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Abstract The subject of this paper is a non-autonomous linear quadratic
case of a differential game model with continuous updating. This class of
differential games is essentially new where it is assumed that, at each time
instant, players have or use information about the game structure defined
on a closed time interval with a fixed duration. During the interval informa-
tion about motion equations and payoff functions of players updates. It is
non-autonomy that simulates this effect of updating information. A linear
quadratic case for this class of games is particularly important for practical
problems arising in the engineering of human-machine interaction. Here we
define the Nash equilibrium as an optimality principle and present an ex-
plicit form of Nash equilibrium for the linear quadratic case. Also, the case
of dynamic updating for the linear quadratic differential game is studied
and uniform convergence of Nash equilibrium strategies and correspond-
ing trajectory for a case of continuous updating and dynamic updating is
demonstrated.
Keywords: differential games with continuous updating, Nash equilibrium,
linear quadratic differential games, non-autonomous.

1. Introduction

The theory of games and global optimization problems are related to each other.
As game theory examines the behavior of multi-agent systems, games can be viewed
as a multi-objective optimization problems. Therefore game theory plays an impor-
tant role as an application of global optimization. From the other side a number
of concepts such as Nash equilibrium are taken from the theory of games to con-
struct a special class of heuristic algorithms. In the theory of differential games the
conditions of optimality such as Hamilton-Jacobi-Bellman equation or Pontryagin’s
Maximum principle are constructed using the approaches initialy developed in the
theory of optimization. Dynamic programming and Bellman equation were the basis
for HJB equations. Pontryagin’s Maximum principle was preceded by the method
of Lagrangian multipliers.

In the theory of classical differential games, it is usually assumed that players
have all information about game dynamics and can forecast each others’ actions. In
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particular classical differential games are defined on finite or infinite time intervals
(players have information about the dynamics of the game on finite or infinite time
intervals) (Basar et al., 1995; Isaacs, 1965), on a random time interval (players have
information on a given time interval, but the duration of this interval is a random
variable) (Shevkoplyas, 2014). One of the first works in the theory of differential
games is devoted to the differential pursuit game (the player’s gain depends on
the time of capture of the opponent) (Petrosyan and Murzov, 1966). Classical dif-
ferential game models assume that players know all information about the game
dynamics (equations of motion) and about players’ preferences (cost functions) at
the beginning of the game. Different types of differential game models help to model
players’ behavior for different scenarios, but one important idea is usually missing.
In real-life processes, information about the dynamics of the process is not known
in advance; i.e. the form of motion equations is not known in advance. Furthermore,
participants in the process – the players – cannot usually make a perfect forecast
about others’ preferences for the whole interval over which the process is defined.

Most real conflict-driven processes evolve continuously over time, and their par-
ticipants constantly adapt. This paper continues along the lines of others related to
continuous updating where it is assumed that players

– have information about motion equations and payoff functions only on [t, t+T ],
where T is the information horizon and t is the current time instant.

– receive updated information about motion equations and payoff functions as
time t ∈ [t0,+∞) evolves.

In this paper, it is supposed that motion equations and payoff functions explic-
itly depend on the time parameter. Therefore, in the general form of the differ-
ential game with continuous updating, information about motion equations and
payoff functions updates because its form changes as the current time t ∈ [t0,+∞)
evolves. This allows one to fully implement the concept of continuously updat-
ing information, in contrast to the autonomy case. While the Nash equilibrium
is used to model the individual behavior of players, the unusual introduction of
information updating makes the Nash equilibrium difficult to derive. This is be-
cause control problems that include a moving information horizon suffer from a lack
of fundamental approaches. Such classical methods as dynamic programming, the
Hamilton-Jacobi-Bellman equation (Bellman, 1957) and the Pontryagin maximum
principle (Pontryagin, 1996) do not allow for directly constructing Nash equilibrium
in problems within a moving information horizon.

The class of games with continuous updating is represented in the literature
by the following papers (Kuchkarov and Petrosian, 2019; Kuchkarov and Petrosian,
2020; Petrosian and Tur, 2019). In the paper (Petrosian and Tur, 2019) the system
of Hamilton-Jacobi-Bellman equations are derived for Nash equilibrium with con-
tinuous updating. In the paper (Kuchkarov and Petrosian, 2019; Kuchkarov and
Petrosian, 2020) the class of autonomous linear-quadratic differential games with
continuous updating is considered and the explicit form of the Nash equilibrium
is derived for feedback-based and open-loop-based cases. Actually, the continuous
updating approach was the extension, or generalization, of the dynamic updating
case wherein the following papers were published (Gromova and Petrosian, 2016;
Petrosian, 2016a; Petrosian, 2016b; Petrosian and Barabanov, 2017; Petrosian et al.,
2017; Petrosian et al., 2018; Petrosian et al., 2019; Yeung and Petrosian, 2017). Here
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the updating procedure occurs not continuously in time, but in discrete time in-
stants.

The class of differential games with dynamic and continuous updating has some
similarities with Model Predictive Control (MPC) theory which is worked out within
the framework of numerical optimal control (Goodwin et al., 2005; Kwon and Han,
2005; Rawlings and Mayne, 2009; Wang, 2005). The MPC approach achieves the
current control action by solving a finite-horizon open-loop optimal control prob-
lem at each sampling instant. For linear systems there exists a solution in the explicit
form, (Bemporad et al., 2002; Hempel et al., 2015). However, in general, the MPC
approach demands the solution of several optimization problems. Another related se-
ries of papers corresponding to the class of stabilizing control is (Kwon et al., 1982;
Kwon and Pearson, 1977; Mayne and Michalska, 1990; Shaw, 1979) where similar
approaches were considered for the class of linear quadratic optimal control prob-
lems. But in the current paper, and in papers about the continuous updating ap-
proach, the main goal is different: to model players’ behavior when information
about the course of the game updates continuously in time.

In this paper, we extend the results of papers (Kuchkarov and Petrosian, 2019;
Kuchkarov and Petrosian, 2020), where the class of autonomous linear-quadratic
differential games with continuous updating is considered and the explicit form of
the Nash equilibrium is derived. One of the main results of this paper are the suf-
ficient conditions for the existence of a feedback-based and open-loop-based Nash
equilibrium with continuous updating for a non-autonomous case. The current pa-
per is focused on a non-autonomous case for the class of games with continuous
updating. For this approach it is very important that motion equations and payoff
functions are the functions of time or the system itself is non-autonomous. It is pos-
sible to make use of information updating and adaptation because motion equations
and payoff functions are functions of the current time and, in the framework of the
continuous updating approach, may not be known in advance. The implementation
of previously unknown functions models the behavior of the system as if it used
limited information at each moment in time. The popularity of the so-called linear
quadratic differential games (Engwerda, 2005) can be explained by practical appli-
cations in engineering. To some extent, this kind of differential game is analytically
and numerically solvable. On the other hand, this linear quadratic problem setting
naturally appears if the agents’ objective is to minimize the effect of a small per-
turbation of their nonlinear optimally controlled environment. By solving a linear
quadratic control problem, and using the optimal actions implied by this problem,
players can avoid most of the additional cost incurred by this perturbation. Also in
this paper it is proved that Nash equilibrium in the corresponding linear quadratic
game with dynamic updating uniformly converges to the introduced controls. This
procedure allows concluding that the constructed control indeed is optimal in the
game model with continuous updating, i.e. in the case when the length of the up-
dating interval converges to zero. A similar procedure is performed for the corre-
sponding trajectory. Another important issue addressed in the paper is the issue of
the non-uniqueness of the Nash equilibrium for interval [t, t+T ] and what the Nash
equilibrium with continuous updating will look like in this case.

The paper is structured as follows. Section 2 presents a description of the initial
differential game model and corresponding game model with continuous updating
as well as a conceptual strategy for it. In section 3, the Nash equilibrium is adapted
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for a class of games with continuous updating and the explicit form of it for a class
of linear-quadratic differential games is presented. Section 4 provides a descrip-
tion of the game model with dynamic updating and the form of Nash equilibrium
with continuous updating. It also demonstrates the convergence of Nash equilibrium
strategies and corresponding trajectories for a case of dynamic and continuous up-
dating. The illustrative model example and corresponding numerical simulation are
presented in section 5. The demonstration of the convergence result is also presented
in the numerical simulation section. In section 6, conclusions are drawn.

2. Classical Differential Game Model and Model with Continuous
Updating

2.1. Linear Quadratic Non-autonomous Game Model
Consider n-player (|N | = n) linear quadratic non-autonomous differential game

Γ (x0, t0, T ) defined on the interval [t0, T ]:
Motion equations have the form

ẋ(t) = A(t)x(t) +B1(t)u1(t) + . . .+Bn(t)un(t),
x(t0) = x0,
x ∈ Rl, u = (u1, . . . , un), ui = ui(t) ∈ Ui ⊂ Rk, t ∈ [t0, T ].

(1)

The payoff function of player i ∈ N is defined as

Ki(x0, t0, T ;u) =

T∫
t0

x′(t)Qi(t)x(t) +

n∑
j=1

u′j(t, x)Rij(t)uj(t, x)

 dt, i ∈ N, (2)

where Qi(t), Rij(t) are assumed to be symmetric for t ∈ [t0, T ], Rii(t) is positive
defined for t ∈ [t0, T ], ( · )′ means transpose here and hereafter.

Furthermore, for the right-hand side of (1) we suppose that the conditions of
Theorem 5.1 from (Basar et al., 1995) are satisfied so that the state equation admits
a unique solution for every corresponding N-tuple of strategies. For a strategy space
we consider the so-called Markov functions, that is, the set of functions where each
function depends only on the current state of the system and time, ui(t) ∈ Γ fb

i , i ∈
N :

Γ fb
i = {ui(0, T ) | ui(t) = ui(t, x(t)) and (u1(.), . . . , un(.)) ∈ U}.

Later in the paper we will directly refer u(t, x(t)) = (u1(t, x(t)), . . . , un(t, x(t))) as
a strategies in a feedback form and use this notation.

2.2. Linear Quadratic Non-autonomous Game Model with Continuous
Updating

The difference between a non-autonomous game model and an autonomous one
for the class of games with continuous updating is that here the right hand side
of motion equations and the integrand in the payoff function explicitly depend on
the current time t. For the case of a linear quadratic model, the dependency on the
current time t in (1), (2) is introduced by the following matrices:

A(t), Bi(t), Qi(t), Rij(t), i, j = 1, . . . , n. (3)

There is a special meaning to this dependency. At the begging of the overall game,
at time instant t0, players have only information about the motion equations and
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payoff functions for the interval [t0, t0 + T ]. Thus they know values of matrices (3)
for interval [t0, t0 + T ], because the form of matrices (3) can be different for the
interval [t0 +T ,+∞]. In the case of autonomous system matrices, (3) are constants
and it can be said that they are known for the whole interval on which the game is
defined.

Consider n-player differential game Γ (x, t, t + T ), t ∈ [t0,+∞) defined on the
interval [t, t+ T ], where 0 < T < +∞.

Motion equations of Γ (x, t, t+ T ) have the form

ẋt(s) = A(s)xt(s) +B1(s)u
t
1(s, x

t) + . . .+Bn(s)u
t
n(s, x

t),
xt(t) = x,
xt ∈ Rl, ut = (ut1, . . . , u

t
n), u

t
i = uti(s, x

t) ∈ Ui ⊂ Rk, t ∈ [t0,+∞).
(4)

The payoff function of player i ∈ N in game Γ (x, t, t+ T ) is defined as

Kt
i (x, t, T ;u

t) =

t+T∫
t

(xt(s))′Qi(s)x
t(s) +

n∑
j=1

(
utj(s, x

t)
)′
Rij(s)u

t
j(s, x

t)

 ds,

(5)
where xt(s), ut(s, xt) are trajectory and strategies in the game Γ (x, t, t + T ). It
is easy to see for each strategy profile ut(s, xt) = (ut1(s, x

t), . . . , utn(s, x
t)) for fixed

time instant t we receive a trajectory xt(s), s ∈ [t, t+T ] (in section 2.1 the conditions
of positive definite and symmetry are satisfied). As the current time t ∈ [t0,+∞)
changes the strategy profile ut(s, xt) changes and corresponding xt(s) as well. There-
fore, further we will keep additional indexing t for xt that represents the trajectory
or the state in the game starting in the current time instant t. It is supposed that
the same conditions as in the section 2.1 are satisfied for a N-tuple of strategies,
but for every current time instant t.

In the class of differential games with continuous updating, time parameter
t ∈ [t0,+∞) evolves continuously. As a result players continuously receive updated
information about motion equations and payoff functions under Γ (x, t, t + T ). Ac-
cording to the model (4), (5) we assume that, at each current time t ∈ [t0,+∞),
the strategy ut(s, xt) can be different for fixed s. Using the strategies u(t, x), it is
possible to model the behavior of players for continuously updated information:

u(t, x) := ut(s, xt(s))|s=t, t ∈ [t0,+∞),

where ut(s, xt), s ∈ [t, t + T ] are some fixed strategies defined in the subgame
Γ (x, t, t+T ) starting in time instant t and initial state xt(s)|s=t = x. Such a complex
construction is needed because the decision in the whole game with continuous
updating is based on particular decisions in each subgame, but only at one moment
in time. The state or the trajectory corresponding to u(t, x) in the model with
continuous updating is defined according to the motion equations in the initial
game without updating

ẋ(t) = A(t)x(t) +B1(t)u1(t, x) + . . .+Bn(t)un(t, x),
x(t0) = x0,
x ∈ Rl

(6)

with strategies with continuous updating u(t, x) involved.
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The essential difference between a game model with continuous updating and
a classic differential game Γ (x0, t0, T ) with a prescribed duration is that players
in the initial game are guided by the payoffs that they will eventually receive for
interval [t0, T ]. But in the case of a game with continuous updating, at the time
instant t they orient themselves on the expected payoffs (5), which are calculated
using information about the game structure defined on the interval [t, t+ T ].

3. Nash Equilibrium with Continuous Updating in LQ Differential
Games

3.1. Nash Equilibrium with Continuous Updating
In this section we present the definition of Nash equilibrium with continuous

updating presented for the first time in (Petrosian and Tur, 2019).
For a class of games with continuous updating the concept of Nash equilibrium

uNE(t, x) = (uNE
1 (t, x), . . . , uNE

n (t, x)) will be defined such that each fixed t ∈
[t0,+∞) coincides with the feedback (open-loop) Nash equilibrium in the game (4),
(5) defined for the interval [t, t+ T ] at the instant t. This concept is used to model
the behavior of players that use Nash equilibrium strategies under the information
they have at every current time instant t.

As has been stated above and in the previous papers on continuous updating,
it is impossible to directly use the definition of Nash equilibrium and the classical
procedures to obtain it. Therefore direct application of classical approaches such as
the Hamilton-Jacobi-Bellman equations or the Pontryagin maximum principle for
determining Nash equilibrium in feedback (open-loop) strategies is not possible.

Definition 1. Strategy profile uNE
fb (t, x)

(
uNE
ol (t, x)

)
is called the feedback-based

(open-loop-based) Nash equilibrium with continuous updating, if it is defined in the
following way:

uNE
fb (t, x) = ũNE

fb (t, s, xt)|s=t = (ũNE
fb,1(t, s, x

t)|s=t, . . . , ũ
NE
fb,n(t, s, x

t)|s=t),(
uNE
ol (t, x) = ũNE

ol (t, s, xt)|s=t = (ũNE
ol,1(t, s, x

t)|s=t, . . . , ũ
NE
ol,n(t, s, x

t)|s=t)
)
,

(7)

where t ∈ [t0,+∞) and ũNE
fb (t, s, xt)

(
ũNE
ol (t, s, xt)

)
is the feedback (open-loop)

Nash equilibrium in the game Γ (x, t, t+ T ) defined on the interval [t, t+ T ].

We suppose that the strategy with continuous updating obtained using (7) is
admissible or that the problem (6) has a unique and continuable solution. Corre-
sponding conditions of existence, uniqueness and continuability of A. F. Filippov
(Filippov, 2004) are presented for the system (4)-(5).

Strategy profile uNE
fb (t, x)

(
uNE
ol (t, x)

)
will be used as a solution concept in the

game with continuous updating. It is important to notice that Nash equilibrium
with continuous updating uNE

fb (t, x)
(
uNE
ol (t, x)

)
is not the Nash equilibrium in the

classical sense, but can be used as a solution concept related to Nash equilibrium for
a class of games with continuous updating. Trajectories corresponding to uNE

fb (t, x)(
uNE
ol (t, x)

)
we will denote by xNE

fb (t)
(
xNE
ol (t)

)
.

3.2. Theorems on Nash Equilibrium with Continuous Updating for LQ
Differential Games

One of the main results of this paper is the establishment of sufficient con-
ditions for the existence of a feedback-based Nash equilibrium with continuous
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updating for the non-autonomous case. Related results can be found in papers
(Kuchkarov and Petrosian, 2019) and (Kuchkarov and Petrosian, 2020) where the
sufficient conditions for a Nash equilibrium with continuous updating for an au-
tonomous case were presented.

Theorem 1. For an N-person linear-quadratic differential game Γ (x0, t0, t0 + T )
with continuous updating with Qi(·) ≥ 0, Rij(·) ≥ 0 (i, j ∈ N, i ̸= j), let the system
of N coupled matrix Riccati differential equations

dZt
i (τ)
dτ + Zt

i (τ)F
t(τ) + (F t(τ))

′
Zt
i (τ) +Qi(t+ Tτ) +

+T
2 ∑
j∈N

Zt
j(τ)Bj(t+ Tτ)R−1

jj (t+ Tτ)Rij(t+ Tτ)×

×R−1
jj (t+ Tτ)B′

j(t+ Tτ)Zt
j(τ) = 0, τ ∈ [0, 1],

Zt
i (1) = 0, i ∈ N, (8)

where

F t(τ) = TA(t+ Tτ)− T
2∑
i∈N

Bi(t+ Tτ)R−1
ii (t+ Tτ)B′

i(t+ Tτ)Zt
i (τ),

A(t), B(t), Q(t), R(t) are bounded continuous functions, has a unique bounded
solution Zt

i (·) ≥ 0, i ∈ N for t ≥ t0. Then a linear-quadratic differential game with
continuous updating has a continuous in t linear feedback-based Nash equilibrium
with continuous updating

uNE
fb,i(t, x) = −R−1

ii (t)B′
i(t)Z

t
i (0)Tx, i ∈ N. (9)

Proof. In order to prove the Theorem we introduce the following change of variables

s = t+ Tτ,

yt(τ) = xtfb(t+ Tτ),

vti(τ, y) = ufb,i(t+ Tτ, y), i ∈ N.

(10)

By substituting (10) to the motion equations (4) and payoff function (5), we obtain

ẏt(τ) = TA(t+ Tτ)yt(τ) +
N∑
i=1

TBi(t+ Tτ)vti(τ, y) (11)

and

Kt
i (y

t, τ ; vt) =

1∫
τ

(
yt(τ1)

)′
Qi(t+ Tτ1)y

t(τ1)

+

N∑
j=1

(
vtj
(
τ1, y))

′
Rij(t+ Tτ1)v

t
j(τ1, y)dτ1, i ∈ N.

(12)

The corollary 6.5 from (Basar et al., 1995) (sufficient conditions for the existence
of Nash equilibrium in affine-quadratic game) and the existence of solution Zt

i (τ) ≥
0 for the system of differential equations (8) lead to feedback-based Nash equilibrium
strategies in the subgame Γ (x, t, t+ T ) that have the form

vt,NE
i (τ, y) = −R−1

ii (t+ Tτ)B′
i(t+ Tτ)Zt

i (τ)Ty. (13)
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From (10) we have

τ =
s− t

T
,

returning to original variables we obtain the following strategies

utfb,i(s, x) = −R−1
ii (s)B′

i(s)Z
t
i

(
s− t

T

)
Tx. (14)

These strategies are Nash equilibrium in feedback-based strategies in the subgame
Γ (x, t, t+ T ) by construction.

Task (11), (12) and solution (13) have the same form for all values t in the
original game with continuous updating. Then a feedback Nash equilibrium in all
subgames has the parametric form

ũNE
fb,i(t, s, x) = −R−1

ii (s)B′
i(s)Z

t
i

(
s− t

T

)
Tx. (15)

Apply the procedure (7) to determine the Nash equilibrium with continuous
updating using (15), s = t:

uNE
fb,i(t, x) = −R−1

ii (t)B′
i(t)Z

t
i (0)Tx, t ∈ [t0,+∞), i ∈ N.

To prove continuity of (9) we use classic theorem from ODE theory: if right part
of ODE is continuous, bounded and for every point (t0, x0) it has unique solution
then solution of this ODE continuously depends on an initial point and right part
of ODE. Thus, ODE (8) satisfy this classic theorem, hence Zt

i (0) is continuous as
function of t. Thus, right part of (9) is continuous.

This proves the theorem.

Remark 1. The non-autonomous case differs from the autonomous case in that
the solution to the Riccati equations may differ at each moment in time, thus it is
necessary to find a solution to the family of Riccati equations. In addition, in the
autonomous case, the continuity in t of the strategy followed from the constancy
of the solution to the Riccati equations, while in the non-autonomous case this
continuity must be shown explicitly.

The form of open-loop-based Nash equilibrium with continuous updating was
presented in (Kuchkarov and Petrosian, 2020). We will use these results later to
study convergence in section 4.

Theorem 2. For an N-person linear-quadratic differential game with Qi(·) ≥ 0,
Rij(·) ≥ 0 (i, j ∈ N, i ̸= j), let there exist a solution set {M t

i , i ∈ N, t ⩾ t0} to the
coupled matrix Riccati differential equations

dM t
i (τ)

dτ
+ TM t

i (τ)A(t+ Tτ) + TA′(t+ Tτ)M t
i (τ) +Qi(t+ Tτ)−

− T
2
M t

i (τ)
∑
j∈N

Bj(t+ Tτ)
(
Rjj(t+ Tτ)

)−1
B′

j(t+ Tτ)M t
j (τ) = 0,

M t
i (1) = 0, τ ∈ [0, 1], i ∈ N.

(16)

Then, the differential game with continuous updating admits an open-loop-based
Nash equilibrium with continuous updating solution given by

uNE
ol,i (t, x) = −R−1

ii (t)B′
i(t)M

t
i (0)Tx, i ∈ N.
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Remark 2. Notice that the open-loop-based solution with continuous updating
has a feedback form; i. e. the open-loop-based Nash equilibrium with continuous
updating explicitly depends on the current state. This happens because of the way
the solution is constructed, when at each current time t players reconsider their
decisions under the continuously updated information.

Example 1. Consider the following autonomous differential game model with two
players in order to compare an open-loop-based and feedback-based Nash equilib-
rium with continuous updating. Let the motion equations in the subgame have the
form

ẋt(s) = −βxt(s) + ut1(s, x
t(s)) + ut2(s, x

t(s)),

xt(t) = x, xt ∈ R1
(17)

and payoff function of player i ∈ {1, 2} is defined as

Ki

(
x, t, T , ut

)
=

t+T∫
t

(
q
(
xt(s)

)2
+ r1

(
uti(s, x

t(s))
)2

+ r2
(
utj(s, x

t(s))
)2)

ds, (18)

where j ∈ {1, 2}, j ̸= i, q, r1, r2 > 0.
As we need to consider only one equation because of players’ symmetry, for a

feedback-based Nash equilibrium with continuous updating the Riccati differential
equation has the form:

ż(τ) = 2Tβz(τ) + 2T
2
z2(τ)

(
2

r1
− r2
r21

)
− q, τ ∈ [0, 1],

z(1) = 0.

For an open-loop-based Nash equilibrium with continuous updating we obtain

ṁ(τ) = 2Tβm(τ) + 2T
2m2(τ)

r1
− q, τ ∈ [0, 1],

m(1) = 0.

Note that, since in this example we consider a case of two players, the conditions
of Theorems 1 and 2 become necessary as well. Therefore, one can say that a
feedback-based and open-loop-based Nash equilibrium with continuous updating
for this model are unique. We have simulated Nash equilibrium obtained using Ric-
cati equations above for parameters β = 0.01, r1 = 1, r2 = 0.1, q = 5, T = 1,
t ∈ [0, 2], x(0) = 100, plotted them (Fig. 1) and the corresponding equilibrium
trajectories (Fig. 2) for open-loop-based and feedback-based cases. It is possible to
see that the solutions are obviously different even though both of them are in fact
from the feedback-based form (depending on the state x).

3.3. Existence, Uniqueness
An important assumption made in the previous section is the assumption for the

existence of Nash equilibrium with continuous updating. According to the definition,
for the existence of Nash equilibrium with continuous updating uNE(t, x), it is
necessary and sufficient to assume the existence of a Nash equilibrium ũNE(t, s, xt)
in each subgame Γ (x, t, t+ T ), t ⩾ t0.
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Fig. 1. uNE
fb (t) — feedback-based Nash equi-

librium with continuous updating for (17),
(18), uNE

ol (t) — open-loop-based Nash equi-
librium with continuous updating for (17),
(18).
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Fig. 2. xNE
fb (t) — trajectory for feedback-

based NE with continuous updating for (17),
(18), xNE

ol (t) — trajectory for open-loop-
based NE with continuous updating for (17),
(18).

The problem of the uniqueness of the Nash equilibrium in differential games
is not trivial. It is known (Eisele, 1982) that, even for the case of an autonomous
linear-quadratic game, the open-loop Nash equilibrium can be non-unique even
when sufficient conditions similar to the theorems presented above are satisfied.

Suppose that, in the games with continuous updating, in each subgame Γ (x, t, t+
T ), t ⩾ t0 there are at least two Nash equilibria on the interval [t, t+ T ]. Then the
set of Nash equilibria with continuous updating will be uncountable because players
can switch from one Nash equilibrium to another one at every current time instant
time t.

Example 2. Consider the following game model with continuous updating defined
by the motion equations with strategies of players in open-loop form

ẋt(s) =

[
u1(s) 0
0 u2(s)

]
,

xt(t) = x, xt ∈ R2

and payoff function of player i ∈ {1, 2} defined as

Kt
i

(
x, t,

π

2
, ut
)
=

1

2

t+π
2∫

t

((
xt(s)

)′
Qix

t(s) +
(
uti(s)

)2)
ds,

where
Q1 =

[
1
2 −1
−1 4

]
, Q2 =

[
15 −2
−2 1

3

]
.

If x = (0, 0)′ then according to example 4.1 in Eisele, 1982 this differential
subgame has trivial solution ut1 = ut2 ≡ 0 and set of nontrivial solutions ut1 = 2

3u
t
2 ≡

α, α ∈ R. Thus the set of open-loop-based Nash equilibria with continuous updating
is formed by piece-wise continuous functions of the form

uol,i(t) =

{
0, t ∈ [t0, t1),

u∗i (t), t ∈ [t1,∞],
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where t1 is a switching point from trivial to nontrivial solution and u∗i (t) is some
nontrivial strategy of player i after this switching point. As you can see, the set of
switching points is uncountable, therefore the set of open-loop-based Nash equilibria
with continuous updating is uncountable.

Moreover, an open-loop-based Nash equilibrium with continuous updating may
have continuity or may have a point of discontinuity jump in at some time instant
t1, where players switch their strategies from trivial to nontrivial. Thus, if there are
several Nash equilibria in the subgames, then, in a game with continuous updating,
the Nash equilibrium with continuous updating may be discontinuous.

Lemma 1. Let the differential game be autonomous and the Nash equilibrium in
each subgame Γ (x, t, t + T ) be unique and continuous, then the Nash equilibrium
with continuous updating is unique and continuous.

Proof. The uniqueness of a Nash equilibrium with continuous updating follows from
its definition and the uniqueness of the Nash equilibrium in each subgame Γ (x, t, t+
T ).

In the autonomous case, players consider the same subgame Γ (x, t, t+T ) at every
moment of time t. Without loss of generality, let u∗(s, x) be the Nash equilibrium
in this common subgame Γ (x, t0, t0 + T ), then, according to definition 1, the Nash
equilibrium with continuous updating has the form uNE(t, x) = u∗(t0, x). Thus,
the Nash equilibrium with continuous updating does not explicitly depend on time,
and its continuity follows from the continuity of the Nash equilibrium in subgame
Γ (x, t, t+ T ).

Remark 3. In the case of non-uniqueness of the solution, an algorithm can be
constructed to select a single solution by imposing additional constraints on the
system. For example, the change in strategy should be as small as possible. For
such a criterion for resolving non-uniqueness in Example 2, we obtain the trivial
solution

uol,i(t) = 0, t ∈ [t0,∞].

Study of the properties of Nash equilibrium with continuous updating is a di-
rection for further research.

4. Convergence Results for Strategies and Trajectories

In this section the convergent results of Nash equilibrium strategies and trajec-
tories with continuously updating are presented. In order to do so the concept of
dynamic updating is presented, which helps to model the noncooperative behav-
ior of players when information updates in discrete time instants. Convergence of
strategies and trajectories with dynamic updating and strategies with continuous
updating is proved both for open-loop-based and feedback-based cases.

4.1. LQ Game Model with Dynamic Updating
In papers (Gromova and Petrosian, 2016; Petrosian, 2016a; Petrosian, 2016b;

Petrosian and Barabanov, 2017; Petrosian et al., 2017; Petrosian et al., 2018; Ye-
ung and Petrosian, 2017) the method for constructing a differential game model
with dynamic updating is described. There it is assumed that players have infor-
mation about the game structure only over a truncated interval and, based on this,
make decisions. In order to model the behavior of players in a case when information
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updates dynamically, consider the case when information is updated every ∆t > 0
and the behavior of players at each segment [t0+ j∆t, t0+(j+1)∆t], j = 0, 1, 2, . . .
is modeled using the notion of a truncated subgame:

Definition 2. Let j = 0, 1, 2, . . .. A truncated subgame Γ̄j(x
j
0, t0+j∆t, t0+j∆t+T )

is a game defined for the interval [t0 + j∆t, t0 + j∆t + T ] in the following way. At
interval [t0+j∆t, t0+j∆t+T ] the payoff function, motion equation in the truncated
subgame, and initial game model Γ (x0, t0, T ) coincide:

ẋj(s) = A(s)xj(s) +B1(s)v
j
1(s, x

j) + . . .+Bn(s)v
j
n(s, x

j),

xj(t0 + j∆t) = xj0,

xj ∈ Rn, vj = (vj1, . . . , v
j
n), v

j
i = vji (s, x

j) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).

(19)

Kj
i (x

j , t0 + j∆t, t0 + j∆t+ T ; vj) =

t0+j∆t+T∫
t0+j∆t

(
xj(s)

)′
Qi(s)x

j(s)

+

n∑
k=1

(
vk(s, xj)

)′
Rik(s)v

k(s, xj)ds, i ∈ N.

(20)

At any instant t = t0 + j∆t information about the game structure updates, and
therefore players adapt to it. This class of game models is called differential games
with dynamic updating.

In the same way as in section 3 we will need to define a special form of the
Nash equilibrium. According to the approach described above, at any time instant
t ∈ [t0,+∞), players have or use truncated information about the game structure,
therefore classical approaches for determining optimal strategies cannot be directly
applied. In order to determine the solution for games with dynamic updating, the
notion of feedback-based (open-loop-based) Nash equilibrium with dynamic updating
is introduced:

Definition 3. Feedback-based (open-loop-based) Nash equilibrium with dynamic up-
dating

vNE
fb (t, x) = (vNE

fb,1(t, x), . . . , v
NE
fb,n(t, x))(

vNE
ol (t, x) = (vNE

ol,1 (t, x), . . . , v
NE
ol,n(t, x))

)
of players in the game model with dynamic updating has the form:

{vNE
fb (t, x)}∞t=t0 = ṽNE

fb,j(t, x), t ∈ (t0 + j∆t, t0 + (j + 1)∆t], j = 0, 1, 2, . . .(
{vNE

ol (t, x)}∞t=t0 = ṽNE
ol,j (t, x), t ∈ (t0 + j∆t, t0 + (j + 1)∆t], j = 0, 1, 2, . . .

)
(21)

where ṽNE
fb,j(t, x) = (ṽj,NE

fb,1 (t, x), . . . , ṽj,NE
fb,n (t, x))

(
ṽNE
ol,j (t, x) = (ṽj,NE

ol,1 (t, x), . . . ,

ṽj,NE
ol,n (t, x))

)
is some fixed feedback-based (open-loop) Nash equilibrium in the trun-

cated subgame Γ̄j(x
j,NE
0 , t0 + j∆t, t0 + j∆t + T ), j = 0, 1, 2, . . . starting along the

equilibrium trajectory of the previous truncated subgame: xj,NE
0 = xj−1,NE(t0 +

j∆t).

It is important to notice that Nash equilibrium with dynamic updating vNE(t, x)
is not the Nash equilibrium in the classical sense, but can be used as a solution
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concept related to Nash equilibrium for a class of games with dynamic updating.
Corresponding trajectory x̂NE

fb (t) (x̂NE
ol (t)) is obtained by using motion equation (1)

and the feedback-based (open-loop-based) Nash equilibrium with dynamic updating
vNE(t, x) = (vNE

1 (t, x), . . . , vNE
n (t, x)).

4.2. Nash Equilibrium with Dynamic Updating
Another important set of results from this paper are sufficient conditions for the

existence of a feedback-based and open-loop-based Nash equilibrium with dynamic
updating for a non-autonomous case:

Theorem 3. For an N-person linear-quadratic differential game Γ̄j(x
j
0, t0 + j∆t,

t0 + j∆t + T ) with dynamic updating with Qi(·) ≥ 0, Rik(·) ≥ 0 (i, k ∈ N, i ̸= k),
let system of N coupled matrix Riccati differential equations

dZ
tj
i (τ)

dτ + Z
tj
i (τ)F tj (τ) + (F tj (τ))

′
Z

tj
i (τ) +Qi(tj + Tτ) +

+T
2 ∑
k∈N

Z
tj
k (τ)Bk(tj + Tτ)R−1

kk (tj + Tτ)Rik(tj + Tτ)×

×R−1
kk (tj + Tτ)B′

k(tj + Tτ)Z
tj
k (τ) = 0,

Z
tj
i (1) = 0, τ ∈ [0, 1], i ∈ N, (22)

where

F tj (τ) = TA(tj + Tτ)− T
2∑
i∈N

Bi(tj + Tτ)R−1
ii (tj + Tτ)B′

i(tj + Tτ)Z
tj
i (τ),

has a solution Ztj
i (·) ≥ 0, i ∈ N, for t ≥ t0+j∆t. Then a linear-quadratic differential

game with dynamic updating has a feedback-based Nash equilibrium with dynamic
updating such that for t ∈ [t0 + j∆t, t0 + (j + 1)∆t] it is given by

vNE
fb,i(t, x) = −R−1

ii (t)B′
i(t)Z

tj
i

(
t− (t0 + j∆t)

T

)
Tx, j = 0, 1, 2, . . . , i ∈ N. (23)

Proof. The proof of this theorem is similar to the proof of Theorem 1. The essential
difference is the time interval of solutions matching in the whole game and the
subgame. On one hand, the Nash Equilibrium with continuous updating coincides
with the Nash equilibrium in subgame Γ (x, t, t + T ) in only one point t. On the
other hand, the Nash equilibrium with dynamic updating coincides with the Nash
equilibrium in subgame Γ̄j(x

j
0, t0+j∆t, t0+j∆t+T ) on time interval [t0+j∆t, t0+

(j+1)∆t]. Thus proof of this theorem repeats the proof of theorem 1 down to (14).
In a game with dynamic updating, we update information only in discrete time

moments tj = t0+j∆t, j ∈ N, and specify (14) for the game with dynamic updating

v
tj
fb,i(s, x) = −R−1

ii (s)B′
i(s)Z

tj
i

(
s− tj

T

)
Tx

that equals to (23).

Theorem 4. For an N-person linear-quadratic differential game Γ̄j(x
j
0, t0 + j∆t,

t0 + j∆t + T ) with dynamic updating with Qi(·) ≥ 0, Rik(·) ≥ 0 (i, k ∈ N, i ̸= k),



Non-autonomous LQ Differential Games with Continuous Updating 145

let there exist a solution set {M tj
i , i ∈ N, tj ⩾ t0} to the coupled matrix Riccati

differential equations

dM
tj
i (τ)

dτ
+ TM

tj
i (τ)A(tj + Tτ) + TA′(tj + Tτ)M

tj
i (τ) +Qi(tj + Tτ)−

− T
2
M

tj
i (τ)

∑
k∈N

Bk(tj + Tτ)
(
Rkk(tj + Tτ)

)−1
B′

k(tj + Tτ)M
tj
k (τ) = 0,

M
tj
i (1) = 0, τ ∈ [0, 1], i ∈ N.

(24)

Then, the differential game with dynamic updating admits a open-loop-based Nash
equilibrium with dynamic updating for t ∈ [t0 + j∆t, t0 + (j + 1)∆t] is given by

vNE
ol,i (t, x) = −R−1

ii (t)B′
i(t)M

tj
i

(
t− (t0 + j∆t)

T

)
×

× Φtj

(
t− (t0 + j∆t)

T

)
Tx(t0 + j∆t), j = 0, 1, 2, . . . , i ∈ N,

where i ∈ N, Φtj is the solution of following equation

dΦt

dτ
=

(
A(t+ Tτ)−

∑
i∈N

Bi(t+ Tτ)R−1
ii (t+ Tτ)B′

i(t+ Tτ)

)
Φt(τ),

Φt(0) = E.

Proof. The proof of this Theorem can be obtained using Theorem 2 in the same
way as we obtained the proof of Theorem 3 using Theorem 1.

4.3. Convergence of Nash Equilibrium Strategies and Trajectory
Now we show the convergence of Nash equilibrium and a corresponding equilib-

rium trajectory for a differential game with dynamic updating with corresponding
equilibria for a differential game with continuous updating.

Lemma 2. Let some matrix function U(t) be uniformly bounded when t ⩾ t0, some
parametric matrix function P t(τ) is continuously differentiated with respect to both
t and τ and dP t(τ)

t and dP t(τ)
τ are uniformly bounded when t ⩾ t0, τ ∈ [0, 1].

For ∆t→ 0, x ∈ X (X — limited set), t ∈ [t0+ j∆t, t0+(j+1)∆t] and ∆t ⩽ T
the following convergence holds:

U(t)P t(0)x ⇒
[t0,+∞)

U(t)P t0+j∆t

(
t− t0 + j∆t

T

)
x.

Proof. Introduce the notation tj
def
= t0 + j∆t, then t ∈ [tj , tj+1]. We need to show

that ∥∥∥∥U(t)P t(0)x− U(t)P tj

(
t− tj

T

)
x

∥∥∥∥→ 0,

when ∆t→ 0.
From Taylor decomposition for P t(τ) at the point t = tj we obtain:

P t(τ) = P tj (τ) +
dP t(τ)

dt

∣∣∣∣
t=tj

(t− tj) + o(t− tj).
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From Taylor decomposition for P tj (τ) at the point τ = 0 we obtain:

P tj (τ) = P tj (0) +
dP tj (τ)

dτ

∣∣∣∣
τ=0

τ + o(τ).

In result we have estimation:∥∥∥∥U(t)P t(0)x− U(t)P tj

(
t− tj

T

)
x

∥∥∥∥ ≤

≤ ∥U(t)∥∥x∥

(∥∥∥∥∥ dP t(τ)

dt

∣∣∣∣
t=tj

∥∥∥∥∥∆t+
∥∥∥∥ P tj (τ)

dτ

∣∣∣∣
τ=0

∥∥∥∥∆t+ o(∆t)

)
,

(25)

where τ =
t−tj
T

.
When ∆t → 0 the right hand side of (25) converges to zero and as a result the

left hand side of (25) also converges to zero. This completes the proof.

Theorem 5. Let the conditions of Theorem 1 be satisfied, the Nash equilibrium is
unique in game Γ (x, t, t+T ) ∀t ⩾ t0, R−1

ii (t)B′
i(t) is uniformly bounded when t ⩾ t0,

the solution of Riccati equation (8) Zt
i (τ) is continuously differentiated with respect

to t and τ and dZt
i (τ)
dt , dZt

i (τ)
dτ are uniformly bounded when t ⩾ t0, τ ∈ [0, 1].

For ∆t → 0 and x ∈ X (X — limited set) the feedback-based Nash equilibrium
with dynamic updating vNE

fb,i(t, x) uniformly converges to the feedback-based Nash
equilibrium with continuous updating uNE

fb,i(t, x):

vNE
fb,i(t, x) ⇒

[t0,+∞)
uNE
fb,i(t, x), i ∈ N. (26)

Proof. With notation tj
def
= t0 + j∆t and t ∈ [tj , tj+1] consider the expressions for

uNE
fb,i and vNE

fb,i:

uNE
fb,i(t, x) = −R−1

ii (t)B′
i(t)Z

t
i (0)Tx,

vNE
fb,i(t, x) = −R−1

ii (t)B′
i(t)Z

tj
i

(
t− tj

T

)
Tx, t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

where Zt
i (τ) — solution of (8). Let U(t) = −TR−1

ii (t)B′
i(t), P t(τ) = Zt

i (τ). Then
the application of lemma 2 completes the proof.

Theorem 6. Let the conditions of Theorem 2 be satisfied, the Nash equilibrium is
unique in game Γ (x, t, t+T ) ∀t ⩾ t0, R−1

ii (t)B′
i(t) is uniformly bounded when t ⩾ t0,

the product of the solution of Riccati equation (22) M t
i (τ) and Φt(τ) are continu-

ously differentiated with respect to both t and τ and
d(Mt

i (τ)Φ
t(τ))

dt ,
d(Mt

i (τ)Φ
t(τ))

dτ are
uniformly bounded when t ⩾ t0, τ ∈ [0, 1], where

dΦt

dτ
=

(
A(t+ Tτ)−

∑
i∈N

Bi(t+ Tτ)R−1
ii (t+ Tτ)B′

i(t+ Tτ)

)
Φt(τ),

Φt(0) = E.
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For ∆t → 0 and x ∈ X (X — limited set) an open-loop-based Nash equilibrium
with dynamic updating vNE

ol,i (t, x) uniformly converges to open-loop-based Nash equi-
librium with continuous updating uNE

ol,i (t, x):

vNE
ol,i (t, x) ⇒

[t0,+∞)
uNE
ol,i (t, x), i ∈ N. (27)

Proof. With notation tj
def
= t0 + j∆t and t ∈ [tj , tj+1], consider the expressions for

uNE
ol,i and vNE

ol,i :
uNE
ol,i (t, x) = −R−1

ii (t)B′
i(t)M

t
i (0)Tx,

vNE
ol,i (t, x) = −R−1

ii (t)B′
i(t)M

tj
i

(
t− (t0 + j∆t)

T

)
×

× Φtj

(
t− (t0 + j∆t)

T

)
Tx, t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

where M t
i (τ) is the solution of (22).

Let U(t) = −TR−1
ii (t)B′

i(t), P t(τ) = M t
i (τ)Φ

t (τ). Then the application of
lemma 2 completes the proof.

Lemma 3. Let some matrix functions V1(t), V2(t) be uniformly bounded when t ⩾
t0, some parametric matrix function P t(τ) be continuously differentiated with respect
to both t and τ and dP t(τ)

dt and dP t(dτ)
τ are uniformly bounded when t ⩾ t0, τ ∈ [0, 1].

Consider differential equation for y(t), t ∈ [t0,+∞]

dy(t)

dt
=
(
V1(t) + V2(t)P

t(0)
)
y, (28)

where y(t0) = y0.
Consider differential equation for zj(t), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], ∆t < T

dzj(t)

dt
=

(
V1(t) + V2(t)P

t0+j∆t

(
t− (t0 + j∆t)

T

))
zj , (29)

where zj(t0 + j∆t) = zj−1(t0 + j∆t) for j ⩾ 1, z0(t0) = y0.
Let y∗(t) be a solution of (28) and

z∗(t) =


z0(t), t ∈ [t0, t0 +∆t],

· · ·
zj(t), t ∈ (t0 + j∆t, t0 + (j + 1)∆t],

· · ·

where zj(t) satisfies (29). Let y∗(t), z∗(t) exist for t ⩾ t0. Then z∗(t) point-wise
converges to the y∗(t) for ∆t→ 0:

z∗(t) →
∆t→0

y∗(t).

Proof. Introduce the notation tj
def
= t0 + j∆t, then t ∈ [tj , tj+1]. We need to show

that ∥z∗(t)− y∗(t)∥ → 0 when ∆t→ 0.
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Trajectories z∗(t) and y∗(t) satisfy the differential equations (29), (28) for t ∈
[tj , tj+1]. Notice that

P t(0)y∗ − P tj

(
t− tj

T

)
z∗ = P t(0)(y∗ − z∗) +

(
P t(0)− P tj

(
t− tj

T

))
z∗.

Let wj(t) = y∗(t)− z∗(t) for t ∈ [tj , tj+1], V3(t) = V1(t) + V2(t)P
t(0) and

fj(t) = V2(t)

(
P t(0)− P tj

(
t− tj

T

))
z∗(t).

Then wj(t) satisfies the following differential equation

dwj(t)

dt
= V3(t)wj(t) + fj(t).

Consider

w(t) =


w0(t), t ∈ [t0, t0 +∆t],

· · ·
wj(t), t ∈ (t0 + j∆t, t0 + (j + 1)∆t],

· · ·

(30)

and

f(t) =


f0(t), t ∈ [t0, t0 +∆t],

· · ·
fj(t), t ∈ (t0 + j∆t, t0 + (j + 1)∆t],

· · ·
then (30) satisfies the following differential equation

ẇ(t) = V2(t)w(t) + f(t).

with initial state w(t0) = 0, since z(t0) = y(t0).
By the Cauchy formula we have for any t ≥ t0

w(t) = Y (t)

t∫
t0

Y −1(ξ)f(ξ)dξ,

where Y (t) is the fundamental matrix of dw
dt = V2(t)w(t). Taking this into account

we have for fixed t

lim
∆t→0

∥w(t)∥ ≤ lim
∆t→0

[∥Y (t)∥ŵ(t)β∆t(t− t0) + o(∆t)] = 0, (31)

where
ŵ(t) = max

ξ∈[t0,t]
∥Y −1(ξ)∥

β = ∥V2(t)∥

(∥∥∥∥∥ dP t(τ)

dt

∣∣∣∣
t=tj

∥∥∥∥∥+
∥∥∥∥ dP tj (τ)

dτ

∣∣∣∣
τ=0

∥∥∥∥
)
M(t),

M(t) = max
ξ∈[t0,t]

∥z(ξ)∥.

According to (31) w(t) →
[t0,+∞)

0, when ∆t→ 0. This proves the lemma.



Non-autonomous LQ Differential Games with Continuous Updating 149

Theorem 7. Let the conditions of Theorem 1 be satisfied, the Nash equilibrium is
unique in game Γ (x, t, t+T ) ∀t ⩾ t0, A(t), Bi(t)R

−1
ii (t)B′

i(t) are uniformly bounded
for i ∈ N and t ⩾ t0, the solution of Riccati equation (8) Zt

i (τ) is continuously
differentiated with respect to both t and τ and dZt

i (τ)
dt ,

dZt
i (τ)
dτ are uniformly bounded

for t ⩾ t0, τ ∈ [0, 1].
A feedback-based equilibrium trajectory in the game with dynamic updating x̂NE

fb (t)

point-wise converges to the feedback-based equilibrium trajectory x̃NE
fb (t) in the game

with continuous updating for ∆t→ 0:

x̂NE
fb (t) →

[t0,+∞)
x̃NE
fb (t). (32)

Proof. Let
V1(t) = A(t),

V2(t) =
[
−TB1(t)R

−1
11 (t)B

′
1(t), . . . , −TBN (t)R−1

NN (t)B′
N (t)

]
,

P t(τ) =

Z
t
1
...
Zt
N

 .
Then lemma 3 applying completes the proof.

Theorem 8. Let the conditions of Theorem 2 be satisfied, Nash equilibrium is
unique in game Γ (x, t, t+T ) ∀t ⩾ t0, A(t), Bi(t)R

−1
ii (t)B′

i(t) are uniformly bounded
for i ∈ N and t ⩾ t0, product M t

i (τ)Φ
t(τ) is continuously differentiated with

respect to both t and τ and dMt
i (τ)Φ

t(τ)
dt ,

dMt
i (τ)Φ

t(τ)
dτ are uniformly bounded for

t ⩾ t0, τ ∈ [0, 1] where M t
i (τ) is the solution of Riccati equation (22), Φt(τ) is

solution of

dΦt

dτ
=

(
A(t+ Tτ)−

∑
i∈N

Bi(t+ Tτ)R−1
ii (t+ Tτ)B′

i(t+ Tτ)

)
Φt(τ),

Φt(0) = E.

An open-loop-based equilibrium trajectory in a game with dynamic updating x̂NE
ol (t)

point-wise converges to the open-loop-based equilibrium trajectory in a game with
continuous updating x̃NE

ol (t) for ∆t→ 0:

x̂NE
ol (t) →

∆t→0
x̃NE
ol (t). (33)

Proof. Let
V1(t) = A(t),

V2(t) =
[
−TB1(t)R

−1
11 (t)B

′
1(t), . . . , −TBN (t)R−1

NN (t)B′
N (t)

]
,

P t(τ) =

M
t
1(τ)Φ

t(τ)
...

M t
N (τ)Φt(τ)

 .
Then the application of lemma 3 completes the proof.

Later in section 5, convergence results will be demonstrated using one differential
game model.
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5. Example Model

5.1. Common Description
Consider some non-autonomous linear quadratic game model with two players.

Assume that dynamics of state x are described by

ẋ(t) = −βt2px(t) + tpu1(t, x) + tpu2(t, x), x(t0) = x0. (34)

Assume the cost function of both players is given by

Ki(x0, t0, T ;u) =

∫ T

t0

(
t2pqix

2(t) + riu
2
i (t, x)

)
dt, i = 1, 2. (35)

5.2. Game Model with Continuous Updating
Now consider the non-autonomous case with continuous updating. Here we sup-

pose that two individuals at each time instant t ∈ [t0,+∞) use information about
motion equations and payoff functions on the interval [t, t+T ]. As the current time
t evolves the interval, which defines the information shifts as well. Motion equations
for the game model with continuous updating have the form

ẋt(s) = −βs2pxt(s) + sput1(s, x) + sput2(s, x), x
t(t) = x, t ∈ [t0,+∞). (36)

Cost function of player i ∈ N for the game model with continuous updating is
defined as

Kt
i (x

t, t, T ;ut) =

t+T∫
t

((
xt(s)

)2
qis

2p +
(
uti(s, x)

)2)
ds, i = 1, 2. (37)

According to the Theorem 2 defining the form of feedback Nash equilibrium
with continuous updating on the first step we need to solve the following differential
equation: {

k̇t(τ) =
(
t+ τT

)2p [
2Tβkt(τ) + 3T

2
(kt(τ))

2 − q
]

kt(1) = 0.
(38)

The solution of (38) is

kt(τ) =
v

3T
tanh

[
Tv

2p+ 1

((
t+ T

)2p+1 −
(
t+ τT

)2p+1
)
+ tanh−1 β

v

]
− b

3T
, (39)

where v =
√
3q + β2. According to (9) feedback Nash equilibrium with continuous

updating has the form:
ũNE
i (t, x) = −kt(0)xTtp. (40)

By substituting (40) in (39) we obtain:

ũNE
i (t, x) =

bxtp

3
− vxtp

3
tanh

[
Tv

2p+ 1

((
t+ T

)2p+1 − t2p+1
)
+ tanh−1 β

v

]
, (41)

by substituting (41) in (34) we obtain x̃NE(t) as solution of equation

˙̃x
NE

(t) = −βx̃NE(t) + ũNE
1 (t, x) + ũNE

2 (t, x), (42)
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5.3. Game Model with Dynamic Updating

Perform similar calculations for the resulting Nash equilibrium for a game with
dynamic updating based on the calculations for the original game and the approach
described in Section 4.1. and obtain

ûNE
i (t, x) = −kti

(
t− ti

T

)
xTtp, t ∈ [ti, ti+1]. (43)

By substituting (39) in (43) we obtain:

ûNE
i (t, x) =

bxtp

3
− vxtp

3
tanh

[
Tv

2p+ 1

((
ti + T

)2p+1 − t2p+1
)
+ tanh−1 β

v

]
, (44)

by substituting (44) in (34) we obtain x̂NE(t) as solution of equation

˙̂xNE(t) = −βx̂NE(t) + ûNE
1 (t, x) + ûNE

2 (t, x), x̂NE(0) = x0. (45)

5.4. Autonomous and Non-autonomous Cases

Suppose that information doesn’t change in time, i. e. consider autonomous case
with continuous updating. To do that we fix t = t0 in (36) and (37).

So, we obtain strategies as

ũNE
t0 (t, x) =

bxtp0
3

− vxtp0
3

tanh

[
Tv

2p+ 1

((
t0 + T

)2p+1 − t2p+1
0

)
+ tanh−1 β

v

]
, (46)

by substituting (46) in (34) we obtain x̃NE
t0 (t) as solution of equation

˙̃x
NE

t0 (t) = −βx̃NE(t) + 2ũNE
t0 (t, x). (47)

0 Δt 2Δt 3Δt 4Δt 5Δt 6Δt 7Δt 8Δt
t

0

x0

xΔ
t)

̃xNEΔt)
̂xNEΔt)

Fig. 3. x̃NE(t) (42) - blue line, x̂NE(t) (45)
- red broken line .

0 Δt 2Δt 3Δt 4Δt 5Δt 6Δt 7Δt 8Δt
t

0

u0

uΔ
t)

̃uNEΔt, x)
̂uNEΔt, x)

Fig. 4. ũNE(t) (41) - blue line, ûNE(t) (44)
- red broken line .
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0 5Δt 10Δt 15Δt 20Δt 25Δt 30Δt 35Δt 40Δt
t

0

x0

xΔ
t)

̃xNEΔt)
̂xNEΔt)

Fig. 5. x̃NE(t) (42) - blue line, x̂NE(t) (45)
- red broken line .

0 5Δt 10Δt 15Δt 20Δt 25Δt 30Δt 35Δt 40Δt
t

0

u0

uΔ
t)

̃uNEΔt, x)
̂uNEΔt, x)

Fig. 6. ũNE(t) (41) - blue line, ûNE(t) (44)
- red broken line .

t0 t1
t

0

x0

x(
t)

̃xNE(t)
̃xNEt0 (t)

Fig. 7. x̃NE(t) (42) - blue line,x̃NE
t0 (t) (47) -

red line.

t0 t1
t

0

u0

u(
t)

̃uNE(t, x)
̃uNEt0 (t, x)

Fig. 8. ũNE(t, x) (41) - blue line, ũNE
t0 (t, x)

(46) - red line .

5.5. Numerical Simulation
Consider the results of numerical simulation for the game model presented above

on the interval [0.1, 4.1], i.e. t0 = 0.1, T = 4.1. At the initial instant t0 = 0.1 the
stock of knowledge is 100, i.e. x0 = 100. The other parameters of models: β = 0.01,
p = 0.4, q = 0.5, T = 1. Suppose that for the case of a dynamic updating (red solid
and dotted lines Fig. 3–4), the intervals between updating instants are ∆t = 0.5,
therefore l = 8. In Fig. 3 the comparison of resulting Nash equilibrium in the game
with dynamic updating (red line) and Nash equilibrium with continuous updating
(blue line) is presented. In Fig. 4 similar results are presented for the strategies.

In order to demonstrate the results of Theorems 8 and 9 on convergence of
resulting equilibrium strategies and corresponding trajectory to the equilibrium
strategies and trajectory with continuous updating, consider the simulation results
for a case of frequent updating, namely l = 40. Fig. 5–6 represent the same solutions
as in Fig. 3–4, but for the case, when ∆t = 0.1. Therefore, convergence results are
confirmed by the numerical experiments presented below.

To compare autonomous and non-autonomous cases with continuous updating,
consider the simulation results on t ∈ [1, 8], with parameters β = 0.01, p = 0.4,
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q = 0.5, x0 = 100. Obtained strategies ũNE(t, x) and ũNE
t0 (t, x) in non-autonomous

and autonomous cases respectively are presented on Fig. 8. In additional obtained
trajectories x̃NE(t) and x̃NE

t0 (t) are presented on Fig. 7.

6. Conclusion

The concepts of feedback-based and open-loop-based Nash equilibrium for the
class of non-autonomous linear-quadratic differential games with continuous updat-
ing are constructed and the corresponding Theorems are presented. The forms of
feedback-based and open-loop-based Nash equilibrium with dynamic updating are
also presented and convergence of feedback-based and open-loop-based Nash equi-
librium with dynamic updating to the feedback-based and open-loop-based Nash
equilibrium with continuous updating as the number of updating instants converges
to infinity is proved. The results are demonstrated using the differential game model
of knowledge stock. Obtained results are both fundamental and applied in nature
since they allow specialists from the applied field to use a new mathematical tool
for more realistic modeling of engineering system describing human-machine inter-
action.
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