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Abstract A competition model on a market is considered. Each player
(firm) attracts customers only by price for a carriage service in a route
network between any of its two nodes. It is proposed two types of players
behavior: noncooperative and cooperative. In noncooperative scenario each
player aims to maximize its profit in a route network, and as a solution
concept Nash equilibrium is considered. In cooperative scenario it is sup-
posed that two fixed players can cooperate only on a route which connects
their hubs to maximize their total profit on the route, and on other routes
their behavior as well as behavior of other players remains noncooperative.
Here we refer to cooperative theory and choose a solution concept (core,
the Shapley value). All considered scenarios are illustrated with a numerical
example.

Keywords: competition model, network formation, coalition, cooperative
solution.

A finite set of players N = {1, . . . , n}, which provide similar carriage service in
route network between its nodes from a given set H = {h1, . . . , hn}, is considered.
Suppose that each player i ∈ N is located in hi ∈ H , i. e. player provides a service
in the network via hi, hi �= hj for all i, j ∈ N , i �= j. One can consider a complete
graph which consists of n nodes and a set of links G. For each hi, hj ∈ H a pair
hihj ∈ G denotes a route between the nodes. On route hihj both players i ∈ N and
j ∈ N provide carriage service using a scheme hi ↔ hj , and player s ∈ N \ {i ∪ j}
provides carriage service via its hub hs using a scheme hi ↔ hs ↔ hj.

Let a pair hk, h� ∈ H , i. e. route hkh� ∈ G be fixed. Hereafter the following
notation k$ for route hkh� is used for simplicity. By pk� = (pk�1 , . . . , pk�n ) denote a
price profile that players set up on route k$. Define a demand function of player
i ∈ N on the route for its service in accordance with pk�:

Dk�
i (pk�1 , . . . , pk�n ) = ak� − bk�pk�i + ck�

∑
j 	=i

pk�j . (1)

Suppose that parameters ak�, bk�, ck� > 0 are positive, bk� > (n− 1)ck� and

pk�i ∈ [0, ak�/bk�] (2)

for each k$ ∈ G and for each i, j ∈ N .
A set of prices pi = {pk�i }k�∈G which are assigned by player i can be interpreted

as his strategy, and the n-tuple of strategies p = (p1, . . . , pn) for each i ∈ N gives
us a strategy profile.
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Number of potential customers of player i ∈ N on the route ki subject to price
profile (pk�1 , . . . , pk�n ) can be calculated as:

Nki
i =

∑
� 	=k

Dk�
i (pk�1 , . . . , pk�n ), i ∈ N.

Introduce player costs for service sk�i > 0, i ∈ N on route k$ (sk�i = s�ki for each
i ∈ N and k, $ ∈ H):

sk�i =

{
sk�i , hi = hk or hi = h�,
skii + si�i , hi ∈ H \ {hk ∪ h�}.

Then one can define profit (payoff function) of player i subject to price profile
p = (p1, . . . , pn):

Πi(p) =
∑
k�∈G

(pk�i − sk�i )Dk�
i (pk�1 , . . . , pk�n ), i ∈ N. (3)

1. Noncooperative scenario

In this section the noncooperative case of competition is considered. It is sup-
posed that players choose their price profiles pi = {pk�i }k�∈G, i ∈ N simultaneously
and independently from each other from the set (2). Then in accordance with the
chosen price profile, both demand functions (1) and profits (3) are calculated. As a
solution concept Nash equilibrium is considered.

For each i ∈ N and k$ ∈ G, first order conditions have the form:

ak� − 2bk�pk�i + ck�
∑
j 	=i

pk�j + bk�sk�i = 0, i ∈ N. (4)

In matrix form first-order conditions (4) can be rewritten as:⎛⎜⎜⎝
2bk� −ck� · · · −ck�
−ck� 2bk� · · · −ck�
· · · · · · · · · · · ·

−ck� −ck� · · · 2bk�

⎞⎟⎟⎠
⎛⎜⎜⎝
pk�1
pk�2
· · ·
pk�n

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ak� + bk�sk�1
ak� + bk�sk�2

· · ·
ak� + bk�sk�n

⎞⎟⎟⎠ (5)

Solving system (5) of linear equations, we obtain the following prices in equi-
librium:

p̄k�i =

ak�(2bk� + ck�) + bk�ck�
∑
i∈N

sk�i + bk�(2bk� − (n− 1)ck�)sk�i

(2bk� + ck�)(2bk� − (n− 1)ck�)
. (6)

Equilibrium prices from (6) belong to the corresponding admissible intervals p̄k� ∈
[0, ak�/bk�] subject to inequalities:

sk�i ≤ ak�

bk�

(
1− (n− 1)ck�

bk�

)
, for each i ∈ N. (7)

Thus, hereafter, it is supposed that problem parameters satisfy inequalities (7).
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By substituting prices from (6) to the expression (3), we can calculate players
profits in equilibrium for each i ∈ N :

Πi(p̄) =
∑
k�∈G

bk� ×

= ×

⎡⎢⎣a
k�(2bk� + ck�) + bk�ck�

∑
i∈N

sk�i + (bk� + ck�)(2bk� − (n− 1)ck�)sk�i

(2bk� + ck�)(2bk� − (n− 1)ck�)

⎤⎥⎦
2

=
∑
k�∈G

bk�
[
p̄k�i
]2
. (8)

2. Cooperative scenario

Now consider a case in which two players i and j can cooperate only on direct
route hihj. In this setting both players i and j aim to maximize sum of its profits
on the direct route hihj , i. e. maximize

Πij
i (pij) +Πij

j (pij) = (piji − siji )(a
ij − bijpiji + cij

∑
� 	=i

pij� ) +

+(pijj − sijj )(a
ij − bijpijj + cij

∑
� 	=j

pij� ), (9)

while other players k ∈ N \ {i, j} want to maximize

Πij
k (pij) = (pijk − sijk )(a

ij − bijpijk + cij
∑
� 	=k

pij� ). (10)

This problem is reduced to finding equilibrium in an (n− 1)-person game, in which
player-coalition {i, j} has a payoff function (9), and players k ∈ N \ {i, j} have a
payoff function (10). First-order conditions for this problem can be written as:

aij − 2bijpiji + 2cijpijj + cij
∑

� 	=i,� 	=j
pij� + (bij − cij)siji = 0,

aij − 2bijpijj + 2cijpiji + cij
∑

� 	=i,� 	=j
pij� + (bij − cij)sijj = 0,

aij − 2bijpijk + cij
∑
� 	=k

pij� + bijsijk = 0, k �= i, k �= j. (11)

In matrix form first-order conditions (11) have the form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2bij · · · −cij · · · −cij · · · −cij
· · ·

−cij · · · 2bij · · · −2cij · · · −cij
· · ·

−cij · · · −2cij · · · 2bij · · · −cij
· · ·

−cij · · · −cij · · · −cij · · · 2bij

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pij1
· · ·
piji
· · ·
pijj
· · ·
pijn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aij + bijsij1
· · ·

aij + (bij − cij)siji
· · ·

aij + (bij − cij)sijj
· · ·

aij + bijsijn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)
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Let p̂ij = (p̂ij1 , . . . , p̂
ij
n ) be a solution of the system (12). Since matrix of the

system (5) has inverse, it is possible to find invertible matrix of the system (12)
using for example the Woodbury matrix identity, or computational software.

The next problem is to allocate total profit Πij
i (p̂ij) +Πij

j (p̂ij) on route hihj
among two players i and j. Here we refer to cooperative game theory. For each
coalition — empty, {i}, {j}, or grand coalition {i, j} — define a characteristic
functions v(·) as follows:

v({i, j}) = Πij
i (p̂ij) +Πij

j (p̂ij),

v(i) = max
piji

min
pij−i

Πij
i (piji , p

ij
−i) =

(aij − bijsiji )
2

4bij
,

v(j) = max
pijj

min
pij−j

Πij
j (pijj , p

ij
−j) =

(aij − bijsijj )
2

4bij
,

v(∅) = 0,

where pij−i = (pij1 , . . . , p
ij
i−1, p

ij
i+1, . . . , p

ij
n ), and pij−j = (pij1 , . . . , p

ij
j−1, p

ij
j+1, . . . , p

ij
n ).

As a solution concept consider the Shapley value (Shiji (p̂
ij), Shijj (p̂

ij)), which
components depend on the characteristic function v(·) and are calculated as:

Shiji (p̂
ij) =

v({i, j}) + v(i)− v(j)

2
=

=
Πij
i (p̂ij) +Πij

j (p̂ij)

2
−

(siji − sijj )(2a
ij − bij(siji + sijj ))

8
,

Shijj (p̂
ij) =

v({i, j})− v(i) + v(j)

2
=

=
Πij
i (p̂ij) +Πij

j (p̂ij)

2
+

(siji − sijj )(2a
ij − bij(siji + sijj ))

8
. (13)

Thus, if players i and j cooperate on route ij, players profits are:

Shiji (p̂
ij) for player i,

Shijj (p̂
ij) for player j,

Πij
k (p̂ij) for player k ∈ N \ {i, j}.

Here the Shapley value components Shiji (p̂
ij) and Shijj (p̂

ij) are calculated using

(13), and profit Πij
k (p̂ij) of player k ∈ N \ {i, j} is calculated using (10) subject to

price profile p̂ij , where p̂ij = (p̂ij1 , . . . , p̂
ij
n ) is a solution of (12).

3. Network Formation

In this section it is supposed that players are allowed to form a network, i. e.
choose those players with whom they want to form mutual links. Following the
definition, network is a pair: (N,L). Here N = {1, . . . , n} is a finite set of players,
and a set L is a set of links in the network.

Now consider a network formation mechanism. For each player i ∈ N introduce
an n-dimensional vector gi = (gi1, . . . , gin) ∈ {0, 1}n s. t.

gij =

{
1, iff i wants to cooperate (form a link) with j,
0, otherwise or if j = i.
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The n-dimensional vector gi is called a strategy of player i ∈ N in a network
formation game, and a set of all possible strategies of i in this game is denoted by
Gi.

In this setting the following network formation mechanism is proposed: players
choose simultaneously their strategies gi ∈ Gi, i ∈ N , which constitute a strategy
profile g = (g1, . . . , gn). How to construct a set of links L subject to profile g? A
link ij ∈ L is formed only if both players i and j want to cooperate with each other,
i. e. if gij = gji = 1. In other cases link ij is not formed. Thus, strategy profile g
uniquely defines the set of links L, which generates a set Ni(L) = {j : ij ∈ L} of
neighbours of players i ∈ N . According to L players payoffs are calculated as:

Ui(L) =
∑

k∈Ni(L)

Shiki (p̂ik) +
∑

k∈N\(Ni(L)∪i)
Πik
i (p̄ik) +

+
∑

k�∈G:k 	=i,� 	=i
Πk�
i (p̄k�), i ∈ N. (14)

Here p̂ik = (p̂ik1 , . . . , p̂
ik
n ) is the solution of system (12), and p̄ik = (p̄ik1 , . . . , p̄

ik
n ) is

taken from (6).
The first term in (14) is the sum of player i profits if he cooperates with his

neighbours on routes from hi. The second and the third terms in (14) are the sum
of player i profits if he plays individually on other routes.

To formulate a solution concept in such setting, reduce the network formation
mechanism to an n-person game in strategic form:

〈N, {Gi}i∈N , {Ui(·)}i∈N 〉.

By this transformation, each strategy profile g = (g1, . . . , gn) in the game in strategic
form generates a unique network with the set of links L. Set L helps in turn to
calculate price profile for (14).

Nash network. As a solution concept consider the Nash network: a network
(N,L∗) which is supported by strategy profile g∗ = (g∗1 , . . . , g

∗
n) such that for each

i ∈ N and for each gi ∈ Gi the inequality

Ui(L
∗) ≥ Ui(Li)

holds. Here Li is a set links in the network which is realized subject to strategy
profile (g∗1 , . . . , g

∗
i−1, gi, g

∗
i+1, . . . , g

∗
n).

Efficient network. Another solution concept is the efficient network: a network
(N,L∗) is said to be the efficient network if for each L the inequality∑

i∈N
Ui(L

∗) ≥
∑
i∈N

Ui(L)

holds.

Example 1. In the example it is shown that strategy profiles, which generate either
the empty or complete network, constitute Nash equilibrium. Therefore, both empty
network and complete network are Nash networks. Moreover, it is also shown that
the complete network is the efficient network.
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Consider a 3-person game with players set N = {1, 2, 3}, and set of hubs
H = {h1, h2, h3} (see Fig. 1). The set of possible routes contains only 3 elements:
{h1h2, h1h3, h2h3}, so carriage service is provided using a scheme:

Route Player 1 Player 2 Player 3
h1h2 h1 ↔ h2 h1 ↔ h2 h1 ↔ h3 ↔ h2
h1h3 h1 ↔ h3 h1 ↔ h2 ↔ h3 h1 ↔ h3
h2h3 h2 ↔ h1 ↔ h3 h2 ↔ h3 h2 ↔ h3

Figure1: Route network

In the example problem parameters (demand parameters and players costs for
each route) are taken as

a12 = 150; a13 = 150; a23 = 150;
b12 = 0.13; b13 = 0.15; b23 = 0.17;
c12 = 0.02; c13 = 0.01; c23 = 0.02;

s121 = 134; s131 = 122; s231 = 256;
s122 = 122; s132 = 216; s232 = 94;
s123 = 209; s133 = 113; s233 = 96;

Here superscripts h1h2, h1h3, h2h3 are replaced by 12, 13, 23 only to simplify the
notations.

Table1: Players profits on route hihj in noncooperative case.

Route Player 1 Player 2 Player 3

h1h2 51,541.17 52,598.98 45,173.35

h1h3 34,637.85 27,996.74 35,310.74

h2h3 24,409.70 36,668.13 36,501.64

Players profits in noncooperative case are calculated using (8) and shown in
Table 1. Players profits in cooperative case are calculated using (10), (13) and
shown in Table 2. Total players profits in the network are calculated using (14) and
shown in Table 3.

From Table 3 it is easy to check that both empty network and complete network
are Nash networks. It is also can be seen from the table that the complete network
with the total players profits of 348,279.57 is the efficient network.
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Table2: Players profits on route hihj subject to cooperation between i and j.

Route Player 1 Player 2 Player 3

h1h2 52,158.05 52,958.21 46,559.67

h1h3 34,723.84 28,146.30 35,319.53

h2h3 24,884.66 36,831.58 36,697.73

Table3: Total players profits in the network (N,L).

Set of links L Player 1 Player 2 Player 3

L = ∅ 110,558.72 117,263.85 116,985.78

L = {12} 111,205.60 117,623.08 116,985.78

L = {13} 110,674.71 117,263.85 116,994.57

L = {23} 110,588.72 117,427.30 117,181.82

L = {12, 13} 111,291.59 117,623.08 116,994.57

L = {12, 23} 111,205.60 117,786.53 117,181.82

L = {13, 23} 110,674.71 117,427.30 117,190.61

L = {12, 13, 23} 111,766.55 117,936.09 118,576.93
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