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Abstract We mean a quality criterion as a function from a set of alterna-
tives in some chain (i.e. linearly ordered set). Decision making under many
quality criteria is considered. We assume that some rule for preferences is
fixed and it leads to a partial ordering on the set of alternatives. We study a
problem of construction of generalized criterion for models of decision mak-
ing under many quality criteria. The main result is connected with finding
of additional information under which a general criterion is unique up to a
natural equivalence.
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1. Introduction

A general model of multi-criteria decision making can be presented in the form
of a system

〈A, q1, . . . , qm〉 , (1)

where A is a set of all alternatives (or outcomes) and q1, . . . , qm are criteria for
valuation of these alternatives. We consider decision making under certainty; then
alternatives and outcomes coincide. Formally each criterion qj , j ∈ J = {1, . . . ,m}
is a function from the set A in some scale points of which are results for measurement
of criterion qj . Recall that every scale has some set of acceptable transformations
and the measurement produced up a some acceptable transformation.

Definition 1. A criterion qj is called a quality one if its scale is some linearly
ordered set 〈Cj , σj〉, i.e. a chain (concepts and notations connected with ordered
sets, see in Birkhoff (1967)). In this case acceptable transformations are all isotonic
functions defined on Cj .

We assume that for a class of models of the kind (12) some rule for preferences
is fixed. Any rule for preferences leads to construction of certain preference rela-
tion ω on the set of alternatives A. The most important rule for preferences are
Pareto-dominance ≤Pd and modified Pareto-dominance <mPd which are defined,
respectively, by formulas:

a1 ≤Pd a2 ⇔ (∀j ∈ J) qj (a1)
σj

� qj (a2) , (2)

a1 <
mPd a2 ⇔ (∀j ∈ J) qj (a1)

σj

< qj (a2) . (3)

Definition 2. A pair 〈A,ω〉, where A is a set of alternatives and ω is a preference
relation on A is called a space of preferences.
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Since the preference relation ω defined by (2) or (3) is a partial order relation,
further we will consider space of preferences 〈A,ω〉 as a (partial) ordered set, that
is ω satisfies to axiom reflexivity, transitivity and anti-symmetry. An equivalence
relation ε is said to be stable in a partial ordered set 〈A,ω〉 if there exists isotonic
function f from 〈A,ω〉 into some chain 〈B, σ〉 such that ε is the kernel of f . In the
section 2 we investigate a structure of stable equivalences in arbitrary ordered set.
Some specification of stable equivalence leads to notion of map in ordered set.

The section 3 contains basic results concerning of model of decision making with
many quality criteria. Here we study a problem of construction of general criterion
for such models. We introduce a notion of direction map as a map which defines a
general criterion up to the natural equivalence. The main results of this article are
Theorem 3 and Theorem 4 in which necessary and sufficient conditions for map and
for direction map are given. The existence of direction map for arbitrary ordered set
is state also. In section 4 we consider some examples for construction of direction
maps in ordered set and corresponding embeddings of ordered set into a chain.

2. Stable equivalences in ordered sets

2.1. Kernels of isotonic functions

Consider an arbitrary partially ordered set 〈A,ω〉 and let ε be equivalence on
A. Recall that factor-relation ω/ ε is a binary relation on factor-set A/ ε defined by

C1

ω/ε

� C2 ⇔ a1
ω

� a2 for some a1 ∈ C1, a2 ∈ C2 (C1, C2 ∈ A/ ε) . (4)

Definition 3. An equivalence ε is called stable in ordered set 〈A,ω〉 if the factor-
relation ω/ ε is acyclic.

The kernel of arbitrary function f : A → B is an equivalence relation εf on A
defined as follows: εf =

{
(a1, a2) ∈ A2 : f (a1) = f (a2)

}
.

Let 〈A,ω〉 and 〈B, σ〉 be two ordered sets. A function f : A → B is called
isotonic one if the condition

a1
ω

� a2 ⇒ f (a1)
σ

� f (a2) (5)

holds.

For given ordered set, a characterization of kernels of its isotonic functions is
given by the following theorem.

Theorem 1. Let 〈A,ω〉 be an arbitrary ordered sets and ε ⊆ A2 be equivalence
relation on A. Equivalence ε coincides with kernel of isotonic function from 〈A,ω〉
in some ordered set 〈B, σ〉 if and only if ε is stable in 〈A,ω〉.

Proof (of theorem 1). Necessity. At first remark that acyclic condition for factor-
relation ω/ ε means the following implication

a0
ω

� a′1
ε≡ a1

ω

� . . .
ε≡ an

ω

� a′0
ε≡ a0 ⇒ a0

ε≡ a1
ε≡ . . .

ε≡ an (6)

for any natural n.
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Suppose equivalence ε ⊆ A2 coincides with a kernel of an isotonic function f
from 〈A,ω〉 in some ordered set 〈B, σ〉 i.e. ε = εf . If the assumption of implication
(6) holds then using isotonic condition (5) we have

f (a0)
σ

� f (a′1) = f (a1)
σ

� . . . = f (an)
σ

� f (a′0) = f (a0)

hence by acyclic of order σ the equality f (a0) = f (a1) = . . . = f (an) holds, that

is a0
ε≡ a1

ε≡ . . .
ε≡ an.

Sufficiency. Let an equivalence ε be stable, i.e. the factor-relation ω/ ε is acyclic
one. In this case, its transitive closure Tr (ω/ ε) is an order relation on factor-set
A/ ε and the canonical function fε : A → A/ ε is an isotonic one from 〈A,ω〉 into
〈A/ ε, T r (ω/ ε)〉. Since the kernel of fε is ε, the sufficient condition is proved. ��

2.2. A structure of stable equivalences in ordered set

It follows from (6) that the intersection of any family of stable equivalences
in ordered set 〈A,ω〉 is a stable equivalence also; since the universal relation A2

is stable, we obtain a closure operation Es on the set of all subsets of A2. For
any binary relation ρ ⊆ A2, Es (ρ) is the intersection of all stable equivalences ε
with ε ⊇ ρ. In other words Es (ρ) is the smallest stable equivalence which contains
ρ, it named a stable equivalent closure of ρ. The set of all stable equivalences in
ordered set 〈A,ω〉 forms a complete lattice. We wish to find an evident form for
operations of infimum and supremum in this lattice. As the first step, we show a
construction for Es (ρ) where ρ is an arbitrary binary relation on A. Since Es (ρ)
coincides with Es (ε), where ε is the equivalence closure of ρ, it is sufficiently to
find Es (ε) for arbitrary equivalence ε ⊆ A2. In the case the factor-relation ω/ ε
is acyclic, equivalence ε is stable and Es (ε) = ε. In the opposite case the factor-
relation ω/ ε contains some cycles (contours). It is well known that the identification
of cycles leads to relation (or graph) without of cycles (see Zykov (1969)). Formally
”the identification of cycles” of arbitrary relation ρ is its factorization by equivalence
AR (ρ) = Tr (ρ)

⋂
Tr
(
ρ−1

)
. Thus we need here in a double factorization: the first

step is the factorization of order relation ω under equivalence ε and the second step is
the factorization of the factor-relation ω/ ε under the equivalence AR (ω/ ε). Since
double factorization can be reduced to one factorization, we have the following
assertion.

Lemma 1. Let 〈A,ω〉 be an ordered set and ε be an equivalence on A. Then stable
equivalent closure Es (ε) of ε is an equivalence, classes of which are unions of ε-
classes belonging to one cycle of factor-relation ω/ ε.

Using Lemma 1, it is easy to show that the condition a1
Es(ε)≡ a2 means the

existence of cycle in graph 〈A,ω ∪ ε〉 which contains elements a1 and a2. Since
classes of equivalence Es (ε) coincide with cycles of the relation ω ∪ ε, we have

Es (ε) = AR (ω ∪ ε) . (7)

Corollary 1. An equivalence ε is stable in ordered set 〈A,ω〉 if and only if AR (ω ∪ ε) =
ε.

Remark 1. It is well known that there exists a simple algorithm for finding of
cycles of graph; there is an algorithm of construction of equivalence AR (ρ) for
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arbitrary relation ρ (see, for example, Zykov (1969)). By using this algorithm, we
have according formula (7) a method for constructing of stable equivalent closure
of an equivalence ε ⊆ A2.

Consider now a problem of construction of stable equivalent closure for arbitrary
relation ρ ⊆ A2. Let E (ρ) be equivalent closure of a relation ρ. It is clear that stable
equivalent closure of ρ and E (ρ) coincide: Es (ρ) = Es (E (ρ)). On the other hand
it is easy to show that the existence of a cycle in a graph 〈A,ω ∪ E (ρ)〉, which
contains elements a′, a′′ ∈ A, means the existence of cycle in graph

〈
A,ω ∪ ρ ∪ ρ−1

〉
containing these elements, hence AR (ω ∪ E (ρ)) = AR

(
ω ∪ ρ ∪ ρ−1

)
. By using (7),

we obtain the following equality for equivalent stable closure in ordered set 〈A,ω〉:

Es (ρ) = AR
(
ω ∪ ρ ∪ ρ−1

)
.

Summarizing results of this section we have the following assertion.

Theorem 2. Let 〈A,ω〉 be an arbitrary ordered set. Then the set of all stable equiv-
alences in 〈A,ω〉 forms a complete lattice in which operations of infimum and supre-
mum can be represented as follows:

inf
i∈I

(εi) =
⋂
i∈I

εi,

sup
i∈I

(εi) = Es

(⋃
i∈I

εi

)
= AR

(
ω ∪

⋃
i∈I

εi

)
.

3. Generalized criterion for decision making with many quality criteria

3.1. Maps and direction maps in ordered set

The problem of construction of a generalized criterion is the main problem of
multi-criteria optimization. For models of decision making with many quality crite-
ria, a generalized criterion can be defined as embedding of the space of preferences
〈A,ω〉 associated with given decision making problem into some chain 〈C, σ〉 which
is a scale for the generalized criterion. Our basic idea for constructing of generalized
criterion is that we introduce some additional information under which a generalized
criterion became unique up to natural equivalence.

Firstly we consider some preliminary notions.

Definition 4. An embedding of ordered set 〈A,ω〉 into chain 〈C, σ〉 is called a
strict isotonic function, i.e. a function ϕ : A→ C with condition

a1
ω
< a2 ⇒ ϕ (a1)

σ
< ϕ (a2) . (8)

Remark 2. Let 〈A,ω〉 be an arbitrary ordered set and ϕ : A → C its embedding
in some chain 〈C, σ〉. Then we can define a linear quasi-ordering ωϕ by the formula:

a1
ωϕ

� a2 ⇔ ϕ (a1)
σ

� ϕ (a2) . (9)

Thus we receive a linear quasi-order on A which preserves the strict order
ω
<

(that is the condition a1
ω
< a2 implies a1

ωϕ

< a2). The relation ωϕ is said to be a
linear quasi-ordering induced by embedding ϕ.
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Definition 5. Let 〈A,ω〉 be an ordered set, ε ⊆ A2 — equivalence on A. A partition
of A with classes of ε–equivalent elements is called a map in 〈A,ω〉 if there exists
embedding ϕ from 〈A,ω〉 into some chain 〈C, σ〉 whose kernel is ε (i.e. εϕ = ε).

Definition 6. Two embeddings ϕ1, ϕ2 of ordered set 〈A,ω〉 are said to be naturally

equivalent (in notation: ϕ1
nat∼ ϕ2) if for any a1, a2 ∈ A the following condition

ϕ1 (a1)
σ

� ϕ1 (a2)⇔ ϕ2 (a1)
σ

� ϕ2 (a2) (10)

holds. According to Remark 2, the condition: ϕ1
nat∼ ϕ2 means that linear quasi-

orderings of the set A induced by embeddings ϕ1 and ϕ2 coincide, that is, ωϕ1 = ωϕ2 .

Definition 7. Let 〈A,ω〉 be an ordered set, ε ⊆ A2 — equivalence on A. A partition
of A with classes of ε–equivalent elements is called a direction map in 〈A,ω〉 if

1) there exists an embedding ϕ of 〈A,ω〉 into some chain whose kernel is ε (i.e.
this partition is a map) and

2) any two embeddings of ordered set 〈A,ω〉 with kernel ε are naturally equiv-
alent.

Definition 8. An embedding ϕ of ordered set 〈A,ω〉 into some chain whose kernel
is a direction map is called a direction embedding. For direction embedding ϕ the
following important property holds: if g is any embedding of ordered set 〈A,ω〉 with
εg = εϕ then ωg = ωϕ. Thus quasi-orderings of the set of alternatives induced by
a direction embeddings with fix kernel are the same. At this reason we consider
direction embeddings as generalized criteria for decision making with many quality
criteria.

3.2. Characterization theorems for maps and direction maps

We now consider two main problems connected with construction of generalized
criteria for models of decision making with many quality criteria: a characterization
of maps and direction maps.

Lemma 2. Let 〈A,ω〉 and 〈B, σ〉 be ordered sets and ϕ : A→ B an isotonic func-
tion. The function ϕ is strict isotonic if and only if each class of the kernel εϕ is a
discrete subset (that is, antichain).

Proof (of lemma 3.2). Necessity. Let ϕ be a strict isotonic function from 〈A,ω〉 into
〈B, σ〉. Suppose a1

εϕ≡ a2 and a1
ω

� a2. We need to show a1 = a2. In the opposite

case a1
ω
< a2 holds and since ϕ is strict isotonic, we have ϕ (a1)

σ
< ϕ (a2); on the

other hand according with a1
εϕ≡ a2 we obtain ϕ (a1) = ϕ (a2) in contradiction with

preceding condition.

Sufficiency. Suppose a1
ω
< a2. Since ϕ is isotonic, we obtain ϕ (a1)

σ

� ϕ (a2). The

assumption ϕ (a1) = ϕ (a2) implies a1
εϕ≡ a2 and together with a1

ω

� a2, we have

according to discrete condition the equality a1 = a2 in contradiction with a1
ω
< a2.

��

Theorem 3 (a characterization of maps). Let 〈A,ω〉 be an ordered set and ε be
an equivalence on A. The partition with classes of ε–equivalent elements is a map
in 〈A,ω〉 if and only if equivalence ε is stable and each its class is a discrete subset.
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Proof (of theorem 3). Necessity. Suppose the partition with classes of ε–equivalent
elements is a map in 〈A,ω〉, that is, there exists a chain 〈C, σ〉 and an embedding
ϕ of 〈A,ω〉 into 〈C, σ〉 with εϕ = ε. Since ε = εϕ is a kernel of isotonic function ϕ,
according to Theorem 1, ε is stable. It follows from Lemma 3.2 that each class of
ε–equivalent elements is a discrete subset.

Sufficiency. Since an equivalence ε is stable, the factor-relation ω/ ε is acyclic
hence its transitive closure Tr (ω/ ε) is an order relation on the factor set A/ ε
and the canonical function fε : A → A/ ε is an isotonic function from 〈A,ω〉 into
〈A/ ε, T r (ω/ ε)〉. According to Lemma 3.2 this function is strict isotonic one. Let
σ be a linear order on the factor-set A/ ε with σ ⊇ Tr (ω/ ε) (the existence of such
linear order follows from known Szpilrajns Theorem). Then fε is a strict isotonic
function from 〈A,ω〉 into linear ordered set 〈A/ ε, σ〉, that is, an embedding of
ordered set 〈A,ω〉 into some chain and its kernel is ε. ��

The main result of this article states the following

Theorem 4 (a characterization of direction maps). Let 〈A,ω〉 be an ordered
set and ε be an equivalence on A. The partition with classes of ε–equivalent elements
is a direction map in 〈A,ω〉 if and only if ε is a maximal between stable equivalences
whose classes are discrete subsets.

A proof of this theorem is based on the following two lemmas.

Lemma 3. Given an ordered set 〈A,ω〉. An equivalence ε on A is a maximal be-
tween stable equivalences whose classes are discrete subsets if and only if the transi-
tive closure of factor-relation ω/ ε is a linear order on factor-set A/ ε (that is, the
ordered set 〈A/ ε, T r (ω/ ε)〉 is a chain).

Proof (of lemma 3). Necessity. Let an equivalence ε ⊆ A2 is a maximal between
stable equivalences whose classes are discrete subsets. Since Tr (ω/ ε) is an order
relation for any stable equivalence ε, we need to proof the linearity condition only.
Fix two classes C′, C′′ ∈ A/ ε. It can be the following two cases: 1). There exist
elements a′ ∈ C′, a′′ ∈ C′′ which are comparable under the order ω. 2). Any two
elements of this classes are uncomparable under the order ω. It is evident that in the
first case, the classes C′ and C′′ are comparable under the order Tr (ω/ ε). We now
check a comparability of these classes in the second case. Consider the equivalence ε̄
one of the classes whose is C′∪C′′ and other classes are the same as for equivalence
ε. Obviously ε̄ ⊃ ε and using the assumption 2) we have that all classes of ε̄ are
discrete subsets in 〈A,ω〉. Then according to maximality condition the equivalence
ε is not stable i.e. there is a cycle in the graph 〈A/ ε̄, ω/ ε̄〉:(

C̄0, C̄1

)
∈ ω/ ε̄,

(
C̄1, C̄2

)
∈ ω/ ε̄, . . . ,

(
C̄s−1, C̄s

)
∈ ω/ ε̄,

(
C̄s, C̄0

)
∈ ω/ ε̄ (11)

and at least one pair of neighbour elements are different. Not less of generality we
assume that all classes in (11) except the first and the last members are different.
Evidently (11) contains the class C′ ∪ C′′ (in the opposite case, we have a contra-
diction with stable condition of equivalence ε). By setting C̄k = C′ ∪C′′ and using
that for any i = 0, . . . , s, i �= k, C̄i is a class of equivalence ε, we obtain from (11)
the condition

a0
ω

� a′1
ε≡ . . .

ε≡ ak−1

ω

� a′k
ε̄≡ ak

ω

� a′k+1

ε≡ . . .
ε≡ as

ω

� a′0
ε≡ a0, (12)
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where a0, a
′
0 ∈ C̄0, . . . , as, a

′
s ∈ C̄s. Consider elements ak, a

′
k ∈ C̄k = C′ ∪ C′′.

The assumption these elements belong to one of the class (C′ or C′′) implies the
existence of cycle in graph 〈A/ ε, ω/ ε〉 that impossible. Suppose ak ∈ C′, a′k ∈ C′′.
Then from (12) we have

(
[a0]ε , [a

′
k]ε
)
∈ Tr (ω/ ε), ([ak]ε , [a0]ε) ∈ Tr (ω/ ε), hence(

[ak]ε , [a
′
k]ε
)
∈ Tr (ω/ ε) i.e. C′

Tr(ω/ε)

� C′′ which was to be proved.
Sufficiency. Assume the transitive closure of factor-relation ω/ ε is a linear order

on factor-set A/ ε. Consider a stable equivalence ε̄ in ordered set 〈A,ω〉 with ε̄ ⊃ ε.

Then there exists such a pair of elements a, b ∈ A that a
ε̄≡ b is truth and a

ε≡ b

is false. Because the order Tr (ω/ ε) is linear, fε (a)
Tr(ω/ε)

� fε (b) or fε (b)
Tr(ω/ε)

�
fε (a) holds. Suppose the first correlation is truth. Put fε (a) = C, fε (b) = C′.
According to definition of transitive closure there exists a finite sequence of ε–
classes: C = C0, C1, . . . , Cm = C′ such that (Ci, Ci+1) ∈ ω/ ε for all i = 0, . . . ,m−1.
According with definition of factor-relation it means that

a0
ω

� a′1
ε≡ a1

ω

� a′2
ε≡ . . .

ε≡ am−1

ω

� a′m (13)

holds for some elements a0 ∈ C0; a1, a
′
1 ∈ C1; . . . ; am−1, a

′
m−1 ∈ Cm−1, a

′
m ∈ Cm.

In (13) the strict inequality ak
ω
< a′k+1 holds at least for one k = 0, . . . ,m − 1

(in the opposite case we have a0
ε≡ a′m and using correlations a

ε≡ a0, b
ε≡ a′m we

obtain a
ε≡ b in contradiction with our assumption). On the other hand since ε ⊂ ε̄

and a0
ε̄≡ a

ε̄≡ b
ε̄≡ a′m then a0

ε̄≡ a′m and from (13) it follows

a0
ω

� a′1
ε̄≡ a1

ω

� a′2
ε̄≡ . . .

ε̄≡ am−1

ω

� a′m
ε̄≡ a0 (14)

We obtain from (14) by using the stable condition for equivalence ε̄: a
ε̄≡ a0

ε̄≡ a1
ε̄≡

a′1
ε̄≡ . . .

ε̄≡ am−1
ε̄≡ a′m−1

ε̄≡ a′m hence ak
ε̄≡ a′k+1. Because the strict inequality

ak
ω
< a′k+1 holds (see above), we have that the class [a]ε̄ is not discrete one. ��

Lemma 4. Let A be an arbitrary set, ρ1, ρ2 be linear quasi-orderings on A and
ερ1 = ρ1 ∩ρ−1

1 , ερ2 = ρ2 ∩ρ−1
2 their kernels. Then conditions ρ1 ⊆ ρ2 and ερ1 = ερ2

imply ρ1 = ρ2.

Proof (of lemma 4). Suppose the strict inclusion ρ1 ⊂ ρ2 holds. Then there exists
a pair of elements (a1, a2) ∈ ρ2 \ ρ1. Because (a1, a2) /∈ ρ1 we have (a2, a1) ∈ ρ1
according to linearity condition and (a2, a1) ∈ ρ2. We obtain (a1, a2) ∈ ρ2 ∩ ρ−1

2 =
ερ2 = ερ1 ⊆ ρ1 hence (a1, a2) ∈ ρ1 in contradiction with our assumption. ��

Proof (of theorem 4). Necessity. Suppose the partition with classes of ε–equivalent
elements is a direction map in 〈A,ω〉. Then according to Theorem 3 equivalence
ε is stable and each its class is a discrete subset. It is remains to be proved the
maximality condition. Assume that the maximality condition does not hold for
equivalence ε. Then according to Lemma 3, the order relation Tr (ω/ ε) is not a
linear one on factor-set A/ ε hence there exist two classes C′, C′′ ∈ A/ ε which
are not comparable under Tr (ω/ ε). Let σ1 and σ2 be two linear orderings of A/ ε

containing the order Tr (ω/ ε) such that C′ σ1

< C′′ and C′′ σ2

< C′ (the existence of
such orderings follows from well known Szpilrajns Theorem). Consider two chain
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〈A/ ε, σ1〉 and 〈A/ ε, σ2〉. Let fk : A → A/ ε be the canonical function from the
ordered set 〈A,ω〉 into 〈A/ ε, σk〉, k = 1, 2. It is shown above that fk is an embedding
of the ordered set 〈A,ω〉 into the chain 〈A/ ε, σk〉, k = 1, 2, and the kernel of function
fk is ε (see the proof of sufficiency in Theorem 3). Fix arbitrary elements a1 ∈ C′ and
a2 ∈ C′′. According to definition of linear quasi-ordering induced by an embedding

(see Remark 2) we have: a1
ωf1

< a2 but a2
ωf2

< a1. Thus linear quasi-orderings ωf1
and ωf2 are different hence embeddings f1 and f2 are not naturally equivalent which
was to be proved.

Sufficiency. Let ε be equivalence satisfying conditions of Theorem 4. According
to Theorem 3, ε is a map in ordered set 〈A,ω〉. It is remains to be proved that ε is
a direction map. Consider an embedding g : A→ C of ordered set 〈A,ω〉 into some
chain 〈C, σ〉 with εg = ε. Denote by ρg the linear quasi-ordering on A induced by
embedding g and by ρ0 the linear quasi-ordering on A induced by embedding fε.
We need to proof ρg = ρ0. Since kernels of these functions are coincide, according to
Lemma 4 it is sufficiently to check the inclusion ρ0 ⊆ ρg. Indeed assume (a′, a′′) ∈ ρ0
i.e. (fε (a

′) , fε (a
′′)) ∈ Tr (ω/ ε). By definition of transitive closure there exists a

finite consequence of elements a0, a
′
1, a1, . . . , a

′
m−1, am−1, a

′
m such that

a′
ε≡ a0

ω

� a′1
ε≡ a1

ω

� . . .
ε≡ am−1

ω

� a′m
ε≡ a′′. (15)

Because the function g is isotonic and its kernel is ε, we obtain from (15):

g (a′) = g (a0)
σ

� g (a′1) = g (a1)
σ

� . . . = g (am−1)
σ

� g (a′m) = g (a′′)

hence g (a′)
σ

� g (a′′) that is (a′, a′′) ∈ ρg. The inclusion ρ0 ⊆ ρg is shown and
according to Lemma 4 we have ρg = ρ0 which completes the proof of Theorem 4.

��
Corollary 2 (the existence of direction map). For any ordered set there exists
a direction map.

Proof (of corollary 2). Let 〈A,ω〉 be an arbitrary ordered set. According to The-
orem 4 it sufficiently to show that there exists a maximal stable equivalence in
〈A,ω〉, whose classes are discrete subsets. Using Zorns Lemma, we need to check
the following condition:

(i) Any chain of stable equivalences with discrete classes in 〈A,ω〉 has a majo-
rant.

Indeed, let (εi)i∈I be a chain of stable equivalences with discrete classes in
〈A,ω〉. It is easy to show that a binary relation ε = ∪i∈Iεi is an equivalence with
discrete classes also. It is follows from (6) that equivalence ε is a stable one. Further,
stable equivalences with discrete classes in 〈A,ω〉 exist always, for example the
identity equivalence ΔA. According with Zorns Lemma, we have the inclusion ΔA ⊆
ε̄, where ε̄ is an maximal stable equivalence with discrete classes in 〈A,ω〉. Thus a
required equivalence is found. Some methods for construction of direction maps for
finite ordered sets will be considered in the next section. ��

4. Examples

Example 1. Let 〈A,ω〉 be a finite ordered set. Recall that the height d (x) of an
element x ∈ A means the maximum length d of chains in 〈A,ω〉 of the form x0 <
x1 < . . . < xd = x having x for greatest element (see Birkhoff (1967), p. 11).
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Lemma 5. The function of height d is a direction embedding of finite ordered set
into the chain IN of natural numbers.

Proof (of lemma 5). It is follows from the definition that the function of height d
is a strict isotonic one, that is, an embedding of ordered set 〈A,ω〉 into chain N .
It is remain to be shown the embedding is direction one. Using Theorem 4, it is
sufficiently to check that union of any two classes of equivalence εd – the kernel of
the function d – is not a discrete subset in 〈A,ω〉. Indeed, let C1 and C2 be two
classes of εd; put d (a) = n1, d (b) = n2 for all a ∈ C1, b ∈ C2 and n1 < n2. By
definition of the height for element b ∈ C2 there exists a sequence of the form x0 <
. . . < xn1 < . . . < xn2 = b hence we have: xn1 ∈ C1 ⊆ C1 ∪ C2, xn2 ∈ C2 ⊆ C1 ∪ C2

thus xn1 , xn2 ∈ C1 ∪ C2 and xn1 < xn2 holds; subset C1 ∪ C2 is not discrete. ��

Example 2. Let λ (x) be a number of strict minorant for element x in finite ordered
set 〈A,ω〉. Obviously, the function λ is a strict isotonic one, that is, an embedding of
ordered set 〈A,ω〉 into chain IN. But in general case, this embedding is not direction
one. Indeed, consider the ordered set presented its diagram in Fig. 1.

Figure1: Diagram of order

Here C0, C2, C3 are classes of the equivalence ε, the kernel of function λ. Con-
sider an equivalence ε1 with classes {C0, C2 ∪C3}. It is easy to see that ε1 coincides
with the kernel of strict isotonic function g : A→ {0, 1}, where g (ai) = 0 for ai ∈ C0

and g (aj) = 1 for aj ∈ C2 ∪C3. According to results of section 3, ε1 is stable equiv-
alence with discrete classes. Because ε1 ⊃ ε, the maximality condition does not hold
for equivalence ε. By Theorem 4, the function λ is not a direction embedding.

Example 3. Consider a model of decision making with quality criteria which is given
as follows. The set of alternatives is A = {a, b, c, d, e, f, g, h, k}; q1, q2, q3 – criteria
for evaluation of the alternatives; scales of these criteria are respectively:

Q1 = {α0 < α1 < α2} , Q2 = {β0 < β1 < β2} , Q3 = {γ0 < γ1 < γ2 < γ3 < γ4} .

Evaluations of alternatives under criteria q1, q2, q3 are given by Table 1.
We will construct a direction map and corresponding linear quasi-ordering of

alternatives for this model of decision making. For the first step, by using the Ta-
ble 1, we define a preference relation ω in the form of Pareto-dominance (2). The
order relation ω can be given by its diagram (see Fig. 2).
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Table1: Evaluations of alternatives

��������A
Q

q1 q2 q3

a α0 β0 γ1

b α1 β0 γ0

c α2 β0 γ1

d α1 β0 γ2

e α2 β1 γ1

f α2 β1 γ2

g α1 β2 γ2

h α2 β2 γ2

k α1 β2 γ4

Figure2: Diagram of order ω
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According to Lemma 5, the function of height d is a direction embedding of the
ordered set 〈A,ω〉 into the chain of natural numbers {0, 1, 2, 3, 4}. And the classes
of equivalence ε, the kernel of the function d, define a direction map in ordered map
〈A,ω〉. In our case, the classes of equivalence εd are: C0 = {a, b} , C1 = {c, d} , C2 =
{e, g} , C3 = {f, k} , C4 = {h}. A linear quasi-ordering of the set of alternatives A
corresponding to the direction map is shown in Figure 3.

Figure3: A linear quasi-ordering of alternatives
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