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Abstract We describe a method for constructing feedback strategies based
on minimizing/maximizing state evaluation functions with use of steepest
descent/ascent conditions. For a specific kinematics, not all control variables
may be presented implicitly in the corresponding optimality conditions and
some additional local conditions are to be invoked to design strategies for
these controls. We apply the general technics to evaluate a chance for the
pursuer P to approach the real target that uses decoys by a kill radius r.
Assumed that P cannot classify the real and false targets. Therefore, P tries
to come close to the furthest evader, and thereby to guarantee the capture of
all targets including the real one. We setup two-person zero-sum differential
games of degree with perfect information of the pursuing, P , and several
identical evading, E1, . . . , EN , agents. The P ’s goal is to approach the fur-
thest of E1, . . . , EN as closely as possible. Euclidean distances to the furthest
evader at the current state or their smooth approximations are used as eval-
uation functions. For an agent with simple motion, the method allows to
specify the strategy for heading angle completely. For an agent that drives
a Dubins or Reeds-Shepp car, first we define his targeted trajectory as one
that corresponds to the game where all agents has simple motions and apply
the locally optimal strategies for heading angles. Then, to design strategies
for angular and ordinary velocities, local conditions under which the result-
ing trajectories approximate the targeted ones are invoked. Two numerical
examples of the pursuit simulation when one or two decoys launched at the
initial instant are given.

Keywords: Conservative pursuit strategy, Lyapunov-type function, steep-
est descent/ascent condition, smooth approximation for min/max, Dubins
car, Reeds-Shepp car, decoy.

1. Introduction

In spite of tremendous progress made through its a relatively short history,
theory of differential games doesn’t provide direct methods and tools for solving
concrete games. In this paper, we describe a method for minimax optimization
of terminal outcomes. Minimizing/maximizing feedback strategies are constructed
with use of steepest descent/ascent conditions for the corresponding state evaluation
functions; see, e.g., (Sticht et al., 1975 ; Shevchenko, 2008; Stipanović et al., 2009).
For a specific kinematics, not all control variables may be presented implicitly in the
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corresponding optimality conditions. Therefore, some additional local conditions are
needed to be invoked to design strategies for the remaining controls.

To demonstrate the general technics, we analyze models of conflict situations
where an agile pursuer in the plane strives to approach a slower target by a given
distance. Both sides rely on sensors that perfectly measure positions without time
delays. To avoid an inevitable capture, the target changes the information conditions
by launching one or several decoys (false targets) that introduce “false positive”
errors for sensing system of the pursuer (Pang, 2007). Thus, after firing the decoys,
the pursuer faces several identical targets instead of one. It makes his task much
more complicated compared to the original one that could be accomplished just by
following the real target’s trajectory.

Very little work has been done on pursuit-evasion with decoys. Lewin (1973)
considered decoys only with a finite duration of functioning. Breakwell et al. (1979),
Abramyants et al. (1980), Shevchenko (1982) assumed that only one decoy is laun-
ched and the pursuer P can classify a target if it is closely enough. The payoff
equals the total time spent for a successive pursuit in the worst case when P first
approaches the false target for its classification and then capture the real one. So-
lutions for several other related simple games are given, e.g., in (Shevchenko, 1997;
Shevchenko, 2004a; Shevchenko, 2004b; Shevchenko, 2009). Some warfare and com-
bat applications are described, e.g., by Armo (2000), Cho et al. (2000), Pang (2007).

In this paper, to generate a pursuit strategy and evaluate a chance for the
pursuer to succeed with approaching the real target by a kill radius r, we setup
two-person zero-sum differential games of degree with perfect information of the
pursuing, P , and several identical evading, E1, . . . , EN , agents. The P ’s goal is to
approach the furthest of E1, . . . , EN as closer as possible. To construct conservative
pursuit strategies and to determine instants of the pursuit termination, Euclidean
distances to the furthest of E1, . . . , EN at the current state or their smooth approx-
imations (Shevchenko, 2008; Stipanović et al., 2009) are used as evaluation func-
tions. Plane kinematics of the parties is described by some transition equations for
wheeled robots (LaValle, 2006; Patsko and Turova, 2009). For an agent with simple
motion, steepest descent/ascent conditions for these functions allow to specify his
strategy for heading angle completely. For an agents that drive Dubins or Reeds-
Shepp cars, the targeted trajectory correspond to the strategies for heading angles
in the game where all agents have simple motions. To design strategies for angular
and ordinary velocities, local conditions are invoked that make the resulting trajec-
tories as closely as possible to the targeted ones. Two numerical examples of the
pursuit simulation when one or two decoys launched at the initial instant are given.

2. Common Optimality Conditions

Let zP (t) ∈ RnP and ze(t) ∈ Rne obey the separable equations

żP (t) = fP (zP (t), uP (t)), zP (0) = z0P ,

że(t) = fe(ze(t), ue(t)), ze(0) = z0e ,
(1)

where t ≥ 0, uP (t) ∈ UP ⊂ RmP , ue(t) ∈ Ue ⊂ Rme , UP and Ue are compact sets,
fP : RnP ×UP → RnP and fe : Rne ×Ue → Rne , z0P and z0e are the initial positions,
e ∈ E = {E1, . . . , EN}. Suppose that co{fk(zk, uk) : uk ∈ Uk} = fk(zk,Uk), zk ∈
Rnk , k ∈ K = {P} ∪E.
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Let M = nP + nE1 + . . .+ nEN , z = (zP , zE) ∈ Z = RM , and

ż(t) = f(z(t), uP (t), uE(t)), z(0) = z0, (2)

where uE = (uE1 , . . . , uEN ), fE(zE , uE) = (fE1(zE1 , uE1), . . . , fEN (zEN , uEN )),
z0 = (z0P , z

0
E), f(z, uP , uE) = (fP (zE , uP ), fE(zE , uE)). We assume that f is jointly

continuous and locally Lipschitz with respect to z, and satisfies the extendability
condition; see, e.g., (Subbotin and Chentsov, 1981).

Let K : Z → R+ be a directionally differentiable function that evaluates a given
state, and P/E strive to get a lowest/highest value of K along trajectories of (2) by
a given or chosen by P instant t = τ ≥ 0. We define locally optimizing strategies
U l
P ÷ ulP (z) : Z → UP and U l

e ÷ ule(z) : Z → Ue as the functions that meet the
following steepest descent/ascent conditions,

fP (zP , u
l
P (z)) ∈ Arg min

υP∈co fP (zP ,UP )
∂υPK(z),

fe(ze, u
l
e(z)) ∈ Arg max

υe∈co fe(ze,Ue)
∂υeK(z), e ∈ E.

(3)

At the points of differentiability,1 condition (3) may be rewritten as

ulP (z) ∈ Arg min
uP∈UP

∂

∂zP
K(z) · fP (zP , uP ),

ule(z) ∈ Arg max
ue∈Ue

∂

∂ze
K(z) · fe(ze, ue), e ∈ E;

(4)

see, e.g., (Sticht et al., 1975 ; Shevchenko, 2008; Stipanović et al., 2009)
For a given duration τ > 0, initial state z0 ∈ Z, partition Δ of [0, τ ], Δ =

{t0, t1, . . . tn}, t0 = 0, tn = τ , δti = ti+1 − ti, i = 0, 1, . . . , n − 1, and pursuit
strategy U l

P , consider a differential inclusion

ż(t) ∈ co f(z(ti), U
l
P (z(ti)),UE), z(0) = z0, (5)

for ti ≤ t < ti+1 where UE = (UE1 , . . . ,UEN ). Let ZP (z
0,U lP , Δ) be a set of

continuous functions [0, τ ] → Z that are absolutely continuous and meet (5) for
almost all t ∈ (0, τ); see, e.g., (Subbotin and Chentsov, 1981). Let us evaluate K by
the instant τ . Since K is directionally differentiable,

K(z(ti+1))−K(z(ti)) = ∂υiK(z(ti))δti + o(δti) (6)

where ti+1 = ti + δti, z(ti+1) = z(ti) + υiδti, υi ∈ f(z(ti), UP (z(ti)),UE), i =
0, 1, . . . , n− 1. From (6) we obtain that

K(z(tn))−K(z(t0)) =
n−1∑
i=0

∂υiK(z(ti))δti + o(|Δ|), (7)

|Δ| = max δti, and ∂υiK(z(ti)) ≤ ∂υl
i
K(z(ti)) where υli = f(z(ti), u

l
P (z(ti)), u

l
E(z(ti))),

i = 0, 1, . . . , n− 1. Thus we have

K(z(tn))−K(z(t0)) ≤
n−1∑
i=0

∂υl
i
K(z(ti))δti + o(|Δ|). (8)

1 For example, K is differentiable at almost all points of Z if it is uniformly Lipschitz
continuous in every open set (Friedman, 1999).
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Let U l
P ÷ ulP (z) and U l

e ÷ ule(z) be strategies uniquely defined with use of (3),
kl(t) = ∂żl(t)K(zl(t)), where

żl(t) = f(zl(t), ulP (z
l(t)), ulE(z

l(t))), zl(0) = z0.

Theorem 1. If kl is integrable on [0, τ ] and
∫ τ
0
kl(t)dt < 0 then K(zl(τ)) < K(z0).

Thus, under the assumptions of the theorem, P guarantees a decrease in the initial
value of K by t = τ when the agents use U l

P and U l
E. When τ is not given, P

proceeds until the first instant when kl changes its sign from minus to plus if the
assumptions of the theorem are met, or terminates the game at the initial instant
otherwise.

3. Distance to Furthest Evader

Let ρe(z) be Euclidean distance from e to P at the state z ∈ Z, e ∈ E, and

K∞(z) = maxe∈E ρe(z), (9)

be the valuation function. If πk(z), k ∈ K, are Cartesian coordinates of the k-th
agent at the state z then ρe(z) = ||πe(z)−πP (z)||. Since max and ρe are convex, K∞

is directionally differentiable. It is known (see, e.g., (Subbotin and Chentsov, 1981;
Dem’yanov and Vasilev, 1985)) that for all z, υ ∈ Z,

∂υK∞(z) = maxe∈E0(z) ∂υρe(z), (10)

where E0(z) = {e ∈ E : ρe(z) = K∞(z)},

∂υρe(z) =

⎧⎨⎩
∂

∂z
ρe(z) · υ if ρe(z) �= 0,

||υ|| otherwise.
(11)

3.1. Smooth Upper Approximations for K∞

Conditions (3) are replaced by (4) if a smooth upper approximation is used for
the valuation function. Describe some approximations for K∞ and their properties;
see, e.g., (Shevchenko, 2008; Stipanović et al., 2009).

Let mξ
2(r1, r2) = (rξ1 + rξ2)

1/ξ, ξ, r1, r2 ∈ R+. It is known that

mξ
2(r1, r2) > max(r1, r2) if r1 �= r2,

mξ
2(r, r) = 21/ξr > max(r, r) = r,

and
lim

ξ→+∞
mξ

2(r1, r2) = max(r1, r2), ξ, r1, r2, r ∈ R+. (12)

Figure 1 shows projections of max(r1, r2),m
ξ
2(r1, r2) andM

ξ
2 (r1, r2) for a fixed value

of r2 where M ξ
2 = (rξ+1

1 + rξ+1
2 )/(rξ1 + rξ2), ξ, r1, r2 ∈ R+, approximates max from

below (Shevchenko, 2009), ξ = 50.

Lemma 1. The partial derivative

∂

∂ri
mξ

2(r1, r2) =
(
rξi /(r

ξ
1 + rξ2)

)1−1/ξ

, ξ, r1, r2 ∈ R+, i = 1, 2,
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Figure1: Projections of mξ
2, max (thin) and M ξ

2 (dotted)

approximates the corresponding partial derivative of max(r1, r2) at the points where
r1 �= r2 such that

lim
ξ→+∞

∂

∂ri
mξ

2(r1, r2) =

{
1 if ri = max(r1, r2),

0 if ri < max(r1, r2),
(13)

and
∂

∂ri
mξ

2(r, r) = (1/2)
1−1/ξ

, ξ, r1, r2, r ∈ R+, i = 1, 2.

�

An approximation for max(r1, . . . , rN ) may be constructed as

mξ
N (r1, r2, . . . , rN ) = mξ

2(m
ξ
N−1(r1, r2, . . . , rN−1), rN ) =

( ∑
k∈KN

rξk

)1/ξ
. (14)

It turns out that mξ
N (r1, . . . , rN ) > max(r1, . . . , rN ) and

lim
ξ→+∞

mξ
N (r1, . . . , rN ) = max(r1, . . . , rN ), ξ, r1, . . . , rN , r ∈ R+, (15)

if ri �= rj , ∀i �= j, i, j = 1, . . . , N . Moreover,

lim
ξ→+∞

mξ
N (r1, . . . , rN ) = (1/k)

1/ξ
r,

if there exist exactly k ≥ 2 arguments rl1 , . . . , rlk such that rl1 = . . . = rlk = r =
max(r1, . . . , rN ), rj < max(r1, . . . , rN ), ∀j �= lq, q = 1, . . . , k.

Theorem 2. The partial derivative

∂

∂ri
mξ
N (r1, . . . , rN ) =

(
rξi /(r

ξ
1 + . . .+ rξN )

)1−1/ξ

, ξ, r1, . . . , rN ∈ R+,

approximates the corresponding partial derivative of max(r1, . . . , rN ) such that

lim
ξ→+∞

∂

∂ri
mξ
N (r1, . . . , rN ) =

{
1 if ri = max(r1, . . . , rN ),

0 if ri < max(r1, . . . , rN ),
(16)
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if ri �= rj , ∀i �= j, i, j = 1, . . . , N , and

lim
ξ→+∞

∂

∂ri
mξ
N (r1, . . . , rN ) = (1/k)

1−1/ξ
, ξ, r1, . . . , rN , r ∈ R+,

if ri = r = max(r1, . . . , rN ) and there exist exactly k ≥ 2 arguments such that
ri1 = . . . = rik = r and rj < max(r1, . . . , rN ), j �= iq, q = 1, . . . , k.

�

Smooth approximations for K∞ may be represented as the superpositions of
mξ
N and ρe(z), e ∈ E,

Kξ(z) = mξ
N (ρE1(z), . . . , ρEN (z)), ξ ∈ R+, z ∈ Z,N ≥ 2.

3.2. Specifications for Different Kinematics

First, we demonstrate direct applicability of the described conditions for con-
structing locally optimizing pursuit strategies for agents that have simple motion. In
the case when an agent drives Dubins or Reeds-Shepp car, the control variables for
heading angles are not presented in (3) and (4) with K = Kξ implicitly. Accordingly,
we use the designed strategies and supplement the common conditions by some ad-
ditional local ones for the heading angles; see, e.g., (Stipanović et al., 2009).

Simple Motion Let sk = (xk, yk) and ϕk be the coordinate vector and heading
angle of the k-th agent, k ∈ K. For the k-th agent with simple motion,

ṡk = μkε(uk), sk(0) = s0k, (17)

where μk is the constant speed, uk is the control for heading angle, uk ∈ Uk = {u :
0 ≤ u < 2π}, ε(α) = (cosα, sinα), k ∈ K. If ξ < ∞ and ρe(s) = ||se − sP || �= 0,

s = (sP , sE1 , . . . , sEN ), from (3) we have U ξ
P ÷ ϕξP (s) where

ε(ϕξP (s)) = −
∑
e∈E

∂

∂sP
Kξ(s)/||

∑
e∈E

∂

∂sP
Kξ(s)||, (18)

if ||
∑

e∈E
∂

∂sP
Kξ(s)|| �= 0. Also, U ξ

e ÷ ϕξe(s) where

ε(ϕξe(s)) =
∂

∂se
Kξ(s)/|| ∂

∂se
Kξ(s)|| = se − sP

||se − sP ||
, (19)

if || ∂
∂se

Kξ(s)|| �= 0, e ∈ E, ξ ∈ R+, s ∈ S = R2N+2.

If ξ =∞, ρe(s) �= 0 and there is just one furthest evader Ei0 at the state s, (18)

and (19) work only for P and Ei0 with ε(ϕξP (s)) = ε(ϕξEi0
(s)) = (sEi0

−sP )/||sEi0
−

sP || and
lim

ξ→+∞
ϕξP (s) = ϕ∞

P (s), lim
ξ→+∞

ϕξEi0
(s) = ϕ∞

Ei0
(s), s ∈ S. (20)
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Dubins Car. If the k-th agent drives a Dubins car,

ṡk = μkε(ϕk), sk(0) = s0k,

ϕ̇k = wk, ϕk(0) = ϕ0
k,

(21)

the heading angle ϕk is the integral of the angular velocity ϕk which is the only
control variable, wk ∈ Wk = {w : |w| ≤ νk}, k ∈ K.

Condition (3) doesn’t include wk explicitly. To choose a strategy for wk with use

of the known locally optimizing strategies U ξ
k described by (18) and (19), consider

the piecewise constant controls and corresponding trajectories.
Let Δ be a partition of [0, τ ] and the targeted direction for the k-th agent at

the state z = (s, . . . , ϕk, . . .) be determined by the angle ϕξk(s). Then, the part of
the targeted trajectory for t ∈ [ti, ti+1) is approximately described as

sk(t) = sk(ti) + μkε(ϕ
ξ
k(s(ti)))δti. (22)

On the other hand, the same part of the approximate trajectory for a piecewise
constant control wk = wk(ti−1) for t ∈ [ti−1, ti) is determined by

sk(t) = sk(ti) + μkε(ϕk(ti−1) + wk(ti−1)δti−1)δti. (23)

Let wk(ti−1) be chosen to make (23) as closely to (22) as possible with use of the
condition

wk(ti−1) ∈ Arg min
w∈Wk

|μkε(ϕk(ti−1) + wδti−1)− μkε(ϕ
ξ
k(s(ti)))|, (24)

or for the corresponding heading angles,

wk(ti−1) ∈ Arg min
w∈Wk

|ϕk(ti−1) + wδti−1 − ϕξk(s(ti))|. (25)

It means that

wk(ti−1) =

⎧⎪⎨⎪⎩
(ϕξk(s(ti))− ϕk(ti−1))/δti−1

if |(ϕξk(s(ti))− ϕk(ti−1))/δti−1| ≤ νk

−νk sgn(ϕk(ti−1)− ϕξk(s(ti))) otherwise.

(26)

From (26), with some abuse of notation we have (compare to (Stipanović et al., 2009)),

wξ
k(s, ϕk) =

{
∂ωξ(s)ϕ

ξ
k(s) if |∂ωξ(s)ϕ

ξ
k(s)| ≤ νk

−νk sgn(ϕk − ϕξk(s)) otherwise,
(27)

where ωξ(s) = (μP ε(ϕ
ξ
P (s)), μE1ε(ϕ

ξ
E1

(s)), . . . , μEN ε(ϕ
ξ
EN

(s))). Thus, at the states
where the current heading angle allows to move at the locally optimizing direction
for simple motion, the agent does so. Otherwise, he tries to compensate the difference
between the actual and targeted heading angles.

Reeds-Shepp Car. A Reeds-Shepp car can change its velocity instantaneously
and, e.g., move in reverse. Corresponding equations for the k-th agent are written
as

ṡk = vkε(ϕk), sk(0) = s0k,

ϕ̇k = wk, ϕk(0) = ϕ0
k,

(28)
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where vk is the velocity, vk ∈ Vk = {v : |v| ≤ μk}, wk ∈Wk.
If ξ < ∞ and ρe(s) �= 0, the common local optimizing conditions lead to the

strategies Vk ÷ vk(s, ϕk), k ∈ K,

vξP (s, ϕP ) = −μk sgn cos(ϕP − ϕξP (s)),

vξe(s, ϕe) = μe sgn cos(ϕe − ϕξe(s)), e ∈ E.
(29)

For wk the agent may apply the strategy W ξ
k ÷ wξ

k(s, ϕk), k ∈ K.
With use of the method, it is easy to construct the locally optimal strategies

for agents in the games with homicidal chauffeur dynamics including the acoustic
variant when wk ∈ [−μ̂k, μ̂k], μ̂k(s) = μkmin(1, ρEk

(s)/ρ∗), ρ∗ > 0, and other
generalizations when wk ∈ [μ̌k, μk], −μk ≤ μ̌k ≤ μk (Patsko and Turova, 2009).

Numeric Simulations. Figures 2 and 3 show trajectories of the agents, Kξ and
its time derivative as well as controls and heading angles as functions of i. For all
examples, s0P = (0, 0), P has simple motion, μP = 1, and s0k = (2, 0), evading agents
drive identical Dubins (or Reeds-Shepp) cars, μe = 0.5, νe = 1, ξ = 100, δt = 10−3.
The corresponding strategies are described by (18), (19), (27), (29). A pursuit is
terminated at the states where the derivative ofKξ is less than 10−3. Besides, ϕ0

E1
=

0, ϕ0
E2

= π/4, K∞(s0) = 2, Kξ(s0) = 2.01391, τξ = 3.412, K∞(s(τξ)) = 0.430907,

Kξ(s(τξ)) = 0.433905 for Fig. 2, and ϕ0
E1

= 0, ϕ0
E2

= π/4, ϕ0
E3

= −π/4, K∞(s0) =

2, Kξ(s0) = 2.02209, τξ = 3.13, K∞(s(τξ)) = 0.599302, Kξ(s(τξ)) = 0.60347 for
Fig. 3. These two examples demonstrate, in particular, that on the corresponding
trajectories P definitely approaches the real target by r = 0.5 if only one decoy is
launched, and P fails in the case of two decoys (see the capture areas bounded by
dashed lines).

4. Conclusion

The paper describes a method for construction of locally optimizing strategies
for games with terminal payoffs. It is assumed that the function whose value at
the terminal state determines the payoff functional is defined everywhere in the
game space and at least directionally differentiable. According to the common part
of the method, the strategies are to meet the steepest descent/ascent conditions
for this function. Some additional local conditions are invoked when the mentioned
conditions do not allow to find all controls.

We apply the method to a class of games where the outcome equal to Eu-
clidean distance to the furthest evading agent. A number of numerical experiments
shows “expectable” behavior of the agents with plane kinematics described by some
transition equations for wheeled robots (LaValle, 2006; Patsko and Turova, 2009).
However, since for non-holonomic systems the approach involves additional assump-
tions, it is not clear if the designed strategies preserve guaranteed features.

Acknowledgments. The author expresses his gratitude to Duŝan Stipanović and
Josef Shinar for useful discussions of the setup and approach.
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(a)

(b)

(c)

(d)

Figure2: Trajectories (a), evaluation function and its derivative (b), controls (c) and
heading angles (d) as functions of i for one decoy
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(a)

(b)

(c)

(d)

Figure3: Trajectories (a), evaluation function and its derivative (b), controls (c) and
heading angles (d) as functions of i for two decoys
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