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Abstract The paper considers stochastic games in the class of stationary
strategies. The cooperative form of this class of stochastic games is con-
structed. The cooperative solution is found. Conditions of dynamic stability
for stochastic games are obtained. Principles of dynamic stability include
three conditions: subgame consistency, strategic stability and irrational be-
havior proof condition of the cooperative agreement. Also the paper con-
siders the example for which the cooperative agreement is found and the
conditions of dynamic stability are checked.
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1. Introduction

A stochastic game is a dynamic game process. If cooperation is possible in the
game an important property of cooperative agreement is stability in dynamics. The
work of Petrosyan and Zenkevich, 2009, considers three principles of stable coop-
eration: time-consistency (dynamic consistency), strategic stability and irrational
behavior proof condition.

L.A. Petrosyan was the first to introduce the concept of dynamic consistency
for differential games (Petrosyan, 1977). This condition appeared to be typical also
for stochastic games (Petrosyan, 2006). The paper considers stochastic games in
stationary strategies with the finite number of states any of which can be realized
at every game stage. With this type of the definition of stochastic games the con-
sistency of cooperative agreement should take place in every position (state) of the
game. In other words, the claim of subgame consistency is laid to the cooperative
agreement. Subgame consistency of the cooperative agreement lets the players ex-
pect receiving the allocation according to the same optimality principle in every
stochastic subgame.

The condition of strategic stability is guaranteed by the existence of Nash equi-
librium in the regularized game with the payoffs that players expect to receive as a
result of the cooperative agreement. The regularization of the game is constructed on
the basis of the initial stochastic game with the use of payoff distribution procedure
(Petrosyan and Danilov, 1979). The conditions of strategic stability for stochastic
games were also considered by Grauer and Petrosyan, 2002.

The irrational behavior proof condition (Yeung, 2006) lets guarantee that if
some player (group of players) cancels the agreement at some stage of the game and
players play individually from this stage to the end of the game they receive not
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less than if each player plays by himself during the whole game. This condition also
lets secure the cooperative agreement from the force majeure circumstances.

The definition of stochastic games was introduced by Shapley, 1953a. At present
a lot of papers deal with the study of stochastic games (Petrosyan et al., 2004,
Petrosyan and Baranova, 2006, Herings and Peeters, 2004). Stochastic games have
wide application in the field of telecommunication system modeling (Parilina, 2010,
Altman et al., 2003), in economics (Amir, 2003), in the problem of tax evasion
(Raghavan, 2006).

2. Stochastic games in stationary strategies

Stochastic game begins with the chance turn, i.e. with the choice of the initial
state of the game which the game process begins with. The state of the stochastic
game is determined as simultaneous normal form game of n players. One of the
finite number of states is realized at each stage of the stochastic game. In the state
some action profile is realized depending on which transition to the next states is
accomplished with some probability. The payoff of the players is discounted when
the game goes on. There are some notations:

– The set of players is N = {1, . . . , n}.
– The set of states is {Γ j}tj=1 where Γ j = 〈N,Xj

1 , . . . , X
j
n,K

j
1 , . . . ,K

j
n〉 is state

j, set N is equal for all Γ j, j = 1, . . . , t, Xj
i is the finite set of pure strategies of

player i in Γ j , Kj
i (x

j
1, . . . , x

j
n) = Kj

i (x
j) is a payoff function of player i in state

Γ j, j = 1, . . . , t.
– The probability that state Γ k is realized if at the previous stage (in state Γ j)

action profile xj = (xj1, . . . , x
j
n) has realized, is p(j, k;xj). It is obvious that

p(j, k;xj) � 0 and
∑t

k=1 p(j, k;x
j) = 1 for each xj ∈ Xj =

∏
i∈N Xj

i and for
any j, k = 1, . . . , t.

– The discount factor is δ ∈ (0, 1).
– The vector of the initial distribution on states Γ 1, . . . , Γ t is π0 = (π0

1 , . . . , π
0
t ),

where π0
j is the probability that state Γ j is realized at the first stage of the

game,
∑t

j=1 π
0
j = 1;

– The set of player i’s stationary strategies is Ξi = {ηi}. Using stationary strate-
gies the player’s choice of the strategy in each state from set

{
Γ 1, . . . , Γ t

}
at

any stage depends only on which state is realized at this stage, i.e. ηi : Γ
j �−→

xji ∈ Xj
i , j = 1, . . . , t.

Definition 1. Call the set

G =

〈
N,
{
Γ j
}t
j=1

, {Ξi}i∈N , δ, π0,
{
p(j, k;xj)

}
j=1,t,k=1,t,xj∈

n∏
i=1

Xj
i

〉
(1)

finite stochastic game in stationary strategies.

Definition 2. Call stochastic game (12) with vector π0 = (0, . . . , 0, 1, 0, . . . , 0)
(with 1 in the jth component), i.e. the game beginning with state Γ j , the finite
stochastic subgame in stationary strategies and denote as Gj , j = 1, . . . , t.

Remark 1. Obviously, player i’s stationary strategy in game G is player i’s sta-
tionary strategy in any subgame G1, . . . , Gt.
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Payoff in finite stochastic game is a random variable. So we have to determine
the utility function of the payoff. Consider the mathematical expectation of the
player’s payoff as the utility of his payoff in stochastic game G. Let Ei(η) be the
expected payoff of player i in game G and Ej

i (η) be the expected payoff of player i
in subgame Gj when strategy profile η is realized in stochastic game G (subgame
Gj). Form vector Ei(η) = (E1

i (η), . . . , E
t
i (η)).

For the expected payoff of player i in subgame Gj the following recurrent equa-
tion takes place:

Ej
i (η) = Kj

i (x
j) + δ

t∑
k=1

p(j, k;xj)Ek
i (η) (2)

under condition that η(Γ j) = xj , i.e. η(·) = (η1(·), . . . , ηn(·)) where ηi(Γ j) = xji ∈
Xj
i , x

j = (xj1, . . . , x
j
n) for each j = 1, . . . , t, i ∈ N .

Since stochastic gameG is considered in the class of stationary strategies defined
above and the set of states {Γ 1, . . . , Γ t} is finite then it is sufficiently to consider t
of subgames G1, . . . , Gt accordingly beginning with the states Γ 1, . . . , Γ t.

Hereinafter, let η(·) = (η1(·), . . . , ηn(·)) be the stationary strategy profile such
as ηi(Γ

j) = xji ∈ Xj
i where j = 1, . . . , t, i ∈ N . We restrict our consideration to the

set of player i’s pure stationary strategies in stochastic game G. Denote it as Ξ̃i.
The matrix of transition probabilities in stochastic game G under the realization

of stationary strategy profile η(·) looks like:

Π(η) =

⎛⎜⎜⎝
p(1, 1;x1) . . . p(1, t;x1)
p(2, 1;x2) . . . p(2, t;x2)

. . . . . . . . .
p(t, 1;xt) . . . p(t, t;xt)

⎞⎟⎟⎠ . (3)

We can rewrite equation (2) in matrix form using (3) as follows:

Ei(η) = Ki(η) + δΠ(η)Ei(η), (4)

where Ki(η) = (K1
i (x

1), . . . ,Kt
i (x

t)), and Kj
i (x

j) is the player i’s payoff in state Γ j

on condition that strategy profile xj ∈ Xj is realized in this state.
Equation (3) is equivalent to the following one:

Ei(η) = (I− δΠ(η))
−1

Ki(η), (5)

where I is an identity t× t matrix.

Remark 2. Matrix (I− δΠ(η))
−1

always exists for δ ∈ (0, 1). It is not difficult to
prove this statement. It is known that all the eigenvalues of stochastic matrix Π(η)

are in the interval [−1, 1]. For the existence of matrix (I− δΠ(η))
−1

it is necessary
and sufficient that the determinant of matrix (Π(η) − 1

δ I) be not equal to zero. So
matrix (Π(η) − 1

δ I) must not have the eigenvalue equal to 1
δ . The last condition

takes place because 1
δ > 1, so this number cannot be the eigenvalue of stochastic

matrix Π(η).

The expected payoff of player i in the stochastic game G we can find in the
following way:

Ei(η) = π0Ei(η). (6)
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3. Cooperation in stochastic games

Suppose now, that the players from N decide to cooperate to receive the max-
imum total payoff. Denote the pure strategy profile maximizing the sum of the
expected players’ payoffs in stochastic game G as η(·) = (η1(·), . . . , ηn(·)), i.e.

max
η∈

∏
i∈N

Ξ̃i

∑
i∈N

Ei(η) =
∑
i∈N

Ei(η). (7)

Problem (6) may have more than one decision. Call strategy profile η(·) satisfying
(6) as cooperative decision.

The coalitional form of noncooperative game is usually given by the pair 〈N, V 〉,
whereN is the set of players and V is a real-valued function, called the characteristic
function of the game, defined on the set 2N (the set of all subsets of N), and
satisfying two properties (1) V (∅) = 0, and (2) (superadditivity) for any disjoint
coalitions S, T ⊂ N , S ∩ T = ∅, the next inequality is satisfied: V (S) + V (T ) �
V (S ∪ T ). The value V (S) is a real number for each coalition S ⊂ N , which may
be interpreted as the worth or power of coalition S when its members play together
as a unit. Condition (2) says that the value of two disjoint coalitions is at least
as great when they play together as when they work apart. The assumption of
superadditivity is not needed for some of the theory of coalitional games, but it
seems to be a natural condition.

Define the characteristic function V (S) in stochastic game G via characteristic
function V j(S) of stochastic subgames Gj , j = 1, . . . , t, as follows:

V (S) = π0V (S) (8)

for any coalition S ⊂ N where V (S) = (V 1(S), . . . , V t(S)), V j(S) is the value of
the characteristic function of stochastic subgame Gj derived for coalition S.

The task is to determine the characteristic function V j(S) for any coalition S.
Firstly, consider S = N . Bellman equation (Bellman, 1957) for the value V (N)

can be written as follows:

V (N) = max
η∈

∏
i∈N

Ξ̃i

[∑
i∈N

Ki(η) + δΠ(η)V (N)

]
=
∑
i∈N

Ki(η) + δΠ(η)V (N),

where η(·) is the pure strategy profile satisfying condition (6).
The value V (N) is got from the previous equation:

V (N) = (I− δΠ(η))
−1
∑
i∈N

Ki(η). (9)

Secondly, consider S ⊂ N , S �= ∅. To define the value of characteristic function
V j(S) for this coalition, j = 1,. . .,t, for each subgame Gj , define an auxiliary zero-
sum stochastic game Gj

S where coalition S ⊂ N plays as a maximizing player and
coalition N\S plays as a minimizing player. Define the value of function V j(S) for
subgame Gj as a lower value of antagonistic stochastic game Gj

S in pure stationary
strategies (in fact, the lower value of matrix game):

V j(S) = max
ηS

min
ηN\S

∑
i∈S

Ej
i (ηS , ηN\S), (10)
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where (ηS(·), ηN\S(·)) is a strategy profile in pure stationary strategies and ηS(·) =
(ηi1 (·), . . . , ηik(·)) is a vector of stationary strategies of players i1, . . . , ik ∈ S,

i1
⋃
. . .
⋃
ik = S, ηS(·) ∈

k∏
j=1

Ξ̃ij , the set of pure stationary strategies of coalition

S ⊂ N , and ηN\S(·) is a vector of stationary strategies of players ik+1, . . . , in ∈ N\S,

ik+1

⋃
. . .
⋃
in =N\S,

n∏
j=k+1

Ξ̃ij , the set of pure stationary strategies of coalition

N\S.
Finally, consider S = ∅ and get the value of characteristic function:

V j(∅) = 0. (11)

Remark 3. Characteristic functions V (S) determined by (10) and V j(S) deter-
mined by (7)—(11) are superadditive.

Definition 3. Cooperative stochastic subgame Gj
co is a set 〈N, V j(·)〉, where N is

the set of players, and V j : 2N −→ R is the characteristic function calculated by
(7) – (11).

Definition 4. Cooperative stochastic game Gco is a set 〈N, V (·)〉, where N is the
set of players and V : 2N −→ R is the characteristic function calculated by (10).

Definition 5. Vector αj = (αj1, . . . , α
j
n) satisfying the two following conditions:

1)
∑
i∈N

αji = V j(N),

2) αji � V j({i}) for any i ∈ N ,
is called the allocation in subgame Gj

co (j = 1, . . . , t). Denote the set of allocations
in cooperative subgame Gj

co as Aj , j = 1, . . . , t.

Definition 6. Vector α = (α1, . . . , αn), where αi = π0αi, αi = (α1
i , . . . , α

t
i), and

(αj1, . . . , α
j
n) = αj ∈ Ij is called an allocation in cooperative stochastic game Gco.

Denote the set of allocations in cooperative stochastic game Gco as I.

Suppose that the set of allocations in any subgame Gj
co, j = 1, . . . , t, is nonempty.

So the set of allocations in cooperative stochastic game Gco is also nonempty.

4. Principles of stable cooperation

4.1. Subgame consistency of cooperative agreement

Suppose that players cooperate in stochastic game and for every subgame Gj
co

choose allocation αj = (αj1, . . . , α
j
n) ∈ Ij . The problem is how to realize payments

to the players at each stage of the stochastic game for getting the expected payoff
αji for player i in stochastic subgame Gj . If players receive payoffs according to
their payoff functions in the states they hardly ever get the components of the
chosen allocation in mathematical expectation sense. To find the way out of the
situation we should suggest the method of redistribution of total players’ payoff in
every state realized in the stochastic game process. This method was proposed by
Petrosyan and Danilov, 1979, for differential games.

There are two principles of constructing the real payments to the players in the
dynamic game adapted to the theory of stochastic games:



248 Elena M. Parilina

1. The sum of payments to the players in every state is equal to the sum of players’
payoffs in strategy profile realized in this state according to cooperative decision
η(·).

2. The expected sum of payments to player i in each subgame Gj is equal to the
ith component of an allocation in subgame Gj

co that players have chosen before
the beginning of the game.

Taking into account that in stochastic game (12) the number of subgames is equal to
the number of possible states we should find vector βi = (β1

i , . . . , β
t
i) for every i ∈ N ,

where βji is a payment to player i in state Γ j , j = 1, . . . , t. And these payments
have to satisfy the two above principles and if so then these payments can be called
payoff distribution procedure (PDP) (see Petrosyan and Danilov, 1979).

Find the conditions that the new payoffs of the players are satisfied the principles
of PDP in the terms of stochastic games.

1. The first principle is equivalent to the following equation:∑
i∈N

βji =
∑
i∈N

Kj
i (x

j), (12)

where xj is an action profile realized under cooperative decision η(·) in state
Γ j, j = 1, . . . , t.

2. To find the condition of the second principle we need to work out the expected
total payoff of player i in stochastic subgame with new payments βji in state
Γ j, j = 1, . . . , t. Denote this value as Bi and write the recurrent equation for
this value:

Bj
i = βji + δ

t∑
k=1

p(j, k;xj)Bk
i ,

or in vector form:

Bi = βi + δΠ(η)Bi, (13)

where Bi = (B1
i , . . . , B

t
i ). Equation (13) is equivalent to the following one:

Bi = (I− δΠ(η))−1 βi. (14)

In respect to the second principle of PDP and equation (14) we obtain the
following equation for βi:

αi = (I− δΠ(η))−1 βi, (15)

where αi = (α1
i , . . . , α

t
i), (α

j
1, . . . , α

j
n) = αj ∈ Ij . Equation (15) can be rewritten

in an equivalent form:

βi = (I − δΠ(η))αi. (16)

It is easy to show that βi found from (16) satisfies (12). As
∑
i∈N

βji is equal

to (I − δΠ(η))
∑
i∈N

αi = (I − δΠ(η))V (N), and V (N) is found from (7) then

equation (12) holds.
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Remark 4. Equation (16) equals the following functional equation

αi = βi + δΠ(η)αi. (17)

The second item in the right part of equation (17) is the expected value of the
component of the allocation in subgame beginning with the next stage. Suppose
that the allocation for each subgame is chosen from the same optimality principle
that has been chosen by the players at the beginning of the game.

Obviously, if players keep to cooperative decision η(·) the expected payoff of player
i in stochastic game with new payments in some action profiles (which are realized
in the states under cooperative decision η is equal to the expected value of the
correspondent component of the allocation in cooperative stochastic game Gco.

Now for every allocation α = (α1, . . . , αn), where αi = π0αi, αi = (α1
i , . . . , α

t
i),

(αj1, . . . , α
j
n) = αj ∈ Ij we can determine the regularization of stochastic game G

by the following definition.

Definition 7. Noncooperative stochastic game Gα (subgame Gj
α, j = 1, . . . , t) is

called α-regularization of stochastic game G (subgame Gj), if for any player i ∈ N
in state Γ j payoff function Kα,j

i (xj) is defined as follows:

Kα,j
i (xj) =

{
βji , if xj = xj ;

Kj
i (x

j), if xj �= xj ,
(18)

where PDP β = (β1, . . . , βn) (Petrosyan and Baranova, 2006) is found from (??).

The procedure of regularization of the stochastic game G (subgame Gj) suggests
a method of construction of real payments to the players in every state and one
can insist that players are interested in the redistribution of their payoffs because
getting β1

i , . . . , β
t
i in states Γ 1, . . . , Γ t respectively player i receives the same sum

(in terms of mathematical expectation) in game Gα (Gj
α) as he has planned to

receive in the cooperative stochastic game Gco (Gj
co) and the expected sum of the

remained payments will belong to the same optimality principle which has been
chosen by the players at the beginning of the game. In this case we can say that
subgame consistency (dynamic consistency) of the chosen cooperative agreement
takes place.

4.2. Strategic stability of cooperative agreement

Introduce the additional notations. Set Γ (k) as the state realized at stage k of
stochastic game G. It is obvious that Γ (k) ∈ {Γ 1, . . . , Γ t}. Write x(k) the strategy
profile realized in state Γ (k). Set the subgame of stochastic gameGα from Definition

3 beginning from state Γ (k) as G
Γ (k)
α .

Call the sequence ((Γ (1), x(1)),(Γ (2), x(2)),. . .,(Γ (k− 1), x(k− 1))) the history
of stage k and denote it as h(k). Let T be {(Γ 1, x1), (Γ 2, x2), . . . , (Γ t, xt)}.

Stochastic game G and Gα are games with perfect information in the sense that
at each stage k (k = 1, 2, . . .) all players from N know state Γ (k) and the history
of stage k.
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Definition 8. We call behavior strategy profile ϕ∗(·) = (ϕ∗
1(·),. . .,ϕ∗

n(·)) strong
transferable equilibrium in regularized game Gα if for any coalition S ⊂ N , S �= ∅,
the inequality ∑

i∈S
E
α

i (ϕ
∗) �

∑
i∈S

E
α

i (ϕ
∗ ‖ ϕS) (19)

is true for any behavior strategy of coalition S: ϕS(·) = {ϕi(·)}i∈S ∈
∏
i∈S

Φi, and

E
α

i (·) is the expected payoff of player i in α-regularization of stochastic game G.

Theorem 1. If in α-regularization of stochastic game G with α such that α = π0α,
the following inequality holds for any coalition S ⊂ N , S �= ∅:∑

i∈S
βi � (I− δΠ(η))F (S), (20)

where F (S) = (F 1(S), . . . , F t(S)),

F j(S) = max
xj
S∈

∏
i∈S

Xj
i

xj
S 	=xj

S

{∑
i∈S

Kj
i (x

j ‖ xjS) + δ
t∑

l=1

p(j, l;xj ‖ xjS)V l (S)

}
, then in regular-

ized game Gα there exists a strong transferable equilibrium with payoffs (α1,. . .,αn).

Proof. Consider the behavior strategy profile ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) in game Gα:

ϕ̂i(h(k)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xji , if Γ (k) = Γ j , j = 1, t, h(k) ⊂ T ;

x̂ji (S), if Γ (k) = Γ j , j = 1, t, ∃ l ∈ [1, k − 1]

and S ⊂ N , i /∈ S: h(l) ⊂ T ,

and (Γ (l), x(l)) /∈ T ,

but (Γ (l), (x(l) ‖ xS(l)) ∈ T ,

anyone in other cases,

(21)

where x̂ji (S) is the player i’s pure strategy in state Γ j which with strategies xjp(S),
p �= i, p /∈ S forms the strategy of coalition {N\S} in antagonistic game against
coalition S in subgame GΓ (j).

The proof of the theorem repeats the proof of folk theorems (see Dutta, 1995)
using the structure of strategy (21). Prove that ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) determined
in (21) is a strong transferable equilibrium in stochastic game Gα.

From definition (21) it follows that on condition that all players keep cooperative
decision η(·) the expected payoff of coalition S in subgame Gj

α, j = 1, . . . , t, is equal
to the following one:

Ej
S(ϕ̂(·)) =

∑
i∈S

Ej
i (ϕ̂(·)) =

∑
i∈S

Ej
i (η(·)).

Let ES(ϕ̂(·)) be equal to vector (E1
S(ϕ̂(·)), . . . , Et

S(ϕ̂(·))) then for any coalition
S ⊂ N , S �= ∅ the next equality takes place:

ES(ϕ̂) = (I− δΠ(η))−1
∑
i∈S

βi. (22)
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Consider strategy-profile (ϕ̂(·) ‖ ϕS(·)), S ⊂ N , S �= ∅, when some coalition S
deviates from strategy ϕ̂S(·). Let stage k be such that there exists number l ∈
[1, k − 1] such that history h(l) ⊂ T and state (Γ (l), x(l)) /∈ T but (Γ (l), (x(l) ‖
xS(l))) ∈ T . Without loss of generality suggest that Γ (k) = Γ j . Determine the
payoff of coalition S in game Gα in strategy profile (ϕ̂(·) ‖ ϕS(·)) by formula∑
i∈S

E
α

i (ϕ̂ ‖ ϕS) = π0
∑
i∈S

Eα
i (ϕ̂ ‖ ϕS), where

∑
i∈S

Eα
i (ϕ̂ ‖ ϕS) =

∑
i∈S

E
α,[1,k−1]
i (ϕ̂ ‖ ϕS)

+ δk−1Πk−1(ϕ̂ ‖ ϕS)
∑
i∈S

E
α,[k,∞)
i (ϕ̂ ‖ ϕS), (23)

where the first term in the right side of equation (23) is the expected payoff of

coalition S at the first k− 1 stages of game Gα,
∑
i∈S

E
α,[k,∞)
i (ϕ̂ ‖ ϕS) in the second

term is the expected payoff of coalition S in the subgame of game Gα beginning
from stage k. Since there were no deviations of any coalition from the cooperative
decision η(·) up to stage k−1 inclusive as it was shown before the following equalities
holds for the elements of the right side of (23):∑

i∈S
E
α,[1,k−1]
i (ϕ̂ ‖ ϕS) =

∑
i∈S

E
α,[1,k−1]
i (η),

Πk−1(ϕ̂ ‖ ϕS) = Πk−1(η).

In the second term of the right side of (23) as E
α,[k,∞)
i (ϕ̂ ‖ ϕS) we mean vector

(Eα,1
i (ϕ̂ ‖ ϕS), . . . , E

α,t
i (ϕ̂ ‖ ϕS)) where Eα,j

i (ϕ̂ ‖ ϕS) is the expected payoff of
player i ∈ S in regularized subgame Gj

α beginning with state Γ j .
Find the expected payoff of coalition S in subgame Gj

α beginning with stage k
and state Γ (k) is equal to Γ j. The following formula takes place:

∑
i∈S

Eα,j
i (ϕ̂ ‖ ϕS) =

∑
i∈S

Kj
i (x

j ‖ xjS) + δ

t∑
l=1

p(j, l;xj ‖ xjS)V l (S) , (24)

because players from coalition N \S will punish coalition S playing the antagonistic
game against coalition S beginning from stage k + 1 according to the definition of
strategy profile ϕ̂(·). In (24) the value of characteristic function V j(S) is determined
by (9).

Since the expected payoffs of coalition S in strategy profiles ϕ̂(·) and (ϕ̂(·) ‖
ϕS(·)) are equal up to stage k − 1, then as a result of deviation coalition S can
guarantee the increase of payoff only at the expense of the part of gameGα beginning
with stage k, i.e. at the expense of the expected payoff in subgame Gj

α, j = 1, . . . , t.
Coalition S in strategy profile (ϕ̂(·) ‖ ϕS(·)) can guarantee the following expected
payoff from stage k:

max
xj
S∈

∏
i∈S

Xj
i

xj
S 	=xj

S

{∑
i∈S

Kj
i (x

j ‖ xjS) + δ
t∑

l=1

p(j, l;xj ‖ xjS)V l (S)

}
. (25)
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According to the definition of PDP the expected payoff of coalition S in regularized
subgame Gj

α in strategy profile ϕ̂(·) can be found from the equation:∑
i∈S

Eα
i (ϕ̂) = (I− δΠ(η))−1

∑
i∈S

βi, (26)

where Eα
i (ϕ̂(·)) = (Eα,1

i (ϕ̂(·)), . . . , Eα,t
i (ϕ̂(·)). Taking into account inequality (20)

from (25), (26) and reasoning presented above we can obtain inequality

Eα
S (ϕ̂(·)) � Eα

S (ϕ̂(·) ‖ ϕS(·)).

Thus behavior strategy profile (21) is the strong transferable equilibrium in α-
regularization of game G. The expected payoff of player i in game Gα in strategy-
profile ϕ̂(·) is equal to αi where αi = π0αi and vector αi = (α1

i , . . . , α
t
i) consists of

ith components of allocations α1, . . ., αt derived for cooperative subgames G1, . . .,
Gt accordingly.

Corollary 1. If α-regularization of game G for any player i ∈ N the next inequality
takes place:

βi � (I− δΠ(η))Wi,

where Wi = (W 1
i , . . . ,W

t
i ),

W j
i = max

xj
i∈X

j
i

xj
i 	=x

j
i

{
Kj
i (x

j ‖ xji ) + δ
t∑

l=1

p(j, l;xj ‖ xji )V l ({i})
}
, then in α-regularization

of stochastic game G there exists Nash equilibrium with players’ payoffs (α1, . . . , αn).

4.3. Condition of irrational behavior proofness

To protect the players against losses in cases when cooperation breaks up at
some stage of the game it is necessary that the following equation takes place for
every i ∈ N and any k = 1, 2, . . ..

V ({i}) � E
α,[1,k]
i + δkΠk(η)V ({i}), (27)

where E
α,[1,k]
i is the mathematical expectation of player i’s payoff at the first k

stages of regularized game Gα.
We suppose that before the beginning of the next game stage players know if

the cooperation has broken up or not, i.e. information delay is not supposed in
such a problem definition. In the left side of inequality (27) there is the value of
characteristic function V ({i}) = (V 1({i}), . . . , V t({i})) derived for player i where
V j({i}) is the value of characteristic function of player i in subgame Gj . In the
right side of inequality (27) the first term is equal to the expected value of player
i’s payoff if at the first k stages of the game players keep to cooperative decision
η(·), the second term is the expected payoff of player i beginning with stage k + 1
if player i plays independently from this stage.

Proposition 1. In stochastic game Gα for condition of irrational behavior proof-
ness it is sufficient that the following inequality takes place for any i ∈ N :

(I− δΠ(η))(αi − V ({i})) � 0, (28)

where αi = (α1
i , . . . , α

t
i) and αji is the ith component of allocation αj ∈ Ij.
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Proof. Show condition (28) is sufficient for inequality (27) for any k = 1, 2, . . .. We
use the mathematical induction method for the proof.

Rewrite inequality (27) for k = 1:

V ({i}) � βi + δΠ(η)V ({i}). (29)

Transform inequality (28) considering definition αi using PDP (15) and get inequal-
ity (29).

Suppose that from the truth of inequality (28) the truth of inequality (27) for
k = l follows. Rewrite inequality (27) for k = l:

V ({i}) � βi + . . .+ δl−1Π l−1(η)βi + δlΠ l(η)V ({i}). (30)

Proof the statement for k = l+ 1. Inequality (27) for k = l+ 1 is as follows:

V ({i}) � βi + . . .+ δlΠ l(η)βi + δl+1Π l+1(η)V ({i}). (31)

We should proof that if (28) is true then inequality (27) takes place for k = l + 1.
After the transformation the right part of inequality (31) will have the following
form:

βi + δΠ(η)
{
βi + δΠ(η)βi + . . .+ δl−1Π l−1(η)βi + δlΠ l(η)V ({i})

}
Taking into account inequality (30) the expression in braces is not less than V ({i}),
so the right part of inequality (31) is not less than βi + δΠ(η)V ({i}). Considering
the definition of PDP (16) and inequality (28) we get the truth of inequality (27)
for k = l+ 1. So the statement is proved.

5. Example

Consider the following stochastic game G:

1. The set of players is N = {1, 2}.
2. The set of states is {Γ 1, Γ 2}, where Γ j = 〈N,Xj

1 , X
j
2 ,K

j
1 ,K

j
2〉, j = 1, 2, Xj

1 =

{xj11, x
j
12} is the set of actions of player 1, and Xj

2 = {xj21, x
j
22} is the set of

actions of player 2. For state Γ 1 players’ payoffs are determined as follows:(
(2; 2) (1; 12)
(11; 3) (5; 4)

)
.

And for state Γ 2 players’ payoffs are determined as follows:(
(3; 1) (2; 7)
(8; 2) (5; 3)

)
.

3. Transition probabilities from state Γ 1 look like(
(0.6; 0.4) (0.7; 0.3)
(0.3; 0.7) (0.6; 0.4)

)
,

where element (k, l) of the matrix consists of the transition probability from
state Γ 1 to states Γ 1, Γ 2 accordingly on condition that player 1 chooses kth
action and player 2 chooses lth action in state Γ 1.
Transition probabilities from state Γ 2 look like(

(0.8; 0.2) (0.3; 0.7)
(0.3; 0.7) (0.2; 0.8)

)
.
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4. The discount factor is δ = 0.99.
5. The vector of the initial distribution on the set of states is π0 = (1/2, 1/2).

Determine the cooperative form Gco of game G described above. Firstly, cal-
culate the cooperative decision η = (η1, η2) in stationary strategies using (5) and
(6). We obtain the unique stationary strategy profile η1(Γ

1) = x111, η1(Γ
2) = x212,

η2(Γ
1) = x122, η2(Γ

2) = x221.
Secondly, work out the values of characteristic function V (·) = (V 1(·), V 2(·))

for all possible coalitions using (7)-(11):

V (∅) =
(
0
0

)
, V ({1}) =

(
500.00
500.00

)
, V ({2}) =

(
334.44
332.78

)
, V ({1, 2}) =

(
1152.48
1147.52

)
.

Using (10) calculate the values of characteristic function V (·) for all possible coali-
tions:

V (∅) = 0.00, V ({1}) = 500.00, V ({2}) = 333.61, V ({1, 2}) = 1150.00.

So, we determine the cooperative stochastic subgame Gj
co as the set 〈N, V j(·)〉,

j = 1, 2, and cooperative stochastic game Gco as the set 〈N, V (·)〉.
Finally, suppose that players choose for example Shapley value (Shapley, 1953b)

as allocation of their total payoff in cooperative stochastic game Gco and in all
subgames Gj

co, j = 1, 2.
Shapley values calculated for subgames look like:

α1 =

(
659.02
657.37

)
, α2 =

(
493.46
490.15

)
,

where αi = (α1
i , α

2
i ), and αji is the ith component of Shapley value of subgame Gj

co

using characteristic function V j(·), j = 1, 2, i ∈ N . Then taking into account vector
of initial distribution π0 determine the allocation α in Gco by Definition 8:

α = (α1, α2) = (658.20, 491.80).

Verify the principles of stable cooperation. To satisfy the principle of subgame
consistency we should calculate the PDP for the allocation α equals to π0α using
(16):

β1 =

(
7.08
6.08

)
, β2 =

(
5.92
3.92

)
.

As we can see not all the components of PDP are equal to the corresponding payoffs
of players in the states. So if players get their payoffs determined by the initial rules
of the game they can’t receive the components of the chosen allocation (in the
mathematical expectation sense). It tells about subgame inconsistency of chosen
cooperative agreement. Realize α-regularization of initial stochastic game G using
PDP and Definition 3. In α-regularization of game G players’ payoffs in state Γ 1

are as follows: (
(2; 2) (7.08; 5.92)
(11; 3) (5; 4)

)
,

and in state Γ 2 players’ payoffs look like:(
(3; 1) (2; 7)

(5.92; 3.92) (5; 3)

)
.
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Check the second principle of stable cooperation which is strategic stability
of cooperative agreement. For this purpose verify the truth of inequality (20) from
Theorem 1. Compute F (S) for all S ⊂ N and obtain that F ({1}) = (500.00, 498.00),
F ({2}) = (332.44, 332.78). Then inequality (20) is equivalent to the following ones:

β1 =

(
7.08
6.08

)
�
(
5.59
4.39

)
= (I− δΠ(η))F ({1}),

β2 =

(
5.92
3.92

)
�
(
3.22
3.43

)
= (I− δΠ(η))F ({2}).

They are true and we can say about strategic stability of the players’ chosen coop-
erative agreement.

Verify the third principle condition of irrational behavior proofness. The suffi-
cient condition for this principle from Proposition 1 holds as you can see here:

(I− δΠ(η))(α1 − V ({1})) =
(
2.08
1.08

)
� 0,

(I− δΠ(η))(α2 − V ({2})) =
(
2.08
1.08

)
� 0.

For this numerical example we have made the α-regularization of the initial game
G, and checked the principles of stable cooperation, they all are satisfied.
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