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Abstract The least core, a well-known solution concept in TU games set-
ting, satisfies many properties used in axiomatizations of TU game solu-
tions: it is efficient, anonymous, covariant, possesses shift-invariance, and
max-invariance. However, it is not consistent thought the prenucleolus, that
is consistent, is contained in it. Therefore, the least core may contain other
consistent subsolutions. Since the union of consistent in the sense of Davis–
Maschler solutions is also consistent, there should exist the unique maximal
under inclusion consistent subsolution of the least core. In the paper we
present and characterize this solution.
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1. Introduction

Consistency properties of solutions for game with transferable utilities (TU
games) connect between themselves the solution sets of games with different player
sets. This property means that given a TU game and a coalition of players leaving
the game with payoffs prescribed them by a solution, the other players involved
in a reduced game, should obtain, in accordance with the same solution, the same
payoffs as in the initial game.

This property is a powerful tool in the study of social welfare functions and
orderings. However, in cooperative game setting the reduced games are not defined
uniquely by both TU game and solution concept. There are some approaches to
the definition of the reduced games and the corresponding to them definition of
consistency, The first and the most popular definition belongs to Davis and Maschler
(Davis and Maschler, 1965), who defined the characteristic function of the reduced
game in the assumption that the players leaving the game gave up all their power
to the remaining coalitions. Just this definition of the reduced games will be used
in the paper.

There are some other properties of TU game solutions which the most well-
known solutions possess: they are efficiency, anonymity (equal treatment prop-
erty (ETP)), and covariance under strategic transformations. Together with consis-
tency the unique maximal under inclusion solution satisfying them is the prekernel
(Davis and Maschler, 1965), and the unique single-valued solution, i.e., a minimal
one under inclusion, is the prenucleolus. It is worthwhile to study other non-empty,
efficient, anonymous (or/and satisfying ETP), covariant, and consistent solutions
for the class of all TU games. It is clear that all of them are contained in the
prekernel.

� This work was supported by the Russian Foundation for Basic Research under grant
No.11-01-0411
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We begin to study such solutions from those that are contained in the least core
as well. The least core is a well-known solution concept for TU games. The least
core in non-empty for every TU game, it is efficient, anonymous, and covariant.
Moreover, it is contained in the core when the latter is non-empty. However, the
least core is not consistent. Nevertheless, it deserves studying, since it turns out to
be the first step for finding the prenucleolus, as the result of minimization of the
maximal excesses of coalitions. Perhaps, there are many consistent subsolutions of
the least core. Since the union of consistent solutions is also consistent, it is natural,
first, to describe the unique maximal under inclusion consistent subsolution of the
least core. In section 2 the necessary definitions and the known properties of some
solution are given. Section 3 gives a recurrent in the number of players formula
for the membership of a payoff vector to a consistent subsolution of the least core.
The main results are contained in Sections 4 and 5, where a combinatorial and an
axiomatic characterizations of the maximal consistent subsolution of the least core
are given respectively. Examples are collected in section 6.

2. Definitions and known results

Let N be a set (the universe of players), then a cooperative game with trans-
ferable utilities (TU game) is a pair (N, v), where N ⊂ N is a finite set, the set of
players, and v : 2N → IR1 is a characteristic function assigning to each coalition
S ⊂ N a real number v(S) (with a convention v(∅) = 0), reflecting a power of the
coalition. In the sequel we consider the class of all TU games GN for some universe
N .

For any x ∈ IRN , S ⊂ N we denote by xS the projection of x on the space IRS ,
and by x(S) the sum

∑
i∈S xi, with a convention x(∅) = 0.

A solution σ is a mapping associating with each game (N, v) a subset σ(N, v) ⊂
X(N, v) of its feasible payoff vectors

X(N, v) = {x ∈ IRN |
∑
i∈N

xi ≤ v(N)}.

By X∗(N, v) we denote the set of efficient payoff vectors or preimputations:

X∗(N, v) = {x ∈ IRN |
∑
i∈N

xi = v(N)}.

If for each game (N, v) |σ(N, v)| = 1, then the solution σ is called single-valued
(SV).

If for a game (N, v) the equalities v(S∪{i}) = v(S∪{j}) hold for some i, j ∈ N
and all S ⊂ N \ {i, j}, then the players i, j are called substitutes.

Recall some well-known properties of TU games solutions:
A solution σ

– is non-empty or satisfies nonemptiness (NE), if σ(N, v) �= ∅ for every game
(N, v);

– efficient, or Pareto optimal (PO), if
∑

i∈N xi = v(N) for every x ∈ σ(N, v) and
for every game (N, v);

– is anonymous (ANO), Let (N, v), (M,w) be arbitrary games. If there exists a
bijection π : N → M such that πv = w, where πv(S) = v(π−1(S))∀S ⊂ N,
then σ(M,w) = πσ(N, v), (where, for any x ∈ IRRN , (πx)j = xπ−1(j) ∀j ∈M);
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– satisfies the equal treatment property (ETP), if for every game (N, v), for every
x ∈ σ(N, v) it holds xi = xj for all substitutes i, j ∈ N ;

– is covariant (COV), if it is covariant under strategical transformations of games:

σ(N,αv + β) = ασ(N, v) + β

for all α > 0, β ∈ IRN , where (αv + β)(S) = αv(S) +
∑

i∈S βi for all S ∈ N ;
– is shift invariant (SHI), if for every game (N, v) and number α σ(N, v) =
σ(N, v + α), where

(v + α)(S) =

{
v(N), if S = N,

v(S) + α for S � N.
;

– is individual rational, if from x ∈ σ(N, v) it follows xi ≥ v){i}) for all k ∈ N ;
– is consistent (CONS) (Sobolev, 1975,Peleg, 1986), if for any game (N, v) and
x ∈ σ(N, v) it holds that

xN\T ∈ σ(N \ T, vxN\T ), (1)

where (N \T, vxN\T ) is the reduced game being obtained when a coalition T � N
leaves the game;

– is bilateral consistent, if the previous property takes place for two-person reduced
games (|N \ T | = 2;)

– is converse consistent (CCONS) (Peleg, 1986), if for every game (N, v) with
|N | ≥ 2, and x ∈ X∗(N, v)
from x{i,j} ∈ σ({i, j}, vx{i,j}) for all i, j ∈ N it follows x ∈ σ(N, v);

The last four properties need the definition of reduced games. Different defini-
tions of the reduced games lead to different definitions of consistency. In the paper
we will rely the so-called ”max” consistency which defines the reduced games in the
sense of Davis–Maschler (Davis and Maschler, 1965).

Given a TU game (N, v), its payoff vector x ∈ X(N, v), and a coalition S � N,
the Davis–Maschler reduced game (Davis and Maschler, 1965) (S, vxS) on the player
set S with respect to x is defined by the following characteristic function

vxS(T ) =

{
v(N)−

∑
i∈N\S xi, for T = S,

maxQ⊂N\S(v(T ∪Q)−
∑

i∈Q xi) otherwise .
(2)

If for some universe N we consider the set of all consistent solutions, then in
this set the single-valued solutions turn out to be minimal under inclusion solu-
tions, and those satisfying more converse consistency are maximum under inclusion
solutions. Among the set of covariant and consistent solutions, satisfying the equal
treatment property, there are the unique single-valued one – it is the prenucleolus
(Sobolev, 1975), and the maximum one – it is the prekernel (Peleg, 1986).

Recall their definitions.
Given a TU game (N, v), its payoff vector x ∈ X(N, v), and a coalition S � N,

the excess of a coalition S with respect to x is equal to v(S)− x(S). This difference
is a total amount that the coalition S will have after paying xi to each player i ∈ S.
By e(x) = {e(S, x)}S⊂N we denote the excess vector of x.
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Denote by θ(x) ∈ IR2N the vector whose components coincide with those of
e(x), but arranged in a weakly decreasing manner, that is,

θt(x) := max
T ⊂2N

|T |=t

min
S∈T

e(S, x) ∀t = 1, ..., p, whereas p := 2|N | − 2.

We will use also the notation θv(x) if it is necessary to indicate the characteristic
function in the definition of the excess vector.

By ek(x) we will denote the k-valued component of the vector θ(x) such that
e1(x) > e2(x) > ...ek(x) for some k, and by

Sj(v, x) = {S � N | v(S)− x(S) = ej(x)} (3)

the set of coalitions on which the j-valued excess of the vector x is attained.

Let ≥lex denote the lexicographic order in IRm for an arbitrary m :

x ≥lex y ⇐⇒ x = y or ∃1 ≤ k ≤ m such that xk > yk and xi = yi for i < k.

The prenucleolus of the game (N, v), PN(N, v), is the unique efficient payoff
vector such that

θ(x) ≥lex θ(PN(N, v)) for all x ∈ X∗(N, v). (4)

The existence and the uniqueness of the prenucleolus for each TU game follows
from Schmeidler’s theorem (Schmeidler, 1969) though he considered the nucleolus
defined as in (4) only for all individual rational payoff vectors (imputations): x ∈
I(N, v), where

I(N, v) = {x ∈ X∗(N, v) |xi ≥ v({i}) ∀i ∈ N}.

For each i, j ∈ N and a payoff vector x the maximum surplus of i over j in x is
denoted by

sij(x, v) = max
S�i,S 	�j

(v(S) − x(S)).

The prekernel of a game (N, v), PK(N, v), is the set

PK(N, v) = {x ∈ X∗(N, v) | sij(x, v) = sji(x, v) for all i, j ∈ N}. (5)

The prenucleolus and the prekernel have the following axiomatic characteriza-
tions.

Theorem 1 ((Sobolev, 1975)). If N is infinite, then the unique solution satis-
fying SV, COV, ANO, and CONS is the prenucleolus.

Theorem 2 ((Orshan, 1993)). If N is infinite, then the unique solution satisfy-
ing SV, COV, ETP, and CONS is the prenucleolus.

Theorem 3 ((Peleg, 1986)). For an arbitrary set N the unique solution satisfy-
ing NE, PO, COV, ETP, CONS, and CCONS is the prekernel.
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3. The least core and its consistent subsolutions

The least core (LC) of a game (N, v) is defined by

LC(N, v) = arg min
x∈X∗(N,v)

max
S�N

(v(S)− x(S)).

The least core is non-empty for all TU games, it is efficient, anonymous, and
covariant. However, it is not consistent.

By the definition it follows that x ∈ LC(N, v) implies that maxS⊂N(v(S) −
x(S)) = e1(x), where e1(x) is the maximal components of the excess vector e(x).
Thus, the maximal components of the excess vectors e(x) for x ∈ LC(N, v) and
e(PN(N, v)) coincide.

Let σ be an arbitrary consistent subsolution of the least core. Then for every
two-person game (N, v) σ(N, v) = PK(N, v) = LC(N, v), and, by consistency of σ
and the cited Theorem 3, σ(N, v) ⊂ PK(N, v) for every TU game (N, v).

Evidently, the class Σ of all consistent subsolutions of the least core is closed
under the union: if σ1, σ2 ∈ Σ, then σ1 ∨ σ2 ∈ Σ, where for every game (N, v)
(σ1 ∨ σ2)(N, v) = σ1(N, v) ∪ σ2(N, v)

Let us consider the solution σ∗ = ∨σ∈Σ . Then the solution σ∗ ∈ Σ, and it is
the maximum under inclusion solution from the class Σ.

Recall the definition of balancedness.
A collection B of coalitions from the set N is balanced, if there exists positive

numbers λS for all S ∈ B such that∑
S�i
S∈B

λS = 1 (6)

for all i ∈ N. It is balanced on T ⊂ N, if equalities (6) hold only for i ∈ T.
A collection B is weakly balanced if it contains a balanced subcollection.

We begin to characterize the solution σ∗ with the recurrent in the number of
players formula.

It is clear that for two-person games, |N | = 2, σ∗(N, v) = LC(N, v) = PK(N, v)
is the standard solution.

It is known that for x ∈ LC(N, v) the collection S1(v, x) (3) is weakly bal-
anced, hence, it contains a balanced subcollection. Let S1(v) be such a balanced
subcollection

S1(v) =
⋂

x∈LC(N,c)

S1(v, x). (7)

It generates a partition T1(v) = {T1, ..., Tk} of the set N defined by:
for every j = 1, ..., k and S ∈ S1(v) Tj is the maximal under inclusion subset
of players such that either Tj ⊂ S, or Tj ∩ S = ∅. In accordance with the paper
(Maschler, Peleg and Shapley, 1979), we call the partition T1 the partition induced
by the collection S1(v).

A collection S of coalitions from N is called separating, if S ∈ S, i ∈ S, j /∈ S,
i, j ∈ N implies the existence T ∈ S such that j ∈ T, i /∈ T.

If for a separating collection of coalitions S the induced partition T(S) is a
partition on singletons, then we call such a collection completely separating.
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Proposition 1. A solution σ belongs to the class Σ : σ ∈ Σ if and only if for
every game (N, v)

σ(N, v) = {x ∈ LC(N, v) |xTj ∈ σ(Tj , v
x
Tj
), j = 1, ..., k}, (8)

where (Tj , v
x
Tj
) is the reduced game of (N, v) on the player set Tj and with respect

to x.

Proof. It is clear that every vector x ∈ σ(N, v) satisfies the right-hand part of
equality (8).

Let us show the inverse inclusion. Consider an arbitrary vector x satisfying the
right-hand part of equality (8). Then by the definition of the partition T1(v) for
players k ∈ Ti, l ∈ Tj, i �= j it holds the equality

skl(x) = slk(x). (9)

If both players k, l ∈ Tj , then equality (9) follows from consistency of σ implying
xTj ∈ σ(Tj , v

x
Tj
). Hence, x ∈ PK(N, v).

Let us show that for every coalition S ⊂ N xS ∈ LC(S, vxS).

Consider the following cases:

1) S ⊂ Tj for some j = 1, ..., k. Path independence property of the reduced
characteristic functions (Pechersky and Yanovakaya, 2004) implies equality

vxS = (vxTj
)xS ,

from which and from xTj ∈ σ(Tj , v
x
Tj
) by the inductive assumption it follows xS ∈

σ(S, vxS), xS ∈ LC(S, vx).

2) ∃i, j = 1, ..., k S ∩ Ti �= ∅, S ∩ Tj �= ∅. Without loss of generality assume
that S ⊂ Ti ∩ Tj . Then in the reduced game (S, vx) S1(vxS) = S1(v)|xN\S �= {S}.

Therefore, xS ∈ LC(S, vx), and for every reduced game (S, vxS) of the game
(N, v) every vector x, satisfying the right-hand part of equality (8), belongs to the
set (LC ∩ PK)(S, vxS). Since x ∈ (LC ∩ PK)(N, v), this means that the solution
defined in the right-hand part of equality (5), is a consistent subsolution of the
solution (LC ∩ PK).

The following example shows that σ∗ is a proper subsolution of the solution
(LC ∩ PK).

Example 1. Consider a five-person game being a version of the known game from
(Davis and Maschler, 1965)
N = {1, 2, 3, 4, 5}, v(N) = 7, v({i, j, k}) = 3 for all i, j = 1, 2, 3, k = 4, 5,
v(S) = 0 for other S ⊂ N.

Since the players 1,2,3 and 4,5 are substitutes, PK(N, v) =
{
t, t, t, 7−3t

2 ,
7−3t
2

}
t∈[3/2,1]

, and (LC ∩ PK)(N, v) = PN(N, v) = (32 ,
3
2
3
2 ,

5
4 ,

5
4 ) = x∗,

maxij sij(x) = −5/4. This maximum is attained on coalitions (i, j, k), for i, j =
1, 2, 3, k = 4, 5, and on singletons k ∈ {4, 5}.

Replicate this game. LetN∗ = {6, 7, 8, 9, 10}, and consider the game (N∪N∗, ṽ),
where ṽ(N ∪N∗) = 14, ṽ(S) = v(S) for S ⊂ N S ⊂ N∗, and for S = P ∪ Q,P ⊂
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N,Q ⊂ N∗ ṽ(S) = ṽ(P ) + ṽ(Q). Then

LC(N ∪N∗, ṽ) = {(x, y) |x, y ∈ IR5
+, }, where

5∑
i=1

xi =

10∑
j=6

yj = 7, xi, yj ≥ 0.

Thus,

(LC ∩ PK)(N ∪N∗, ṽ) = {(x, y) |x ∈ PK(N, v), y ∈ PK(N∗, ṽ)}.

Now let us consider the reduced game (N, vy) of (N ∪N∗, ṽ) on the player set
N with respect to an arbitrary vector (x, y) ∈ PK(N ∪N∗, ṽ), and let x �= x∗. The
definition of the reduced game implies that vy = v. Therefore, in the reduced game
x /∈ (LC ∩ PK)(N, vy) = (LC ∩ PK)(N, v).

4. The maximum consistent subsolution of the least core

In this section we give a combinatorial characterization, firstly applied by Kohlberg
(Kohlberg, 1971) for the characterization of the prenucleolus, of the maximum con-
sistent subsolution of the least core.

Let us recall formula (8). Its right-hand part consists of the solutions of the
reduced games on the coalitions of the partition of the set of players, induced by
the collection S1(v) of coalitions on which the minimum of the maximal excesses
for all vectors from the least core is attained.

Note that by definition (2) the reduced game (S, vx) of a game (N, v) on an
arbitrary set S of players and with respect to x does not depend on characteristic
function values v(T ) for T � N \ S. Therefore, all reduced games on coalitions of
an arbitrary partition T of the set of players do not depend on the values v(S) for
S ∈ T , where T is the collection of all coalitions being unions of the coalitions of
the partition T.

Thus, when the least core of a game (N, v) has been defined, the characteristic
function values of coalitions being unions of coalitions of the partition T1(v), turn
out to be inessential for the definition σ(N, v) of arbitrary solution σ ∈ Σ(N, v).
Just this fact is a basic tool for the following description of the set of preimputations
belonging to any consistent subsolution, including the maximum one, of the least
core.

First, introduce the following notation. Given an arbitrary game (N, v) an a
preimputation x ∈ X∗(N, v) let

T1(v, x) be the partition of N, induced by the collection S1(v, x) that was de-
fined in (5);

T0(v, x) = {N};

I1(v, x) = {(i, j) | sij(x) = maxi′,j′∈N si′j′(x)} the set of pairs of players on
which the largest maximal surplus value for x is attained;

for h > 1 Ih(v, x) = {(i, j) | sij(x) = max
(i′,j′)/∈

⋃h−1
l=1 Il(x)

si′j′ (x)} is the set of pairs

of players on which the h-th maximal surplus value is attained;
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Sij(v, x) = argmax
S�i

S 	�j
(v(S)− x(S)) the collection of coalitions on which the max-

imal surplus value for x equals sij(x);

Ek(v, x) =
⋃

(i,j)∈Ik(v,x)
Sij(v, x) (10)

the collection of all coalitions on which the k-th maximal surplus values are attained.
Evidently, E1(v, x) = S1(v, x);

Tk(v, x) is the partition of N, induced by the collection
⋃k
h=1 Eh(v, x).

Arrange the values sij(x) in a decreasing manner:

s1(x) = sij(x), (i, j) ∈ I1(v, x),
... ...

sl(x) = sij(x), (i, j) ∈ Il(v, x),

where sl(x) is the minimal value of maximal surpluses for x, (generally, l = l(x)).
It s known that the values sij(x) do not change under reducing, that is for

every coalition T ⊂ N and players i, j ∈ T the equality sij(x) = sij(xT ) holds,
where sij(xT ) is the maximal surplus value of player i over the player j in the
reduced game (T, vx) with respect to x. Hence, for this reduced game the following
equalities hold as well

Sij(v, x)|T = Sij(vx, xT ) i, j ∈ T ;

Ek(v, x)|T =

{
T, if T ⊂ S ∀S ∈ Ek(v, x),
Eh(vx, xT ), for some h ≤ k otherwise,

.

Hence, the excess values v(S) − x(S) ∈ (sh(x), sh−1(x)) for h = 2, ..., l and for

coalitions S /∈
⋃l
h=1 Eh(v, x) have no influence on the similar values in the reduced

games.

Theorem 4. Given a game (N, v), its preimputation x ∈ σ∗(N, v) if and only if the
collections Eh(v, x) are balanced on all sets T ∈ Th−1(v, x), |T | > 1, h = 1, ..., l(x).

Proof. The ’only if’ part. Let x ∈ σ∗(N, v). For |N | = 2 the conditions of the
Theorem is fulfilled, since for two-person games σ∗ is the standard solution.

Assume that the condition of the Theorem for x have been fulfilled for all TU
games whose numbers of of players are less than n = |N |.

Let a collection Eh(v, x) is not balanced on some T ∈ Th−1(v, x), |T | > 1
and for some 1 < h < l(x). Then in the reduced game (T, vx) the collection
Ef(vx, xT ) = Eh(v, x)|T for some f = f(h) ≤ h, and it is not balanced. Since
σ∗ is a consistent solution, we should have the inclusion xT ∈ σ(T, vx), that means
that for the reduced game (T, vx) the conditions of the Theorem violates, and we
obtain a contradiction.

The ’if’ part.
Let (N, v) be an arbitrary game and a preimputation x satisfies all conditions

of the Theorem. Then the collections Eh(v, x) are balanced on every two-person
coalition for all h = 1, ..., l. In fact, for every h = 1, ..., l any players k,m ∈ N either
belong to a coalition T ∈ Th−1(v, x) on which the collection Eh(v, x) is balanced,
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or they belong to different coalitions from the partition Th(v, x) and, hence, they
are separated.

It is clear that for |N | = 2 balancedness of the collection S1(v, x) = E1(v, x)
implies that σ∗(N, v) = LC(N, v) = PK(N, v) is the standard solution.

Let now |N | > 2 and assume that the ’if’ part of the Theorem holds for all

games with the number of players less than n = |N |. The collection
⋃l(x)
h=1 Eh(v, x) is

completely separating, Since every balanced collection is separating, balancedness of
the collections Eh(v, x) on T ∈ Th−1(v, x), h = 1, ..., l(x) implies that x ∈ PK(N, v).

Equality E1(v, x) = S1(v, x) and balancedness of this collection on N yields
x ∈ LC(N, v). Thus, it only remains to show consistency, i.e. that for every coalition
T ⊂ N equality (8) holds

xT ∈ LC(T, vx) (11)

The definition of the collection E1(v, x) = S1(N, v) yields that for every coalition
T �⊂ T ′ ∈ T1(v, x)) inclusion (11) holds.

Let us consider the reduced game (T, vx), where T ∈ T ′ ∈ T1. Let h > 1 ne
the minimal number for which Ej(v, x)|T �= {T }. This means that E1(vx, xT ) =
Ej(v, x)|T . The collection Ej(v, x) is balanced on every coalition T ′ ∈ Tj−1(v, x),
and the set T ⊂ T ′ itself is one of such a T ′, since for f < h Sf |T = T by the
definition of h. Therefore, xT ∈ LC(T, vx).

5. An axiomatic characterization of the maximum consistent
subsolution of the least core.

Denote by Gb ⊂ GN the class of all balanced games , i.e., the class of games with
nonempty cores, and by Gtb ⊂ Gb the class of all totally balanced games, i.e. games
whose every subgame is balanced.

Peleg (Peleg, 1986) gave the following axiomatic characterizations of the core
(C) and of the intersection of the core (C ∩ PK) with the prekernel of the class of
totally balanced games.

Theorem 5 (Peleg, 1986). The solution C ∩ PK is a unique solution for the
class Gtb, satisfying efficiency, individual rationality, equal treatment property, weak
consistency, and converse consistency.

This characterization holds for the class of balanced games Gb as well. Moreover,
converse consistency can be replaced by maximality under inclusion.

Let us compare the solution C ∩PK with the maximum consistent subsolution
of the least core σ∗. The last solution is defined in the whole class GN and satisfies
all the axioms of Peleg’s theorem except for individual rationality. It turns out
that these axioms together with shift invariance are sufficient for the axiomatic
characterization of the solution σ∗.

Theorem 6. The solution σ∗ is the unique maximal under inclusion solution for
the class GN , satisfying axioms non-emptiness, efficiency, equal treatment property,
covariance, shift invariance, and consistency in the class Gb of balanced games.

Proof. It is clear that the solution σ∗ satisfies all these axioms in the whole class
GN . Thus, it suffices to check consistency in the class of balanced games. Thus, we
should show that for every balanced game (N, v), every x ∈ σ∗(N, v), and for a
coalition S ⊂ N, the reduced game is balanced. The least core of every balanced
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game is contained in its core, hence, x ∈ C(N, v). It is known that the core is
consistent in the class of balanced games (Peleg, 1986). Therefore, every reduced
game of the game (N, v) with respect to any vector from the core, including x, is
balanced.

Before the proof of uniqueness let us note that for every game (N, v) and for
its reduced game (S, vx) on a coalition S with respect to x, the vx − a = (v − a)x,
holds for all numbers a, where

(v − a)(T ) =

{
v(N), if T = N,

v(T )− a for other T ⊂ N.

Let now σ be an arbitrary solution satisfying all the axioms stated in the Theo-
rem. Let (N, v) be an arbitrary game, and a be the number such that C(N, v−a) =
LC(N, v − a) = LC(N, v). Let x ∈ σ(N, v) be an arbitrary vector. By shift invari-
ance of σ σ(N, v) = σ(N, v− a). By consistency of σ in the class of balanced games
for every coalition S xS ∈ σ(S, (v − a)x) = σ(S, vx − a). From shift invariance of σ
it follows xs ∈ σ(S, vx), that means that the solution σ is consistent on the whole
class GN . Axioms efficiency, equal treatment property, covariance and consistency
of σ on the class GN implies that σ ⊂ PK by the cited Theorem 5.

Let us show that σ ⊂ LC. For two-person games we have σ = PK = LC.
Assume that there is a vector x ∈ σ(N, v) such that x /∈ LC(N, v) = C(N, v − a).
Then by shift invariance of σ x ∈ σ(N, v − a), and by consistency and converse
consistency of the core (Peleg, 1986) there are players i, j ∈ N such that the reduce
game {i, j}, (v − a)x) is not balanced that contradicts consistency of σ in the class
of balanced games.

Thus, we have obtained that every solution σ satisfying the axioms stated in
the Theorem, is a consistent subsolution of the least core.Therefore, the maximum
of such solutions is the solution σ∗.

On the contrary to Peleg’s theorem, the maximality axiom in Theorem 5 can
be replaced by converse consistency. In fact, it is clear that the solution σ∗ satisfies
converse consistency on the class of balanced games. It follows from the coincidence
of σ∗ with the standard solution on the class of two-person games, shift invariance
and converse consistency of the core and of the prekernel on the class of balanced
games. Converse consistency, in its turn, implies maximality under inclusion on the
class of balanced games. At last, shift invariance spreads maximality on the class of
all games.

6. Examples

Let us give an example of consistent subsolutions of the least core. Define a
solution τ on the class GN as follows: for every game (N, v)

τ(N, v) = σk(N,v)(N, v), (12)

where k(N, v) is the minimal number for which the collection
⋃j(N,v)
j=1 Sj(v) is com-

pletely separating.
Evidently, τ ⊂ (LC ∩PK). It is easy to check that the solution τ is consistent,

and, hence, τ ⊂ σ∗.
Let us show that τ is a proper subsolution of σ∗.
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Example 2. N = {1, 2, 3, 4, 5, 6, 7, 8}, v(N) = 10, v(1, 3, 5, 7) = v(2, 4, 6, 8) = 4,
v(1, 2) = v(3, 4) = v(5, 6) = v(7, 8) = 1, v({i}) = −1/2, i = 1, ..., 8, v(S) = 0, for
other coalitions.

For this game

S1(v) = {1, 3, 5, 7}, {2, 4, 6, 8},

LC(N, v) = {x |xi ≥ 1/2, x1 + x3 + x5 + x7 = x2 + x4 + x6 + x8 = 5}, (13)

e1(x) = emax = −1 for all x ∈ LC(N, v).
The second minimization of the ordered excess vector yields the second value

excess e2 = − 3
2 , that for all x ∈ τ(N, v) is attained on coalitions

S2(v) = (1, 2), (3, 4), (5, 6), (7, 8), (14)

and, possibly, on some others, because S2(v, x) ⊃ S2(v).
Equality (14) yields that for x ∈ τ(N, v)

x1 + x2 = x3 + x4 = x5 + x6 = x7 + x8 =
5

2
. (15)

The collection S1(v) ∪ S2(v) is completely separating, hence,

τ(N, v) = α

(
1

2
, 2, 2,

1

2

)
+(1−α)

(
2,

1

2
,
1

2
, 2

)
, β

(
2,

1

2
,
1

2
, 2

)
+(1−β)

(
2,

1

2
,
1

2
, 2

)
(16)

for any α, β ∈ [0, 1]. Here components with α have coordinates from 1 to 4, and
components with β have coordinates from 5 to 8.

In this example τ(N, v) = σ∗(N, v) = LC ∩ PK, since in the least core the
players i, i + 1(mod(8), i ∈ N are separated, and for players i, i + 2(mod8), i ∈ N
the largest maximal surplus values sii+2(x) are attained on the coalitions {i, i+1},
implying equalities (15). Therefore, the solution τ(N, v) coincides with σ∗(N, v),
which, in its turn, coincides with LC ∩ PK.

Note that there are two permutations πk : N → N, π1(i) = i+1(mod8), π2(i) =
i+2(mod8) such that πk(N, v) = (N, v), k = 1, 2. By anonymity of the prenucleolus

we should have PN(N, v) = (v(N)
8 , ..., v(N)

8 ) =
(
5
4 ,

5
4 ,

5
4 ,

5
4 ,

5
4 ,

5
4 ,

5
4 ,

5
4

)
.

This vector can be also obtained after the third minimization of the excess
vector, giving the third excess value e3 = − 7

4 , attained on the singletons.

Example 3. Consider a slight modification (N ′, v′) of the game (N, v) from Example
2, where N ′ = {1′, 2′, 3′, 4′, 5′.6′, 7′, 8′}, and whose characteristic function is defined
as follows:

v′(S′) =

{
3/2, for coalitions {1′, 2′}, {3′, 4′}, {5′, 6′}, {7′, 8′},
v′(S′) for other coalitions S′ ⊂ N.

For this game we obtain that the collection
S1(v′) = {{1′, 3′, 5′, 7′}, {2′, 4′, 6′, 8′}, {1′, 2′}, {3′, 4′}, {5′, 6}, {7′, 8′}}
is already completely separating, hence, the solutions LC(N, v′) = σ∗(N, v′) =
τ(N, v′) are defined by equality (13) with replacing i on i′, i, i′ = 1, ..., 8.
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Define a composition (N ∪N ′, w) of the games (N, v) and (N ′, v′), whose char-
acteristic function w is additive with respect to v and v′ : for every Q ⊂ N ∪N ′

w(Q) = v(S) + v′(T ), if Q = S ∪ T, S ⊂ N, T ⊂ N ′.

Then
S1(w) = {1, ..., 8}, {1′, ..., 8′} implying e1(x) = emax(w) = 0 (17)

for all x ∈ LV (N ∪ N ′, w). Since the game (N ∪ N ′, w) is balanced, its reduced
games on the sets N and N ′ with respect to vectors from the core ( including the
least core) coincide with the games (N, v) and (N ′, v′) respectively.

Therefore, the solution set σ∗(N ∪N∗, w) is equal to product

σ∗(N ∪N∗, w) = σ∗(N, v)× σ∗(N ′, v′). (18)

Let us find the solution set τ(N ∪ N ′, w). Evidently, S2(w) = S1(v) ∪ S1(v′), and
the collections S1(w) (17) and (S1 ∪ S2)(w) are not completely saparating, since
collection S1(v) (13) is not completely separating on N.

The collection S3(w) is equal to

S3(w) = S2(v)× S2(v′).

The collection S2(v) is defined in (14), and the collection S2(v′) consists of singletons
{1′}, ...{8′}.

Therefore, e2(v
′) = − 7

4 , the collection S1(v′) ∪ S2(v′) is completely separating,
and we obtain

σ∗(N ′, v′) = τ(N ′, v′) = PN(N ′, v′) =

(
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4

)
.

Thus, for the game (N ∪N ′, w)

τ(N ∪N ′, w) = τ(N, v) ×
(
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4
,
5

4

)
� σ∗(N ∪N ′, w).

7. Conclusion

The results given in the paper is a step to the description of all TU game so-
lutions satisfying efficiency, anonymity/equal treatment property, covariance, and
Davis–Maschler consistency. At present, apart from the solutions presented here,
only the k-prekernels are known (Katsev and Yanovskaya, 2009). All they are con-
tained in the prekernel, but, at the same time, have some ”nucleolus-type” traits
connected with lexicographic optimization of excess and of maximum surplus vec-
tors. The open problem is to find other such solutions.
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