimal and group efficient
solutions to decision problems involving strategic action. In dynamic cooperative
games, a stringent condition for a dynamically stable solution is required: In the
solution, the optimality principle must remain optimal throughout the game, at any
instant of time along the optimal state trajectory determined at the outset. This
condition is known as dynamic stability or time consistency. The question of dy-
namic stability in differential games has been rigorously explored in the past three
decades. (see Haurie (1976), Petrosyan and Danilov (1982) and Petrosyan (1997 )).
In the presence of stochastic elements, a more stringent condition – that of subgame
consistency – is required for a dynamically stable cooperative solution. In particular,
a cooperative solution is subgame-consistent if an extension of the solution policy to



Subgame Consistent Cooperative Solutions in Stochastic Differential Games 335

a situation with a later starting time and any feasible state brought about by prior
optimal behavior would remain optimal. In particular dynamic consistency ensures
that as the game proceeds players are guided by the same optimality principle at
each instant of time, and hence do not possess incentives to deviate from the pre-
viously adopted optimal behavior. A rigorous framework for the study of subgame-
consistent solutions in cooperative stochastic differential games was established in
the work of (Yeung and Petrosyan (2004, 2005 and 2006). A generalized theorem
was developed for the derivation of an analytically tractable “payoff distribution
procedure” leading to subgame consistent solutions.

In this paper, subgame consistent cooperative solutions are derived for stochas-
tic differential games with asynchronous players’ horizons and uncertain types of
future players. Analytically tractable payoff distribution mechanisms which lead to
the realization of these solutions are derived. This analysis extends the application
of cooperative stochastic differential game theory to problems where the players’
game horizons are asynchronous and the types of future players are uncertain. The
organization of the paper is as follows. Section 2 presents the game formulation and
characterizes noncooperative outcomes. Dynamic cooperation among players coex-
isting in the same duration is examined in Section 3. Section 4 provides an analysis
on payoff distribution procedures leading to subgame consistent solutions in this
asynchronous horizons scenario. An illustration in cooperative resource extraction
is given in Section 5. Concluding remarks and model extensions are given in Section
6.

2. Game Formulation and Noncooperative Outcome

In this section we first present an analytical framework of stochastic differential
games with asynchronous players’ horizons, and characterize its noncooperative
outcome.

2.1. Game Formulation

For clarity in exposition and without loss of generality, we consider a general
class of stochastic differential games, in which there are υ+1 overlapping cohorts or
generations of players. The game begins at time t1 and terminates at time tυ+1. In
the time interval [t1, t2), there coexist a generation 0 player whose game horizon is
[t1, t2) and a generation 1 player whose game horizon is [t1, t3). In the time interval
[tk, tk+1) for k ∈ {2, 3, · · · , υ−1}, there coexist a generation k−1 player whose game
horizon is [tk−1, tk+1) and a generation k player whose game horizon is [tk, tk+2).
In the last time interval [tυ , tυ+1], there coexist a generation υ − 1 player and a
generation υ player whose game horizon is just [tυ, tυ+1].

For the sake of notational convenience in exposition, the player who enters the
game at time tk can be of types ωak

∈ {ω1, ω2, · · · , ωςk}. When the game starts at
initial time t1, it is known that in the time interval [t1, t2), there coexist a type ω1

generation 0 player and a type ω2 generation 1 player. At time t1, it is also known
that the probability of the generation k player being type ωak

∈ {ω1, ω2, · · · , ωςk} is
λak

∈ {λ1, λ2, · · · , λςk}, for k ∈ {2, 3, · · · , υ}. The type of generation k player will
become known with certainty at time tk.

The instantaneous payoff functions and terminal rewards of the type ωak
gen-

eration k player and the type ωak−1
generation k − 1 player coexisting in the time

interval [tk, tk+1) are respectively:
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gk−1(ωk−1)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)] and qk−1(ωk−1)[tk+1, x(tk+1)],

and gk(ωk)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)] and qk(ωk)[tk+2, x(tk+2)],
(2.1)

for k ∈ {1, 2, 3, · · · , υ},
where u

(ωk−1,O)ωk

k−1 (s) is the vector of controls of the type ωak−1
generation k− 1

player when he is in his last (old) life stage while the type ωak
generation k player

is coexisting;

and u
(ωk,Y )ωk−1

k (s) is that of the type ωak
generation k player when he is in his

first (young) life stage while the type ωak−1
generation k − 1 player is coexisting.

Note that the superindex “O” in u
(ωk−1,O)ωk

k−1 (s) denote Old and the superindex

“Y” in u
(ωk,Y )ωk−1

k (s) denote young. The state dynamics of the game is characterized
by the vector-valued stochastic differential equations:

dx(s)

ds
= f [s, x(s), u

(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)]ds+σ[s, x(s)]dz(s), x(t1) = x0 ∈ X,

(2.2)
for s ∈ [tk, tk+1),
if the type ωak

generation k player and the type ωak−1
generation ak−1 player co-

existing in the time interval [tk, tk+1) for k ∈ {1, 2, 3, · · · , υ}, and where
σ[s, x (s)] is a n × Θ matrix and z (s) is a Θ-dimensional Wiener process. Let
Ω[s, x(s)] = σ[s, x(s)]σ[s, x(s)], denote the covariance matrix with its element in
row h and column ζ denoted by Ωhζ [s, x(s)].

In the game interval [tk, tk+1) for k ∈ {1, 2, 3, · · · , υ− 1} with type ωk−1 gener-
ation k − 1 player and type ωk generation k player is of, the type ωk−1 generation
k − 1 player seeks to maximize the expected payoff:

E

{ ∫ tk+1

tk

gk−1(ωk−1)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)]e−r(s−tk)ds

+e−r(tk+1−tk)qk−1(ωk−1)[tk+1, x(tk+1)]

∣∣∣∣ x(tk) = x ∈ X

}
(2.3)

and the type ωk generation k player seeks to maximize the expected payoff:

E

{ ∫ tk+1

tk

gk(ωk)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)]e−r(s−tk)ds

+
ς∑

α=1

λak+1

∫ tk+2

tk+1

gk(ωk)[s, x(s), u
(ωk,O)ωα

k (s), u
(ωα,Y )ωk

k+1 (s)]e−r(s−tk)ds

+e−r(tk+2−tk)qk(ωk)[tk+2, x(tk+2)]

∣∣∣∣ x(tk) = x ∈ X

}
(2.4)
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subject to stochastic dynamics

dx(s)

ds
= f [s, x(s), u

(ωh−1,O)ωh

h−1 (s), u
(ωh,Y )ωh−1

h (s)]ds+ σ[s, x(s)]dz(s), x(tk) = x,

for s ∈ [th, th+1) and h ∈ {k, k + 1, · · · , υ},
where r is the discount rate.
In the last time interval [tυ, tυ+1] when the generation υ − 1 player is of type

ωυ−1 and the generation υ player is of type ωυ, the type ωυ−1 generation υ − 1
player seeks to maximize the expected payoff:

E

{ ∫ tυ+1

tυ

gυ−1(ωυ−1)[s, x(s), u
(ωυ−1,O)ωυ

υ−1 (s), u
(ωυ,Y )ωυ−1
υ (s)]e−r(s−tυ)ds

+e−r(tυ+1−tυ)qυ−1(ωυ−1)[tυ+1, x(tυ+1)]

∣∣∣∣ x(tυ) = x ∈ X

}
, (2.5)

and the type ωυ generation υ player seeks to maximize the expected payoff:

E

{ ∫ tυ+1

tυ

gυ(ωυ)[s, x(s), u
(ωυ−1,O)ωυ

υ−1 (s), u
(ωυ,Y )ωυ−1
υ (s)]e−r(s−tυ)ds

+e−r(tυ+1−tυ)qυ(ωυ)[tυ+1, x(tυ+1)]

∣∣∣∣ x(tυ) = x ∈ X

}
, (2.6)

subject to the stochastic dynamics

dx(s)

ds
= f [s, x(s), u

(ωυ−1,O)ωυ

υ−1 (s), u
(ωυ,Y )ωυ−1
υ (s)]ds + σ[s, x(s)]dz(s), x(tυ) = x,

for s ∈ [tυ, tυ+1].
The game formulated in (2.1)-(2.6) is an extension the Yeung (2011) analysis to

a game with stochastic dynamics. It has the characteristics of the finite overlapping
generations version of Jrgensen and Yeung’s (2005) infinite generations game.

2.2. Noncooperative Outcomes

To obtain a characterization of a noncooperative solution to the asynchronous
horizons game in Section 2.1 we first consider the solutions of the games in the last
time interval [tυ, tυ+1], that is the game (2.5)-(2.6). One way to characterize and
derive a feedback solution to the games in [tυ, tυ+1] is to invoke the conventional
approach in solving a standard stochastic differential game and obtain:

Lemma 2.1. If the generation υ − 1 player is of type ωυ−1 ∈ {ω1, ω2, · · · , ωςυ−1
}

and the generation υ player is of type ωυ∈ {ω1, ω2, · · · , ωςυ} in the time inter-

val [tυ, tυ+1], a set of feedback strategies {φ(ωυ−1,O)ωυ

υ−1 (t, x);φ
(ωυ ,Y )ωυ−1
υ (t, x)} con-

stitutes a Nash equilibrium solution for the game (5)-(6), if there exist twice con-
tinuously differentiable functions V υ−1(ωυ−1,O)ωυ(t, x) : [tυ, tυ+1] × Rm → R and
V υ(ωυ,Y )ωυ−1(t, x) : [tυ, tυ+1]×Rm→ R satisfying the following partial differential
equations:
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−V υ−1(ωυ−1,O)ωυ

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
υ−1(ωυ−1,O)ωυ

xhxζ (t, x)

= max
uυ−1

{
gυ−1(ωυ−1)[t, x, uυ−1, φ

(ωυ ,Y )ωυ−1
υ (t, x)]e−r(t−tυ)

+V
υ−1(ωυ−1,O)ωυ
x (t, x) f [t, x, uυ−1, φ

(ωυ ,Y )ωυ−1
υ (t, x)]

}
,

V υ−1(ωυ−1,O)ωυ(tυ+1, x) =e
−r(tυ+1−tυ)qυ−1(ωυ−1)(tυ+1, x), and

−V υ(ωυ ,Y )ωυ−1

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
υ(ωυ ,Y )ωυ−1

xhxζ (t, x)

= max
uυ

{
gυ(ωυ)[t, x, φ

(ωυ−1,O)ωυ

υ−1 (t, x), uυ]e
−r(t−tυ)

+V
υ(ωυ,Y )ωυ−1
x (t, x) f [t, x, φ

(ωυ−1,O)ωυ

υ−1 (t, x), uυ]
}
,

V υ(ωυ ,Y )ωυ−1(tυ+1, x) = e−r(tυ+1−tυ)qυ(ωυ)[tυ+1, x(tυ+1)]. (2.7)

Proof. Follow the proof of Theorem 6.27 in Chapter 6 of Basar and Olsder (1999).
��

For ease of exposition and sidestepping the issue of multiple equilibria, the analy-
sis focuses on solvable games in which a particular noncooperative Nash equilibrium
is chosen by the players in the entire subgame.

We proceed to examine the game in the second last interval [tυ−1, tυ). If the
generation υ− 2 player is of type ωυ−2 ∈ {ω1, ω2, · · · , ως} and the generation υ− 1
player is of type ωυ−1∈ {ω1, ω2, · · · , ως}. The type ωυ−2 generation υ − 2 player
seeks to maximize:

E

{ ∫ tυ

tυ−1

gυ−2(ωυ−2)[s, x(s), u
(ωυ−2,O)ωυ−1

υ−2 (s), u
(ωυ−1,Y )ωυ−2

υ−1 (s)]e−r(s−tυ−1)ds

+e−r(tυ−tυ−1)qυ−2(ωυ−2)[tυ, x(tυ)]

∣∣∣∣ x(tυ−1) = x ∈ X

}
. (2.8)

As shown in Jørgensen and Yeung (2005) the terminal condition of the type
ωυ−1 generation υ − 1 player in the game interval [tυ−1, tυ) can be expressed as:

ζυ∑
α=1

λαV
υ−1(ωυ−1,O)ωα(tυ, x). (2.9)

Therefore the type ωυ−1 generation υ − 1 player then seeks to maximize:
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E

{ ∫ tυ

tυ−1

gυ−1(ωυ−1)[s, x(s), u
(ωυ−2,O)ωυ−1

υ−2 (s), u
(ωυ−1,Y )ωυ−2

υ−1 (s)]e−r(s−tυ−1)ds

+e−r(tυ−tυ−1)

ζυ∑
α=1

λαV
υ−1(ωυ−1,O)ωα(tυ, x(tυ))

∣∣∣∣ x(tυ−1) = x ∈ X

}
.

Similarly, the terminal condition of the type ωk generation k player in the game
interval [tk, tk+1) can be expressed as:

ςk+1∑
α=1

λαV
k(ωk,O,)ωα(tk+1, x), for k ∈ {1, 2, · · · , υ − 3}. (2.10)

Consider the game in the time interval [tk, tk+1) involving the type ωk generation
k player and the type ωk−1 generation k − 1 player, for k ∈ {1, 2, · · · , υ − 3}. The
type ωk−1 generation k − 1 player will maximize the payoff

E

{ ∫ tk+1

tk

gk−1(ωk−1][s, x(s), u
(ωk−1,O)�k

k−1 (s), u
(ωk,Y )ωk−1

k (s)] e−r(s−tk)ds

+e−r(tk+1−tk)qk−1(ωk−1)[tk+1, x(tk+1)]

∣∣∣∣ x(tk) = x ∈ X

}
, (2.11)

and the type ωk generation k player will maximize the expected payoff:

E

{ ∫ tk+1

tk

gk(ωk)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)] e−r(s−tk)ds

+e−r(tk+1−tk)
ςk+1∑
α=1

λαV
k(ωk,O,)ωα(tk+1, x)

∣∣∣∣ x(tk) = x ∈ X

}
(2.12)

subject to (2.2) with x(tk) = x.
A Nash equilibrium solution to the game (2.11)-(2.12) can be characterized as:

Lemma 2.2. A set of feedback strategies {φ(ωk−1,O)ωk

k−1 (t, x); φ
(ωk,Y )ωk−1

k (t, x)} con-
stitutes a Nash equilibrium solution for the game (2.11)-(2.12), if there exist con-
tinuously differentiable functions V k−1(ωk−1,O)ωk(t, x) : [tk, tk+1] × Rm → R and
V k(ωk,Y )ωk−1(t, x) : [tk, tk+1]×Rm→ R satisfying the following partial differential
equations:

−V k−1(ωk−1,O)ωk

t (t, x)− 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
k−1(ωk−1,O)ωk

xhxζ (t, x)

= max
uk−1

{
gk−1(ωk−1)[t, x, uk−1, φ

(ωk,Y )ωk−1

k (t, x)]e−r(t−tk)

+V
k−1(ωk−1,O)ωk
x f [t, x, uk−1, φ

(ωk,Y )ωk−1

k (t, x)]
}
,
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V k−1(ωk−1,O)ωk(tk+1, x) = e−r(tk+1−tk)qk−1(ωk−1)(tk+1, x), and

−V k(ωk,Y )ωk−1

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
k(ωk,Y )ωk−1

xhxζ (t, x)

= max
uk

{
g(k,ωk)[t, x, φ

(ωk−1,O)ωk

k−1 (t, x), uk]e
−r(t−tk)

+V
k(ωk,Y )ωk−1
x f [t, x, φ

(ωk−1,O)ωk

k−1 (t, x), uk]
}
,

V k(ωk,Y )ωk−1(tk+1, x) = e−r(tk+1−tk)
ςk+1∑
α=1

λαV
k(ωk,O,)ωα(tk+1, x),

for k ∈ {1, 2, · · · , υ − 1}. (2.13)

Proof. Again follow the proof of Theorem 6.16 in Chapter 6 of Basar and Olsder
(1999). ��

A theorem characterizing the noncooperative outcomes of the game (2.2)-(2.6)
can be obtained as:

Theorem 2.1. A set of feedback strategies {φ(ωk−1,O)ωk

k−1 (t, x);φ
(ωk,Y )ωk−1

k (t, x)} con-
stitutes a Nash equilibrium solution for the game (2.2)-(2.6), if there exist con-
tinuously differentiable functions V k−1(ωk−1,O)ωk(t, x) :[tk, tk+1] × Rm → R and
V k(ωk,Y )ωk−1(t, x) :[tk, tk+1] × Rm→ R satisfying the following partial differential
equations:

−V υ−1(ωυ−1,O)ωυ

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
υ−1(ωυ−1,O)ωυ

xhxζ (t, x)

= max
uυ−1

{
gυ−1(ωυ−1)[t, x, uυ−1, φ

(ωυ ,Y )ωυ−1
υ (t, x)]e−r(t−tυ)

+V
υ−1(ωυ−1,O)ωυ
x (t, x) f [t, x, uυ−1, φ

(ωυ ,Y )ωυ−1
υ (t, x)]

}
,

V υ−1(ωυ−1,O)ωυ (tυ+1, x) = e−r(tυ+1−tυ)qυ−1(ωυ−1)(tυ+1, x), and

−V υ(ωυ ,Y )ωυ−1

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
υ(ωυ ,Y )ωυ−1

xhxζ (t, x)

= max
uυ

{
gυ(ωυ)[t, x, φ

(ωυ−1,O)ωυ

υ−1 (t, x), uυ]e
−r(t−tυ)

+V
υ(ωυ,Y )ωυ−1
x (t, x) f [t, x, φ

(ωυ−1,O)ωυ

υ−1 (t, x), uυ]
}
,

V υ(ωυ ,Y )ωυ−1(tυ+1, x) = e−r(tυ+1−tυ)qυ(ωυ)[tυ+1, x(tυ+1)]; (2.14)
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−V k−1(ωk−1,O)ωk

t (t, x)− 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
k−1(ωk−1,O)ωk

xhxζ (t, x)

= max
uk−1

{
gk−1(ωk−1)[t, x, uk−1, φ

(ωk,Y )ωk−1

k (t, x)]e−r(t−tk)

+V
k−1(ωk−1,O)ωk
x f [t, x, uk−1, φ

(ωk,Y )ωk−1

k (t, x)]
}
,

V k−1(ωk−1,O)ωk(tk+1, x) = e−r(tk+1−tk)qk−1(ωk−1)(tk+1, x), and

−V k(ωk,Y )ωk−1

t (t, x)− 1

2

m∑
h,ζ=1

Ωhζ(t, x)V
k(ωk,Y )ωk−1

xhxζ (t, x)

= max
uk

{
g(k,ωk)[t, x, φ

(ωk−1,O)ωk

k−1 (t, x), uk]e
−r(t−tk)

+V
k(ωk,Y )ωk−1
x f [t, x, φ

(ωk−1,O)ωk

k−1 (t, x), uk]
}
,

V k(ωk,Y )ωk−1(tk+1, x) = e−r(tk+1−tk)
ςk+1∑
α=1

λαV
k(ωk,O,)ωα(tk+1, x),

for k ∈ {1, 2, · · · , υ − 1}. (2.15)

Proof. The results (2.14) follows from Lemma 1 and those in (2.15) follows from
Lemma 2.2. ��

Using Theorem 2.1 one can obtain a non-cooperative game equilibrium of the
game (2.2)-(2.6).

3. Dynamic Cooperation among Coexisting Players

Now consider the case when coexisting players want to cooperate and agree to
act and allocate the cooperative payoff according to a set of agreed upon optimal-
ity principles. The agreement on how to act cooperatively and allocate cooperative
payoff constitutes the solution optimality principle of a cooperative scheme. In par-
ticular, the solution optimality principle for the cooperative game includes (i) an
agreement on a set of cooperative strategies/controls, and (ii) an imputation of their
payoffs.

Consider the game in the time interval [tk, tk+1) involving the type ωk generation

k player and the type ωk−1 generation k − 1 player. Let &
(ωk−1,ωk)

� denote the
probability that the type ωk generation k player and the type ωk−1 generation k−1
player would agree to the solution imputation

[ξk−1(ωk−1,O)ωk[�](t, x),ξk(ωk ,Y )ωk−1[�](t, x)] over the time interval [tk, tk+1),

where

ς(ω
k−1

,ω
k
)∑

h=1

&
(ωk−1,ωk)

� = 1.

At time t1, the agreed-upon imputation for the type ω1 generation 0 player and
the type ω2 generation 1 player are known.
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The solution imputation may be governed by many specific principles. For in-
stance, the players may agree to maximize the sum of their expected payoffs and
equally divide the excess of the cooperative payoff over the noncooperative pay-
off. As another example, the solution imputation may be an allocation principle in
which the players allocate the total joint payoff according to the relative sizes of the
players’ noncooperative payoffs. Finally, it is also possible that the players refuse
to cooperate. In that case, the imputation vector becomes [V k−1(ωk−1,O)ωk(t, x),
V k(ωk,Y )ωk−1(t, x)].

Both group optimality and individual rationality are required in a cooperative
plan. Group optimality requires the players to seek a set of cooperative strate-
gies/controls that yields a Pareto optimal solution. The allocation principle has to
satisfy individual rationality in the sense that neither player would be no worse off
than before under cooperation.

3.1. Group Optimality

Since payoffs are transferable, group optimality requires the players coexisting
in the same time interval to maximize their expected joint payoff. Consider the
last time interval [tυ, tυ+1], in which the generation υ − 1 player is of type ωυ−1

∈ {ω1, ω2, · · · , ως} and the generation υ player is of type ωυ∈ {ω1, ω2, · · · , ως}. The
players maximize their expected joint payoff:

E

{ ∫ tυ+1

tυ

(
gυ−1(ωυ−1)[s, x(s), u

(ωυ−1,O)ωυ

υ−1 (s), u
(ωυ,Y )ωυ−1
υ (s)]

+gυ(ωυ)[s, x(s), u
(ωυ−1,O)ωυ

υ−1 (s), u
(ωυ ,Y )ωυ−1
υ (s)]

)
e−r(s−tυ)ds

+e−r(tυ+1−tυ)
(
qυ−1(ωυ−1)[tυ+1, x(tυ+1)] + qυ(ωυ)[tυ+1, x(tυ+1)]

) ∣∣∣∣ x(tυ) = x ∈ X

}
,

(3.1)

subject to (2.2) with x(tυ) = x.
Invoking the technique of stochastic dynamic programming an optimal solution

of the problem (3.1)-(2.2) can be characterized as:

Lemma 3.1. A set of Controls {ψ(ωυ−1,O)ωυ

υ−1 (t, x); ψ
(ωυ ,Y )ωυ−1
υ (t, x)} constitutes an

optimal solution for the stochastic control problem (3.1)-(2.2), if there exist contin-
uously differentiable functions W [tυ,tυ+1](ωυ−1,ωυ)(t, x) : [tυ, tυ+1] × Rm → R satis-
fying the following partial differential equations:

−W
[tυ,tυ+1](ωυ−1,ωυ)
t (t, x)− 1

2

m∑
h,ζ=1

Ωhζ(t, x)W
[tυ ,tυ+1](ωυ−1,ωυ)

xhxζ (t, x)

= max
uυ−1,uυ

{
gυ−1(ωυ−1)[t, x, uυ−1, uυ] e

−r(t−tυ)

+ gυ(ωυ)[t, x, uυ−1, uυ]e
−r(t−tυ) +W

[tυ,tυ+1](ωυ−1,ωυ)
x (t, x)f [t, x, uυ−1, uυ]

}
,

W [tυ,tυ+1](ωυ−1,ωυ)(tυ+1, x) = e−r(tυ+1−tυ)[qυ−1(ωυ−1)(tυ+1, x) + qυ(ωυ ](tυ+1, x)].
(3.2)
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Proof. The results in (3.2) are the characterization of optimal solution to the
stochastic control problem (3.1)-(2.2) according to stochastic dynamic program-
ming. ��

We proceed to examine joint payoff maximization problem in the time interval
[tυ−1, tυ) involving the type ωυ−1 generation υ − 1 player and type ωυ−2 genera-
tion υ − 2 player. A critical problem is to determent the expected terminal valu-
ation to the ωυ−1 generation υ − 1 player at time tυ in the optimization problem
within the time interval [tυ−1, tυ). By time tυ, the ωυ−1 generation υ − 1 player
may co-exist with the ωυ∈ {ω1, ω2, · · · , ως} generation υ player with probabilities
{λ1, λ2, · · · , λς}. Consider the case in the time interval [tυ, tυ+1) in which the type
ωυ−1 generation υ − 1 player and the type ωυ generation υ player co-exist. The
probability that the type ωυ−1 generation player and the type ωυ generation player
would agree to the solution imputation

[ξυ−1(ωυ−1,O)ωυ[h](t, x), ξυ(ωυ ,Y )ωυ−1[h](t, x)] is &
(ωυ−1,ωυ)

h

where
∑
h

&
(ωυ−1,ωυ)

h = 1. (3.3)

In the optimization problem within the time interval [tυ−1, tυ), the expected
terminal reward to the ωυ−1 generation υ− 1 player at time tυ can be expressed as:

ςυ∑
α=1

ς(ω
υ−1

,ωα)∑
h=1

&
(ωυ−1,ωα)

h ξυ−1(ωυ−1,O)ωα[h](tυ, x). (3.4)

Similarly for the optimization problem within the time interval [tk, tk+1), the
expected terminal reward to the ωk generation k player at time tk+1 can be expressed
as:

ςk+1∑
α=1

ς(ω
k
,ωα)∑

h=1

&
(ωk,ωα)
h ξk(ωk,O)ωα[h](tk+1, x), for k ∈ {1, 2, · · · , H − 3}. (3.5)

The joint maximization problem in the time interval [tk, tk+1), for
k ∈ {1, 2, · · · , υ − 3}, involving the type ωk generation k player and type ωk−1

generation k − 1 player can be expressed as:

max
uk−1,uk

E

{ ∫ tk+1

tk

(
gk−1(ωk−1)[s, x(s), u

(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)]

+ gk(ωk)[s, x(s), u
(ωk−1,O)ωk

k−1 (s), u
(ωk,Y )ωk−1

k (s)]

)
e−r(s−tk)ds

+ e−r(tk+1−tk)
(
qk−1(ωk−1)[tk+1, x(tk+1)]

+

ςk+1∑
α=1

ς(ω
k
,ωα)∑

h=1

&
(ωk,ωα)
h ξk(ωk,O)ωα[h](tk+1, x(tk+1))

) ∣∣∣∣ x(tk) = x ∈ X

}
, (3.6)
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subject to (2.2) with x(tk) = x.
The conditions characterizing an optimal solution of the problem (3.6)-(2.2) are

given as follows.

Theorem 3.1. A set of Controls {ψ(ωk−1,O)ωk

k−1 (t, x);ψ
(ωk,Y )ωk−1

k (t, x)} constitutes
an optimal solution for the stochastic control problem (3.6)-(2.2), if there exist con-
tinuously differentiable functions W [tk,tk+1](ωk−1,ωk)(t, x) : [tk, tk+1)×Rm → R sat-
isfying the following partial differential equations:

−W [tυ,tυ+1](ωυ−1,ωυ)

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)W
[tυ ,tυ+1](ωυ−1,ωυ)

xhxζ (t, x)

= max
uυ−1,uυ

{
gυ−1(ωυ−1)[t, x, uυ−1, uυ] e

−r(t−tυ)

+gυ(ωυ)[t, x, uυ−1, uυ]e
−r(t−tυ) +W

[tυ,tυ+1](ωυ−1,ωυ)
x (t, x)f [t, x, uυ−1, uυ]

}
,

W [tυ,tυ+1](ωυ−1,ωυ)(tυ+1, x) = e−r(tυ+1−tυ)[qυ−1(ωυ−1)(tυ+1, x) + qυ(ωυ](tυ+1, x)];

for k ∈ {1, 2, · · · , υ − 1}:

−W [tk,tk+1](ωk−1,ωk)

t (t, x) − 1

2

m∑
h,ζ=1

Ωhζ(t, x)W
[tk,tk+1](ωk−1,ωk)

xhxζ (t, x)

= max
uk−1,uk

{
gk−1(ωk−1)[t, x, uk−1, uk]e

−r(t−tk)

+gk(ωk)[t, x, uk−1, uk]e
−r(t−tk) +W

[tk,tk+1](ωk−1,ωk)
x (t, x) f [t, x, uk−1, uk]

}
,

W [tk,tk+1](ωk−1,ωk)(tk+1, x) = e−r(tk+1−tk)
(
qk−1(ωk−1)(tk+1, x)

+

ςk+1∑
α=1

ς(ω
k
,ωα)∑

h=1

&
(ωk,ωα)
h ξk(ωk,O)ωα[h](tk+1, x)

)
. (3.7)

Proof. Invoking the standard technique of stochastic dynamic programming we ob-
tain the conditions characterizing an optimal solution of the problem (3.6)-(2.2) as
in (3.7). ��

Substituting the set of cooperative strategies into (2.2) yields the dynamics of
the cooperative state trajectory in the time interval [tk, tk+1)

dx(s)

ds
= f [s, x(s), ψ

(ωk−1,O)ωk

k−1 (s, x(s)), ψ
(ωk,Y )ωk−1

k (s, x(s))]+σ[s, x(s)]dz(s), (3.8)
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for s ∈ [tk, tk+1), k ∈ {1, 2, · · · , υ} and x(t1) = x0.
We denote the set of realizable states at time t from (3.8) under the scenarios of

different players by X
{tk,tk+1](ωk,ωk+1)∗
t , for t ∈ [tk, tk+1) and k ∈ {1, 2, · · · , υ}.

We use the term x
{tk,tk+1](ωk,ωk+1)∗
t ∈X{tk,tk+1](ωk,ωk+1)∗

t to denote an element in

X
{tk,tk+1](ωk,ωk+1)∗
t . The term x∗t is used to denote x

{tk,tk+1](ωk,ωk+1)∗
t whenever there

is no ambiguity
To fulfill group optimality, the imputation vectors have to satisfy:

ξk−1(ωk−1,O)ωk[�](t, x∗t ) + ξk(ωk,Y )ωk−1[�](t, x∗t ) = W [tk,tk+1](ωk−1,ωk)(t, x∗t ), (3.9)

for t ∈ [tk, tk+1), ωk∈ {ω1, ω2, · · · , ωςk}, ωk−1∈ {ω1, ω2, · · · , ωςk−1
},

$ ∈ {1, 2, · · · , ς(ωk−1,ωk)
} and k ∈ {0, 1, 2, · · · , υ},

where x∗t is the short form for x
(ωk−1,ωk)∗
t .

3.2. Individual Rationality

In a dynamic framework, individual rationality requires that the imputation
received by a player has to be no less than his noncooperative payoff throughout
the time interval in concern. Hence for individual rationality to hold along the

cooperative trajectory
{
x(ωk−1,ωk)∗(t)

} tk+1

t=tk
,

ξk−1(ωk−1,O)ωk[�](t, x∗t ) ≥ V k−1(ωk−1,O)ωk(t, x∗t ) and

ξk(ωk,Y )ωk−1[�](t, x∗t ) ≥ V k(ωk,Y )ωk−1(t, x∗t ), (3.10)

for t ∈ [tk, tk+1), ωk ∈ {ω1, ω2, · · · , ωςk}, ωk−1 ∈ {ω1, ω2, · · · , ωςk−1
},

$ ∈ {1, 2, · · · , ς(ωk−1,ωk)
} and k ∈ {0, 1, 2, · · · , υ}.

For instance, an imputation vector equally dividing the excess of the cooperative
payoff over the noncooperative payoff can be expressed as:

ξk−1(ωk−1,O)ωk[�](t, x∗t ) = V k−1(ωk−1,O)ωk(t, x∗t ) + 0.5[W [tk,tk+1](ωk−1,ωk)(t, x∗t )

− V k−1(ωk−1,O)ωk(t, x∗t )− V k(ωk,Y )ωk−1(t, x∗t )], and

ξk(ωk,Y )ωk−1[�](t, x∗t ) = V k(ωk,Y )ωk−1(t, x∗t ) + 0.5[W [tk,tk+1](ωk−1,ωk)(t, x∗t )

− V k−1(ωk−1,O)ωk(t, x∗t )− V k(ωk,Y )ωk−1(t, x∗t )]. (3.11)

One can readily see that the imputations in (3.11) satisfy individual rationality
and group optimality.

4. Subgame Consistent Solutions and Payoff Distribution

A stringent requirement for solutions of cooperative stochastic differential games
to be dynamically stable is the property of subgame consistency. Under subgame
consistency, an extension of the solution policy to a situation with a later starting
time and any feasible state brought about by prior optimal behaviors would remain
optimal. In particular, when the game proceeds, at each instant of time the players
are guided by the same optimality principles, and hence do not have any ground
for deviation from the previously adopted optimal behavior throughout the game.
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According to the solution optimality principle the players agree to share their
cooperative payoff according to the imputations

[ξk−1(ωk−1,O)ωk[�](t, x∗t ), ξ
k(ωk,Y )ωk−1[�](t, x∗t )] (4.1)

over the time interval [tk, tk+1).

To achieve dynamic consistency, a payment scheme has to be derived so that
imputation (4.1) will be maintained throughout the time interval [tk, tk+1). Follow-
ing Yeung and Petrosyan (2004 and 2006) and Yeung (2011), we formulate a payoff
distribution procedure (PDP) over time so that the agreed imputations (4.1) can be

realized. Let B
(ωk−1,O)ωk[�]

k−1 (s) and B
(ωk,Y )ωk−1[�]

k (s) denote the instantaneous pay-
ments at time s ∈ [tk, tk+1) allocated to the type ωk−1 generation k− 1 (old) player
and type ωk generation k (young) player.

In particular, the imputation vector can be expressed as:

ξk−1(ωk−1,O)ωk[�](t, x∗t ) = E

{ ∫ tk+1

tk

B
(ωk−1,O)ωk[�]

k−1 (s) e−r(s−tk)ds

+ e−r(tk+1−tk)qk−1(ωk−1)[tk+1, x
∗(tk+1)]

∣∣∣∣ x(tk) = x∗t ∈ X

}
,

ξk(ωk,Y )ωk−1[�](t, x∗t ) = E

{ ∫ tk+1

tk

B
(ωk,Y )ωk−1[�]

k (s) e−r(s−tk)ds

+

ς∑
α=1

ς(ω
k
,ωα)∑

�=1

&
(ωk,ωα)
� ξk(ωk,O)ωα[�](tk+1, x

∗(tk+1))

∣∣∣∣ x(tk) = x∗t ∈ X

}
, (4.2)

for k ∈ {1, 2, · · · , υ − 1}, and

ξυ−1(ωυ−1,O)ωυ[�](t, x∗t ) = E

{ ∫ tυ+1

tυ

B
(ωυ−1,O)ωυ [�]

υ−1 (s) e−r(s−tυ)ds

+ e−r(tυ+1−tυ)qυ−1(ωυ−1)[tυ+1, x
∗(tυ+1)]

∣∣∣∣ x(tυ) = x∗t ∈ X

}
,

ξυ(ωυ,Y )ωυ−1[�](t, x∗t ) = E

{ ∫ tυ+1

tυ

B
(ωυ,Y )ωυ−1[�]
υ (s) e−r(s−tυ)ds

+ e−r(tυ+1−tυ)qυ(ωυ)[tυ+1, x
∗(tυ+1)]

∣∣∣∣ x(tυ) = x∗t ∈ X

}
. (4.3)

Using the analysis in Yeung and Petrosyan (2006) and Petrosyan and Yeung
(2007) we obtain:

Theorem 4.1. If the imputation vector [ξk−1(ωk−1,O)ωk[�](t, x∗t ),ξ
k(ωk ,O)ωk−1[�](t, x∗t )]

are functions that are continuously differentiable in t and x∗t , a PDP with an in-
stantaneous payment at time t ∈ [tk, tk+1):
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B
(ωk−1,O)ωk[�]

k−1 (t) = −ξk−1(ωk−1,O)ωk[℘]
t (t, x∗t )

− 1

2

m∑
h,ζ=1

Ωhζ(t, x∗t )ξ
k−1(ωk−1,O)ωk[�]

xhxζ (t, x∗t )

− ξ
k−1(ωk−1,O)ωk[�]
x (t, x∗t )f [t, x

∗
t , ψ

(ωk−1,O)ωk

k−1 (t, x∗t ), ψ
(ωk,Y )ωk−1

k (t, x∗t )] (4.4)

allocated to the type ωk−1 generation k − 1 player;
and an instantaneous payment at time t ∈ [tk, tk+1):

B
(ωk,Y )ωk−1[�]

k (t) = −ξk(ωk,Y )ωk−1[�]

t (t, x∗t )−
1

2

m∑
h,ζ=1

Ωhζ(t, x∗t )ξ
k(ωk,Y )ωk−1[�]

xhxζ (t, x∗t )

−ξk(ωk,Y )ωk−1[�]
x (t, x∗t )f [t, x

∗
t , ψ

(ωk−1,O)ωk

k−1 (t, x∗t ), ψ
(ωk,Y )ωk−1

k (t, x∗t )]

allocated to the type ωk generation k player,
yields a mechanism leading to the realization of the imputation vector

[ξk−1(ωk−1,O)ωk[�](t, x∗t ), ξ
k(ωk,Y )ωk−1[�](t, x∗t )],

for $ ∈ {1, 2, · · · , ς(ωk−1,ωk)
} and k ∈ {1, 2, · · · , υ}.

Proof. Follow the proof leading to Theorem 4.4.1 in Yeung and Petrosyan (2006)
with the imputation vector in present value (rather than in current value). ��

5. An Illustration in Resource Extraction

Consider the game in which there are 4 overlapping generations of players with
generation 0 and generation 1 players in [t1, t2), generation 1 and generation 2
players in [t2, t3), generation 2 and generation 3 players in [t3, t4]. Players are of
either type 1 or type 2. The instantaneous payoffs and terminal rewards of the type
1 generation k player and the type 2 generation k player are respectively:

[
(uk)

1/2 − c1
x1/2

uk

]
and q1x

1/2; and
[
(uk)

1/2 − c2
x1/2

uk

]
and q2x

1/2.

(5.1)
At initial time t1, it is known that the generation 0 player is of type 1 and

the generation 1 player is of type 2. It is also known that the generation 2 and
generation 3 players may be of type 1 with probability λ1 = 0.4 and of type 2 with
probability λ2 = 0.6.

The state dynamics of the game is characterized by the stochastic dynamics:

dx(s)

ds
= [ax(s)1/2 − bx(s)− uk−1(s)− uk(s)]ds+ σx(s)dz(s), x(t1) = x0 ∈ X ⊂ R,

(5.2)
for s ∈ [tk, tk+1) and k ∈ {1, 2, 3}.
The game is an asynchronous horizons version of the synchronous-horizon re-

source extraction game in Yeung and Petrosyan (2006) and an extension of the
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Yeung (2011) analysis to include stochastic dynamics. The state variable x(s) is
the biomass of a renewable resource. uk(s) is the harvest rate of the generation k
extraction firm. The death rate of the resource is b. The rate of growth is a/x1/2

which reflects the decline in the growth rate as the biomass increases. The type
i ∈ {1, 2} generation k extraction firm’s extraction cost is ciuk(s)x(s)

−1/2.
This asynchronous horizon game can be expressed as follows. In the time interval

[tk, tk+1), for k ∈ {1, 2}, consider the case with a type i ∈ {1, 2} generation k − 1
firm and a type j ∈ {1, 2} generation k firm, the game becomes

max
uk−1

E

{ ∫ tk+1

tk

[
[u

(i,O)j
k−1 (s)]1/2 − ci

x(s)
1/2

u
(i,O)j
1 (s)

]
exp[−r(s− tk)] ds

+ exp [−r(tk+1 − tk)]qix(tk+1)
1
2

}
,

max
uk

E

{ ∫ tk+1

tk

[
[u

(j,Y )i
k (s)]1/2 − cj

x(s)
1/2

u
(j,Y )i
2 (s)

]
exp[−r(s− tk)] ds

+

2∑
α=1

λα

∫ t4

t3

[
[u

(j,O)α
k (s)]1/2 − cj

x(s)1/2
u
(j,O)α
k (s)

]
exp[−r(s− tk)] ds

+ exp [−r(tk+2 − tk)] qjx(tk+2)
1
2

}
, (5.3)

subject to (5.2).
In the time interval [t3, t4], in the case with a type i ∈ {1, 2} generation 2 firm

and a type j ∈ {1, 2} generation 3 firm, the game becomes

max
u2

E

{ ∫ t4

t3

[
[u

(i,O)j
2 (s)]1/2 − ci

x(s)1/2
u
(i,O)j
2 (s)

]
exp[−r(s− t3)] ds

+ exp [−r(t4 − t3)] qix(t4)
1
2

∣∣∣∣ x(t3) = x

}
,

max
u3

E

{ ∫ t4

t3

[
[u

(j,O)i
3 (s)]1/2 − cj

x(s)
1/2

u
(j,O)i
2 (s)

]
exp[−r(s− t3)] ds

+ exp [−r(t4 − t3)] qjx(t4)
1
2

∣∣∣∣ x(t3) = x

}
, (5.4)

subject to (5.2) with x(t3) = x.

5.1. Noncooperative Outcomes

In this section we characterize the noncooperative outcome of the asynchronous
horizons game (5.2)-(5.4).

Proposition 5.1. The value functions for the type i ∈ {1, 2} generation k− 1 firm
and the type j ∈ {1, 2} generation k firm coexisting in the game interval [tk, tk+1)
can be obtained as:

V k−1(i,O)j(t, x)= exp[−r(t− tk)]
[
A

(i,O)j
k−1 (t)x1/2 + C

(i,O)j
k−1 (t)

]
, and
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V k(j,Y )i(t, x) = exp[−r(t− tk)]
[
A

(j,Y )i
k (t)x1/2 + C

(j,Y )i
k (t)

]
, (5.5)

for k ∈ {1, 2, 3} and i, j ∈ {1, 2},
where
A

(i,O)j
k−1 (t), C

(i,O)j
k−1 (t), A

(j,Y )i
k (t) and C

(j,Y )i
k (t) satisfy:

Ȧ
(i,O)j
k−1 (t) =

[
r +

b

2
+
σ2

8

]
A

(i,O)j
k−1 (t)− 1

2
[
ci +A

(i,O)j
k−1 (t)/2

] + ci

4
[
ci +A

(i,O)j
k−1 (t)/2

] 2
+

A
(i,O)j
k−1 (t)

8
[
ci +A

(i,O)j
k−1 (t)/2

]2 +
A

(i,O)j
k−1 (t)

8
[
cj +A

(j,Y )i
k (t)/2

] 2 ,
Ċ

(i,O)j
k−1 (t) = rC

(i,O)j
k−1 (t)− a

2
A

(i,O)j
k−1 (t),

A
(i,O)j
k−1 (tk+1) = qi and C

(i,O)j
k−1 (tk+1) = 0, for k ∈ {1, 2, 3}; (5.6)

Ȧ
(j,Y )i
k (t) =

[
r +

b

2
+
σ2

8

]
A

(j,Y )i
k (t)− 1

2
[
cj +A

(j,Y )i
k (t)/2

] + cj

4
[
cj +A

(j,Y )i
k (t)/2

]2
+

A
(j,Y )i
k (t)

8
[
cj +A

(j,Y )i
k (t)/2

]2 +
A

(j,Y )i
k (t)

8
[
ci +A

(i,O)j
k−1 (t)/2

]2 ,
Ċ

(j,Y )i
k (t) = rC

(j,Y )i
k (t)− a

2
A

(j,Y )i
k (t), for k ∈ {1, 2, 3};

A
(j,Y )i
k (tk+1) = e−r(tk+1−tk)

2∑
�=1

λ�A
(j,O)�
k (tk+1) and

C
(j,Y )i
k (tk+1) = e−r(tk+1−tk)

2∑
�=1

λ�C
(j,O)�
k (tk+1),

for k ∈ {1, 2}, and A
(j,Y )i
3 (t4) = qj and C

(j,Y )i
3 (t4) = 0. (5.7)

Proof. Using Lemmas 2.1 and 2.2 and the analysis in Proposition 5.1.1 in Yeung
and Petrosyan (2006), one can obtain the value functions in (5.5). ��

Following Yeung and Petrosyan (2006) the game equilibrium strategies can be
expressed as:

φ
(i,O)j
k−1 (t, x) =

x

4
[
ci +A

(i,O)j
k−1 (t)/2

]2 and φ
(j,Y )i
k (t, x) =

x

4
[
cj +A

(j,Y )i
k (t)/2

]2 .
(5.8)

A complete characterization of the noncooperative market outcome is provided
by Proposition 1 and (38).
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5.2. Dynamic Cooperation

Now consider the case when coexisting firms want to cooperate and agree to
act and allocate the cooperative payoff according to a set of agreed upon optimality
principles. Let there be three acceptable imputations.

Imputation I: the firms would share the excess gain from cooperation equally
with weights w1

k−1 = w1
k = 0.5.

Imputation II: the generation k− 1 firm acquires w2
k−1 = 0.6 of the excess gain

from cooperation and the generation k firm acquires w2
k = 0.4 of the gain.

Imputation III: the generation k− 1 firm acquires w3
k−1 = 0.4 of the excess gain

from cooperation and the generation k firm acquires w3
k = 0.6 of the gain.

In time interval [tk, tk+1), if both the generation k − 1 firm and the generation
k firm are of type 1, the probabilities that the firms would agree to Imputations I,

II and III are respectively &
(1,1)
1 = 0.8, &

(1,1)
2 = 0.1 and &

(1,1)
3 = 0.1.

If both the generation k − 1 firm and the generation k firm are of type 2, the
probabilities that the firms would agree to Imputations I, II and III are respectively

&
(2,2)
1 = 0.7, &

(2,2)
2 = 0.15 and &

(2,2)
3 = 0.15.

If the generation k − 1 firm is of type 1 and the generation k firm are of type
2, the probabilities that the firms would agree to Imputations I, II and III are

respectively &
(1,2)
1 = 0.15, &

(1,2)
2 = 0.75 and &

(1,2)
3 = 0.1.

If the generation k − 1 firm is of type 2 and the generation k firm are of type
1, the probabilities that the firms would agree to Imputations I, II and III are

respectively &
(2,1)
1 = 0.15, &

(2,1)
2 = 0.1 and &

(2,1)
3 = 0.75.

At initial time t1, the type 1 generation 0 firm and the type 2 generation 1 firm
are assumed to have agreed to Imputation II.

Since payoffs are transferable, group optimality requires the firms coexisting in
the same time interval to maximize their joint payoff. Consider the last time interval
[t3, t4], in which the generation 2 firm is of type i ∈ {1, 2} and the generation 3 firm
is of type j ∈ {1, 2}. The firms maximize their expected joint profit

E

{ ∫ t4

t3

[
[u

(i,O)j
2 (s)]1/2 − ci

x(s)1/2
u
(i,O)j
2 (s)

]
exp[−r(s− t3)] ds

+

∫ t4

t3

[
[u

(j,O)i
3 (s)]1/2 − cj

x(s)
1/2

u
(j,O)i
2 (s)

]
exp[−r(s− t3)] ds

+exp [−r(t4 − t3)] qix(t4)
1
2 + exp [−r(t4 − t3)] qjx(t4)

1
2

∣∣∣∣ x(t3) = x

}
,

subject to (5.2) with x(t3) = x.

Proposition 5.2. The maximized joint payoff with type i ∈ {1, 2} generation 2
firm and the type j ∈ {1, 2} generation 3 firm coexisting in the game interval [t3, t4)
can be obtained as:

W [t3,t4](i,j)(t, x) = exp[−r(t− t3)]
[
A[t3,t4](i,j)(t)x1/2 + C [t3,t4](i,j)(t)

]
, (5.9)

where A[t3,t4](i,j)(t) and C [t3,t4](i,j)(t) satisfy:
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Ȧ[t3,t4](i,j)(t) =

[
r +

b

2
+
σ2

8

]
A[t3,t4](i,j)(t)− 1

2
[
ci +A[t3,t4](i,j)(t)/2

]

− 1

2
[
cj +A[t3,t4](i,j)(t)/2

] + ci

4
[
ci +A[t3,t4](i,j)(t)/2

] 2 +
cj

4
[
cj +A[t3,t4](i,j)(t)/2

]2
+

A[t3,t4](i,j)(t)

8
[
ci +A[t3,t4](i,j)(t)/2

]2 +
A[t3,t4](i,j)(t)

8
[
cj +A[t3,t4](i,j)(t)/2

] 2 ,
Ċ [t3,t4](i,j)(t) = rC [t3,t4](i,j)(t)− a

2
A[t3,t4](i,j)(t),

A[t3,t4](i,j)(t4) = qi + qj and C [t3,t4](i,j)(t4) = 0. (5.10)

Proof. Using Lemma 3.1 and the analysis in example 5.2.1 in Yeung and Petrosyan
(2006), one can obtain (5.9)-(5.10). ��

The solution time paths A[t3,t4](i,j)(t) and C [t3,t4](i,j)(t) for the system of first
order differential equations in (39)-(40) can be computed numerically for given
values of the model parameters r,q1, q2, c1, c2, a and b.

In the game interval [t3, t4) if type i ∈ {1, 2} generation 2 firm and the type j ∈
{1, 2} generation 3 firm coexisting, the imputations of the firms under cooperation
can be expressed as:

ξ2(i,O)j[�](t, x) = V 2(i,O)j(t, x)+wh
2 [W

[t3,t4](i,j)(t, x)−V 2(i,O)j(t, x)−V 3(j,Y )i(t, x)],

ξ3(j,Y )i[�](t, x) = V 3(j,Y )i(t, x)+wh
3 [W

[t3,t4](i,j)(t, x)−V 2(i,O)j(t, x)−V 3(j,Y )i(t, x)],

for $ ∈ {1, 2, 3}. (5.11)

Now we proceed to the second last interval [tk, tk+1) for k = 2. Consider the
case in which the generation k firm is of type j ∈ {1, 2} and the generation k−1 firm
is known to be of type i = 2. Following the analysis in (19) and (20), the expected
terminal reward to the type j generation k firm at time tk+1 can be expressed as:

2∑
�=1

λ�

3∑
h=1

&
(j,�)
h ξk(j,O)�[h](tk+1, x), for k = 2. (5.12)

A review of Proposition 5.1, Proposition 5.2 and (5.11) shows the term in (5.12)
can be written as:

A
ζ(j,O)
k x1/2 + C

ζ(j,O)
k , (5.13)

where A
ζ(j,O)
k and C

ζ(j,O)
k are constant terms.
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The joint maximization problem in the time interval [tk, tk+1), for k ∈ {1, 2},
involving the type j generation k player and type i generation k − 1 player can be
expressed as:

max
uk−1,uk

E

{ ∫ tk+1

tk

[
[u

(i,O)j
k−1 (s)]1/2 − ci

x(s)1/2
u
(i,O)j
k−1 (s)

]
exp[−r(s− tk)] ds

+

∫ t4

t3

[
[u

(j,O)i
k (s)]1/2 − cj

x(s)1/2
u
(j,O)i
k (s)

]
exp[−r(s− tk)] ds

+exp [−r(tk+1 − tk)]

[
qix(tk+1)

1
2 +A

ζ(j,O)
k x(tk+1)

1/2 + C
ζ(j,O)
k

] ∣∣∣∣ x(tk) = x

}
,

subject to (5.2).

Proposition 5.3. The maximized expected joint payoff with type i ∈ {1, 2} gener-
ation k − 1 firm and the type j ∈ {1, 2} generation k firm coexisting in the game
interval [tk, tk+1), for k ∈ {1, 2}, can be obtained as:

W [tk,tk+1](i,j)(t, x) = exp[−r(t − tk)]
[
A[tk,tk+1](i,j)(t)x1/2 + C [tk,tk+1](i,j)(t)

]
,

(5.14)
where A[tk,tk+1](i,j)(t) and C [tk,tk+1](i,j)(t) satisfy:

Ȧ[tk,tk+1](i,j)(t) =

[
r +

b

2
+
σ2

8

]
A[tk,tk+1](i,j)(t)− 1

2
[
ci +A[tk,tk+1](i,j)(t)/2

]
− 1

2
[
cj +A[tk,tk+1](i,j)(t)/2

]+ ci

4
[
ci +A[tk,tk+1](i,j)(t)/2

] 2+ cj

4
[
cj +A[tk,tk+1](i,j)(t)/2

]2
+

A[tk,tk+1](i,j)(t)

8
[
ci +A[tk,tk+1](i,j)(t)/2

]2 +
A[tk,tk+1](i,j)(t)

8
[
cj +A[tk,tk+1](i,j)(t)/2

] 2 ,
Ċ [tk,tk+1](i,j)(t) = rC [tk,tk+1](i,j)(t)− a

2
A[tk,tk+1](i,j)(t),

A[tk,tk+1](i,j)(tk+1) = qi +A
ζ(j,O)
k and C [tk,tk+1](i,j)(tk+1) = C

ζ(j,O)
k . (5.15)

Proof. Using Theorem 3.1 and the analysis in example 5.2.1 in Yeung and Petrosyan
(2006), one can obtain the results in (5.14) and (5.15). ��

The solution time paths A[tk,tk+1](i,j)(t) and C [tk,tk+1](i,j)(t) for the system of
first order differential equations in (44)-(45) can be computed numerically for given

values of the model parameters r, q1, q2, c1, c2, a, b, λ1, λ2, and&
(j,�)
h for h ∈ {1, 2, 3}

and j, $ ∈ {1, 2}.
Following Yeung and Petrosyan (2006) the optimal cooperative controls can

then be obtained as:
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ψ
(i,O)j
k−1 (t, x) =

x

4
[
ci +A[tk,tk+1](i,j)(t)/2

]2 , and

ψ
(j,Y )i
k (t, x) =

x

4
[
cj + A[tk,tk+1](i,j)(t)/2

]2 . (5.16)

Substituting these control strategies into (5.2) yields the dynamics of the state
trajectory under cooperation. The optimal cooperative state trajectory in the time
interval [tk, tk+1)can be obtained as:

dx(s)

ds
=

(
ax(s)1/2 − bx(s)− x

4
[
ci +A[tk,tk+1](i,j)(s)/2

]2
− x

4
[
cj +A[tk,tk+1](i,j)(s)/2

]2 )
ds+ σx(s)dz(s), x(t1) = x0, (5.17)

for s ∈ [tk, tk+1) and k ∈ {1, 2, 3}.
We denote the set of realizable states at time t from (5.17) under the scenarios

of different players by X
{tk,tk+1](i,j)∗
t , for t ∈ [tk, tk+1) and k ∈ {1, 2, 3}. We use

the term x
{tk,tk+1](i,j)∗
t ∈X{tk,tk+1](i,j)∗

t to denote an element in X
{tk,tk+1](i,j)∗
t . The

term x∗t is used to denote x
{tk,tk+1](i,j)∗
t whenever there is no ambiguity.

5.3. Subgame Consistent Payoff Distribution

According to the solution optimality principle the players agree to share their
cooperative payoff according to the solution imputations:

ξk−1(i,O)j[�](t, x) = V k−1(i,O)j(t, x) + wh
k−1[W

[tk,tk+1](i,j)(t, x)

−V k−1(i,O)j(t, x) − V k(j,Y )i(t, x)],

ξk(j,Y )i[�](t, x) = V k(j,Y )i(t, x) + wh
k [W

[tk,tk+1](i,j)(t, x)

−V k−1(i,O)j(t, x) − V k(j,Y )i(t, x)],

for $ ∈ {1, 2, 3}, i, j ∈ {1, 2} and k ∈ {1, 2, 3}.
These imputations are continuous differentiable in x and t. If an imputation

vector [ξk−1(i,O)j[�](t, x),ξk(j,Y )i[�](t, x)] is chosen, a crucial process is to derive a
payoff distribution procedure (PDP) so that this imputation could be realized for
t ∈ [tk, tk+1) along the cooperative trajectory {x∗t }

tk+1

t=tk
.

Following Theorem 4.1, a PDP leading to the realization of the imputation
vector [ξk−1(i,O)j[�](t, x),ξk(j,Y )i[�](t, x)] can be obtained as:

Corollary 5.1. A PDP with an instantaneous payment at time t ∈ [tk, tk+1):

B
(i,O)j[�]
k−1 (t) = −ξk−1(i,O)j[�]

t (t, x∗t )−
1

2

m∑
h,ζ=1

Ωhζ(t, x∗t )ξ
k−1(i,O)j[�]

xhxζ (t, x∗t )

−ξk−1(i,O)j[�]
x (t, x∗t )

[
a(x∗t )

1/2 − bx∗t
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− x∗t

4
[
ci +A[tk,tk+1](i,j)(t)/2

]2 − x∗t

4
[
cj +A[tk,tk+1](i,j)(t)/2

]2 ]
, (5.18)

allocated to the type i generation k − 1 player;
and an instantaneous payment at time t ∈ [tk, tk+1):

B
(j,Y )i[�]
k (t) = −ξk(j,Y )i[�]

t (t, x∗t )−
1

2

m∑
h,ζ=1

Ωhζ(t, x∗t )ξ
k(j,Y )i[�]

xhxζ (t, x∗t )

−ξk(j,Y )i[�]
x (t, x∗t )

[
a(x∗t )

1/2 − bx∗t

− x∗t

4
[
ci +A[tk,tk+1](i,j)(t)/2

]2 − x∗t

4
[
cj +A[tk,tk+1](i,j)(t)/2

]2 ]
(5.19)

allocated to the type j generation k player,
yields a mechanism leading to the realization of the imputation vector
[ξk−1(i,O)j[�](t, x),ξk(j,Y )i[�](t, x)], for k ∈ {1, 2, 3}, $ ∈ {1, 2, 3} and i, j ∈ {1, 2}.

Since the imputations ξk−1(i,O)j[�](t, x) and ξk(j,Y )i[�](t, x) are in terms of explicit
differentiable functions, the relevant derivatives in Corollary 5.1 can be derived

using the results in Propositions 5.1, 5.2 and 5.3. Hence, the PDP B
(i,O)j[�]
k−1 (t)and

B
(j,Y )i[�]
k (t) in (5.18) and (5.19) can be obtained explicitly.

6. Concluding Remarks and Extensions

This paper considers cooperative stochastic differential games in which players
enter the game at different times and have diverse horizons. Moreover, the types
of future players are not known with certainty. Subgame consistent cooperative
solutions and analytically tractable payoff distribution mechanisms leading to the
realization of these solutions are derived. The analysis extends the Yeung (2011)
analysis with the incorporation of stochastic dynamics.

The asynchronous horizons game presented can be extended in a couple of direc-
tions. First, more complicated stochastic processes can be adopted in the analysis.
For instance, the random variable governing the types of future players can be a
series of non-identical random variables ωkak

∈ {ωk1 , ωk2 , · · · , ωkςk} with probabilities

λkak
∈ {λk1 , λk2 , · · · , λkςk}, for k ∈ {2, 3, · · · , υ}.
Secondly, the overlapping generations of players can be extended to more com-

plex structures. The game horizon of the players can include more than two time
intervals and be different across players. The number of players in each time inter-
val can also be more than two and be different across intervals. The analysis can
be formulated as a general class of stochastic differential games with asynchronous
horizons structure. In particular, the type ωak

generation k player’s game horizon

is [tk, tk+ηk ), where ηk ≥ 1. The term u
(ωk,S1)
k (s) is used to denote the vector of

controls of the type ωak
generation k player in his first game interval [tk, tk+1); and
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u
(ωk,S2)
k (s) is that in his second game interval [tk+1, tk+2) and so on. This results in a

general class of stochastic differential games with asynchronous horizons structure.
Theorem 3.1 and Theorem 4.1 can be readily extended to this general structure
with more than two players in each time interval.

Finally, this is the first time that subgame consistent cooperative solutions are
analyzed and derived in stochastic differential games with asynchronous players’
horizons, further research along this line is expected.
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