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Abstract In TU–cooperative game with restricted cooperation the values
of characteristic function v(S) are defined only for S ∈ A, where A is a col-
lection of some nonempty coalitions of players. If A is a set of all singletones,
then a claim problem arises, thus we have a claim problem with coalition
demands.
We examine several generalizations of the Proportional method for claim
problems: the Proportional solution, the Weakly Proportional solution, the
Proportional Nucleolus, and g–solutions that generalize the Weighted En-
tropy solution. We describe necessary and sufficient condition on A for in-
clusion the Proportional Nucleolus in the Weakly Proportional solution and
necessary and sufficient condition onA for inclusion g–solution in theWeakly
Proportional solution. The necessary and sufficient condition on A for co-
incidence g–solution and the Weakly Proportional solution and sufficient
condition for coincidence all g–solutions and the Proportional Nucleolus are
obtained.

Keywords: claim problem, cooperative games, proportional solution, weighted
entropy, nucleolus.

1. Introduction

A TU–cooperative game with restricted cooperation is a quadruple (N,A, c, v),
where N is a finite set of agents, A is a collection of nonempty coalitions of agents,
c is a positive real number (the amount of resourses to be divided by agents),
v = {v(T )}T∈A, where v(T ) > 0 is a claim of coalition T . We assume that A covers
N and N �∈ A.

A set of imputations of (N,A, c, v) is the set

{{yi}i∈N : yi ≥ 0,
∑
i∈N

yi = c}.

A solution F is a map that associates to any game (N,A, c, v) a subset of its
set of imputations. We denote y(S) =

∑
i∈S yi.

If A = {{i} : i ∈ N} then a claim problem arises, therefore, a cooperative game
with restricted cooperation can be considered as a claim problem with coalition
demands.

Solutions of claim problem and their axiomatic justifications are described in
surveys (Moulin, 2002) and (Thomson, 2003). For games with restricted coopera-
tion, several generalizations of well known Proportional solution and Uniform Losses
solution for claim problem are examined in (Naumova, 2011). In particular, she con-
siders the Proportional Nucleolus, the Weighted Entropy solution, and the Weakly



Generalized Proportional Solutions to Games with Restricted Cooperation 231

Proportional solution, where the ratios of total shares of coalitions to their claims
are equal for disjoint coalitions in A. Necessary and sufficient condition on A for
coincidence the Weighted Entropy solution and the Weakly Proportional solution,
necessary condition on A for inclusion the Proportional Nucleolus in the Weakly
Proportional solution, and necessary condition on A for inclusion the Weighted
Entropy solution in the Weakly Proportional solution are obtained in that paper.

In this paper we consider generalizations of Weighted Entropy solution called
g–solutions. For TU-cooperative games with positive characteristic function, i.e.,
for the case A = 2N \ {∅}, these solutions are defined and axiomatically justified in
(Yanovskaya, 2002). For each g, the condition on A for coincidence g–solution with
the Weakly Proportional solution is the same as for the case, where g–solution is
the Weighted Entropy solution. Sufficient condition for coincidence all g–solutions
and the Proportional Nucleolus is obtained. Moreover, we describe necessary and
sufficient condition on A for inclusion the Proportional Nucleolus in the Weakly
Proportional solution and necessary and sufficient condition on A for inclusion g–
solution in the Weakly Proportional solution.

The paper is organized as follows. The definitions of several generalizations of
the Proportional solution and conditions on A for existence the Proportional and
the Weakly Proportional solutions are described in Section 2. Some properties of
g–solutions that will be used in next sections are obtained in Section 3. Necessary
and sufficient condition on A for inclusion g–solution in the Proportional solution
is obtained in Section 4. In Section 5 we describe necessary and sufficient condition
on A for inclusion the Proportional Nucleolus in the Weakly Proportional solution
and necessary and sufficient condition on A for inclusion g–solution in the Weakly
Proportional solution. In Section 6 we describe conditions on A for coincidence g–
solution with the Weakly Proportional solution and for coincidence all g–solutions
with the Proportional Nucleolus.

2. Generalizations of the Proportional solution

Definition 1. An imputation y = {yi}i∈N belongs to the Proportional solution of
(N,A, c, v) iff there exists α > 0 such that y(T ) = αv(T ) for all T ∈ A.

Definition 2. An imputation y = {yi}i∈N belongs to the Weakly Proportional
solution of (N,A, c, v) (y ∈ WP(N,A, c, v)) iff y(S)/v(S) = y(Q)/v(Q) for all
S,Q ∈ A with S ∩Q = ∅.

The following results of the author will be used in this paper.

Proposition 1 (Naumova, 2011, Theorem 1.). The Proportional solution of
(N,A, c, v) is nonempty for all c > 0, all v with v(T ) > 0 if and only if A is a
minimal covering of N .

A set of coalitions A generates the undirected graph G = G(A), where A is the
set of nodes and K,L ∈ A are adjacent iff K ∩ L = ∅.

Theorem 1 (Naumova, 2011, Theorem 3.). The Weakly Proportional solution
of (N,A, c, v) is a nonempty set for all c > 0, all v with v(T ) > 0 if and only if A
satisfies the following condition.
C0. If a single node is taken out from each component of G(A), then the remaining
elements of A do not cover N .
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Definition 3. Let X ⊂ Rn, u1, . . . , uk be functions defined on X . For z ∈ X , let π
be a permutation of {1, . . . , k} such that uπ(i)(z) ≤ uπ(i+1)(z), θ(z) = {uπ(i)(z)}ki=1.
Then y ∈ X belongs to the nucleolus with respect to u1, . . . , uk on X iff

θ(y) ≥lex θ(z) for all z ∈ X.

Definition 4. A vector y = {yi}i∈N belongs to the Proportional Nucleolus of
(N,A, c, v) iff y belongs to the nucleolus w.r.t. {uT }T∈A with uT (z) = z(T )/v(T )
on the set of imputations of (N,A, c, v).

For each A, c > 0, v with v(T ) > 0, the Proportional Nucleolus of (N,A, c, v) is
nonempty and defines uniquely total amounts y(T ) for each T ∈ A.

Let G be a class of strictly increasing continuos functions g defined on (0,+∞)

such that g(1) = 0, and lim
x→0

x∫
a

g(t)dt < +∞ for each a > 0.

Definition 5. Let g ∈ G, f(z) =
∑
Q∈A

z(Q)∫
v(Q)

g(t/v(Q))dt. A vector y = {yi}i∈N

belongs to g–solution of (N,A, c, v) iff y minimizes f on the set of imputations of
(N,A, c, v).

For each g ∈ G, g–solution of (N,A, c, v) is a nonempty set because f is a
continuos function on the set of imputations.

For A = 2N \ {∅}, g–solutions are described in (Yanovskaya, 2002). For each A,
c > 0, v with v(T ) > 0, the g–solution of (N,A, c, v) is nonempty.

Examples of g–solutions

1. Let g(t) = ln t, then
z(S)∫
v(S)

g(t/v(S))dt = z(S)[ln(z(S)/v(S)) − 1] + v(S) and

the g–solution is the Weighted Entropy solution (Naumova, 2008, 2011).

2. Let g(t) = tq − 1, where q > 0, then we obtain the minimization problem for∑
S∈A

z(S)[ z(S)q

(q+1)v(S)q −1] that was considered for A = 2N \{∅} in (Yanovskaya, 2002).

3. Properties of g–solutions

Property 1. Let g ∈ G, lim
t→0

g(t) = −∞, and x belong to g–solution of (N,A, c, v).
Then x(S) > 0 for all S ∈ A.

Proof. Suppose that there exist (N,A, c, v), S ∈ A, and x in g–solution of (N,A, c, v)
such that x(S) = 0. Let 0 < ε < min{xk : xk > 0}. Let

M = max
T :T∈A,x(T )>0

max
t∈[x(T )−ε,x(T )+ε]

|g(t/v(T ))|.

Fix δ > 0 such that δ < min{ε,minT∈A v(T )} and |g(δ/v(S))| > 2|N |M . Let i ∈ S,
j ∈ N , xj > 0.
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Take z ∈ R|N | such that zi = xi + δ, zj = xj − δ, zk = xk for k �= i, j. Then∑
T∈A

z(T )∫
v(T )

g(t/v(T ))dt−
∑
T∈A

x(T )∫
v(T )

g(t/v(T ))dt =

∑
T∈A:i∈T,j 	∈T

x(T )+δ∫
x(T )

g(t/v(T ))dt−
∑

T∈A:i	∈T,j∈T

x(T )∫
x(T )−δ

g(t/v(T ))dt.

If i �∈ T , j ∈ T then |
x(T )∫

x(T )−δ
g(t/v(T ))dt| ≤ δM .

If T = S then
x(S)+δ∫
x(S)

g(t/v(S))dt =
δ∫
0

g(t/v(S))dt < −2|N |Mδ.

If i ∈ T , j �∈ T , x(T ) = 0, then
x(T )+δ∫
x(T )

g(t/v(T ))dt < 0 since δ < v(T ).

If i ∈ T , j �∈ T , x(T ) > 0, then |g(t/v(T ))| ≤ M as t ∈ [x(T ), x(T ) + δ], hence

|
x(T )+δ∫
x(T )

g(t/v(T ))dt| ≤ δM .

Thus,

∑
T∈A

z(T )∫
v(T )

g(t/v(T ))dt−
∑
T∈A

x(T )∫
v(T )

g(t/v(T ))dt < (|A| − 1)δM − 2|N |Mδ < 0

and x is not in g–solution of (N,A, c, v). ��

Property 2. For each g ∈ G, f(z) =
∑
Q∈A

z(Q)∫
v(Q)

g(t/v(Q))dt is a convex function

of z and for all A, c > 0, v with v(T ) > 0, the g–solution of (N,A, c, v) defines
uniquely total amounts y(T ) for all T ∈ A.

Proof. Let g ∈ G, a > 0, ψ(q) =
q∫
a

g(t)dt for q ≥ 0. If g ∈ G and lim
t→0

g(t) > −∞,

then ψ(q) is a strictly convex function on [0,+∞). If lim
t→0

g(t) = −∞, then ψ(q) is

a convex function on [0,+∞) and a strictly convex function on (0,+∞). Therefore
f(z) is a convex function of z and in view of Property 1, if y and z belong to g–
solution of (N,A, c, v), then y(T ) = z(T ) for all T ∈ A. ��

Property 3. For each x in g–solution of (N,A, c, v), xi > 0 implies∑
T∈A:i∈T

g(x(T )/v(T )) ≤
∑

T∈A:j∈T
g(x(T )/v(T )) for all j ∈ N. (1)

Proof. Note that in view of Property 1, g(x(Q)/v(Q)) is well defined for all Q ∈ A.
Let xi > 0. Suppose that there exists j ∈ N such that∑

T∈A:j∈T
g(x(T )/v(T )) <

∑
T∈A:i∈T

g(x(T )/v(T )).
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Consider ε ≥ 0 and y(ε) ∈ R|N | such that ε < xi, y(ε)i = xi − ε, y(ε)j = xj + ε,
y(ε)k = xk for k �= i, j. Let

F (ε) =
∑
Q∈A

∫ y(ε)(Q)

v(Q)

g(t/v(Q))dt−
∑
Q∈A

∫ x(Q)

v(Q)

g(t/v(Q))dt,

then

F (ε) =
∑

Q∈A:i∈Q,j 	∈Q

∫ x(Q)−ε

x(Q)

g(t/v(Q))dt+
∑

Q∈A:i	∈Q,j∈Q

∫ x(Q)+ε

x(Q)

g(t/v(Q))dt,

F ′(0) = −
∑

Q∈A:i∈Q,j 	∈Q
g(x(Q)/v(Q)) +

∑
Q∈A:i	∈Q,j∈Q

g(x(Q)/v(Q)) < 0.

Hence, F (ε) < 0 for some ε > 0 and x does not belong to g–solution of (N,A, c, v).
��

Property 4. Let g ∈ G and x be an imputation of (N,A, c, v) such that xi > 0
implies (1). Then x belongs to g–solution of (N,A, c, v).

Proof. For each imputation z of (N,A, c, v), let f(z) =
∑
Q∈A

z(Q)∫
v(Q)

g(t/v(Q))dt.

If zj > 0 for all j ∈ N then f is differentiable at z and

∂

∂zj
f(z) =

∑
T∈A:T�j

g(z(T )/v(T )). (2)

If z and w are imputations of (N,A, c, v) such that zj , wj > 0 for all j ∈ N , then,
in view of Property 2,

f(w) − f(z) ≥
∑
j∈N

∂f(z)

∂zj
(wj − zj). (3)

Note that if xi > 0 then for all Q  i, x(Q) > 0 and g(x(Q)/v(Q)) is well
defined. Hence, in view of (1), for all j ∈ N ,

∑
T∈A:T�j

g(x(T )/v(T )) is well defined.

Let y be an imputation of (N,A, c, v). There exist imputations zk and wk with
positive coordinates such that lim

k→+∞
zk = x, lim

k→+∞
wk = y, then it follows from (3)

and (2) that

f(y)− f(x) ≥
∑
j∈N

(yj − xj)
∑

T∈A:T�j
g(x(T )/v(T )). (4)

Let xi > 0, then (1) implies∑
j∈N

xj
∑

T∈A: T�j
g(x(T )/v(T )) = c

∑
T∈A: T�i

g(x(T )/v(T )), (5)

∑
j∈N

yj
∑

T∈A:T�j
g(x(T )/v(T )) ≥ c

∑
T∈A:T�i

g(x(T )/v(T )). (6)

It follows from (4), (5), (6) that f(y) − f(x) ≥ 0, i.e., x belongs to g–solution of
(N,A, c, v). ��
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4. When generalized proportional solutions are proportional?

Proposition 2 (Naumova, 2011, Proposition 1). The Proportional Nucleolus
of (N,A, c, v) is contained in the Proportional solution of (N,A, c, v) for all c > 0,
all v with v(T ) > 0 if and only if A is a partition of N .

Proposition 3. For each g ∈ G, g–solution is contained in the Proportional solu-
tion of (N,A, c, v) for all c > 0, all v with v(T ) > 0 if and only if A is a partition
of N .

Proof. Let A be a partition of N . Then for all S ∈ A, i ∈ S, all imputations x of
(N,A, c, v), ∑

T∈A:T�i
g(x(T )/v(T )) = g(x(S)/v(S)). (7)

If x belongs to the Proportional solution then by (7) and Property 4, x belongs to
g–solution. Since in the considered case x(S) are defined uniquely for all S ∈ A and
g–solution depends only on x(S) for all S ∈ A, the Proportional solution coincides
with g–solution.

Let g–solution be always contained in the Proportional solution. Suppose that
A is not a partition of N , then there exist P,Q ∈ A such that P ∩Q �= ∅. We take
the following v: v(P ) = 2, v(T ) = ε otherwise, where ε < 1/|N |.

Let x belong to g–solution of (N,A, 1, v). Since x is proportional, x(T ) =
εx(P )/2 ≤ ε/2 for all T ∈ A \ {P}, hence xi ≤ ε/2 for all i ∈ N \ P . If xi ≤ ε for
all i ∈ P , then x(N) ≤ ε|N | < 1, hence there exists j0 ∈ P \ ∪T∈A\{P}T such that
xj0 > ε. Let i0 ∈ P ∩Q. By Property 3,

g(x(P )/v(P )) ≤
∑

T∈A:T�i0

g(x(T )/v(T )).

Since x(T )/v(T ) ≤ 1/2 for all T ∈ A, this contradicts g(1) = 0. Hence A is a
partition of N . ��

5. When generalized proportional solutions are weakly proportional?

For i ∈ N , denote Ai = {T ∈ A : i ∈ T }.

Definition 6. A collection of coalitions A is weakly mixed at N if A = ∪ki=1Bi,
where
C1) each Bi is contained in a partition of N ;
C2) Q ∈ Bi, S ∈ Bj, and i �= j imply Q ∩ S �= ∅;
C3) for each i ∈ N , Q ∈ Ai, S ∈ A with Q ∩ S = ∅, there exists j ∈ N such that
Aj ⊃ Ai ∪ {S} \ {Q}.

Remark 1. If k ≤ 2 then C3 follows from C1 and C2.

Remark 2. If A is weakly mixed then it satisfies the condition C0 of Theorem 1.

Proof. Let A be weakly mixed at N . Take j0 ∈ N such that |Aj0 | ≥ |Ai| for all
i ∈ N . Let Aj0 = {Qt}t∈M , where Qt ∈ Bt, M ⊂ {1, . . . , k}.

Let St ∈ Bt for all t ≤ k. Since A is weakly mixed, there exists io ∈
⋂
t∈M St.

In view of definition of j0, Ai0 = {St : t ∈M}. Therefore, if for each t ∈ {1, . . . , k},
St is taken out from A, then the remaining elements of A do not cover i0. ��
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Example 1. Let N = {1, 2, . . . , 5}, C = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5}},
B2 = {{1, 4}, {2, 5}},
then C is weakly mixed at N .

Example 2. N = {1, 2, . . . , 12}, A = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
B2 = {{3, 5, 9, 10}, {4, 6, , 11, 12}},
B3 = {{1, 7, 9, 11}, {2, 8, 10, 12, 13}}.
Then A is weakly mixed at N .

Example 3. Let N = {1, 2, . . . , 6}, C = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2}, {3, 4}},
B2 = {{1, 3}, {2, 4}},
B3 = {{1, 4, 5}, {2, 3, 6}},
then C satisfies C0, C1, and C2, but does not satisfy C3 (for i = 1 and Q = {1, 2}),
hence C is not weaky mixed at N .

Proposition 4 (Naumova, 2011, Proposition 3.). Let the Proportional Nucleo-
lus of (N,A, t, v) be contained in the Weakly Proportional solution of (N,A, t, v) for
all t > 0, all v with v(T ) > 0. Then the case P,Q, S ∈ A, P �= Q, P ∩S = Q∩S = ∅,
P ∩Q �= ∅ is impossible.

Theorem 2. The Proportional Nucleolus of (N,A, c, v) is contained in the Weakly
Proportional solution of (N,A, c, v) for all c > 0, v if and only if A is weakly mixed
at N .

Proof. Let A be weakly mixed at N and x belong to the Proportional Nucleolus of
(N,A, c, v). Suppose that x is not weakly proportional, i.e., there exist S,Q ∈ A
such that S∩Q = ∅ and x(Q)/v(Q) < x(S)/v(S). Then there exists i0 ∈ S such that
xi0 > 0. Since A is weakly mixed, there exists j ∈ N such that Aj ⊃ Ai0∪{S}\{Q}.
Take δ > 0 such that

(x(Q) + δ)/v(Q) < (x(S)− δ)/v(S)

and δ < xi0 . Let y = {yi}i∈N , yi0 = xi0 − δ, yj = xj + δ, yt = xt otherwise. Then
y(P ) < x(P ) only for P = S and y(Q) > x(Q). Since y(Q)/v(Q) < y(S)/v(S), this
contradicts the definition of the Proportional Nucleolus.

Let the Proportional Nucleolus be always contained in the Weakly Proportional
solution. Let Bi be components of the graph G(A) used in Theorem 1. Then A
satisfies C2. In view of Proposition 4, A satisfies C1. Suppose that A is not weakly
mixed. Then there exist i0 ∈ N , Q ∈ Ai0 , and S ∈ A such that S ∩ Q = ∅ and
Aj �⊃ Ai0 ∪ {S} \ {Q} for all j ∈ N . Let 0 < ε < 1/|N |. We take the following v:
v(S) = 1,
v(P ) = |N |2 for P ∈ Ai0 \ {Q},
v(T ) = ε otherwise.
Let x belong to the Proportional Nucleolus and to the Weakly Proportional solution
of (N,A, 1, v). Since x is weakly proportional and v(S) + v(Q) > 1 we have x(Q) <
v(Q) = ε. There exists j0 ∈ N such that xj0 ≥ 1/|N |. Then j0 �∈ Q and j0 �= i0.
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Take δ > 0 such that δ < 1/|N | and for each T, P ∈ A,

x(T )/v(T ) < x(P )/v(P ) implies (x(T ) + δ)/v(T ) < (x(P )− δ)/v(P ).

Let y = {yi}i∈N , yi0 = xi0 + δ, yj0 = xj0 − δ, yi = xi otherwise.
We prove that x(P )/v(P ) < x(T )/v(T ) for some P ∈ A with y(P ) > x(P ) and

all T ∈ A with y(T ) < x(T ) and this would imply that x does not belong to the
Proportional Nucleolus of (N,A, 1, v). Consider 2 cases.

Case 1. j0 �∈ S. Let y(T ) < x(T ), then T  j0 and v(T ) = ε, hence x(T )/v(T ) ≥
xj0/ε > 1. Since x(Q)/v(Q) < 1 and y(Q) > x(Q), x does not belong to the
Proportional Nucleolus of (N,A, 1, v) in this case.

Case 2. j0 ∈ S, then Ai0 \ Aj0 \ {Q}  P , where x(P )/v(P ) ≤ 1/(|N |2) and
y(P ) > x(P ). If y(T ) < x(T ) then either T = S and x(S)/v(S) ≥ 1/|N | > 1/(|N |2)
or v(T ) = ε and x(T )/v(T ) ≥ xj0/ε > 1. Thus, x does not belong to the Proportional
Nucleolus of (N,A, 1, v) in this case. ��

Definition 7. A collection of coalitions A is mixed at N if A = ∪ki=1Bi, where
C1) each Bi is contained in a partition of N ;
C2) Q ∈ Bi, S ∈ Bj, and i �= j imply Q ∩ S �= ∅;
C4) for each i ∈ N , Q ∈ Ai, S ∈ A with Q ∩ S = ∅, there exists j ∈ N such that
Aj = Ai ∪ {S} \ {Q}.

Note that if A is mixed at N then A is weakly mixed at N .

Example 4. If A is weakly mixed at N and all i ∈ N belong to the same number of
coalitions, then A is mixed at N .

Example 5. Let N = {1, 2, . . . , 6}, A = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5, 6}},
B2 = {{1, 4}, {2, 5}},
then A is mixed at N .

Example 6. Let N = {1, 2, . . . , 5}, C = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5}},
B2 = {{1, 4}, {2, 5}},
then C is weakly mixed at N but not mixed at N . (For i = 3, the condition C4 is
not realized.)

Proposition 5. Let g–solution of (N,A, c, v) be contained in the Weakly Propor-
tional solution of (N,A, c, v) for all c > 0, all v with v(T ) > 0. Then the case
P,Q, S ∈ A, P �= Q, P ∩ S = Q ∩ S = ∅, P ∩Q �= ∅ is impossible.

Proof. Suppose that there exist P,Q, S ∈ A such that P �= Q, P ∩ S = Q ∩ S = ∅,
P ∩Q �= ∅. Let i0 ∈ P ∩Q, A0 = {T ∈ A : i0 ∈ T, T ∩ S �= ∅}.

Let 0 < ε < 1/|N |. We take the following v:
v(T ) = 1 for T ∈ A0 ∪ {P},
v(T ) = ε otherwise.

Let x belong to g–solution of (N,A, 1, v). Since x is weakly proportional, S∩P =
∅, and v(P ) + v(S) > 1, we have x(S) < v(S). Then x(Q)/v(Q) = x(S)/v(S) < 1.
As v(Q) = ε, x(Q) < ε. There exists j0 ∈ N with xj0 ≥ 1/|N |. Then j0 �∈ Q, j0 �= i0.
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Let j0 ∈ T , i0 �∈ T . Then T �∈ A0 ∪ {P}, hence v(T ) = ε and x(T )/v(T ) > 1.
Thus ∑

T∈Aj0\Ai0

g(x(T )/v(T )) ≥ 0. (8)

Let j0 �∈ T , i0 ∈ T . If v(T ) = ε then T ∩S = ∅ and x(T )/v(T ) = x(S)/v(S) < 1.
If v(T ) = 1, then v(T ) ≥ x(T ). Therefore∑

T∈Ai0\Aj0

g(x(T )/v(T )) ≤ g(x(Q)/v(Q)) < 0. (9)

It follows from (8) and (9) that∑
T∈Aj0

g(x(T )/v(T )) >
∑

T∈Ai0

g(x(T )/v(T )),

but this contradicts Property 3. ��

Theorem 3. Let g ∈ G. The g–solution of (N,A, c, v) is contained in the Weakly
Proportional solution of (N,A, c, v) for all c > 0, v if and only if A is mixed at N .

Proof. Let A be a mixed collection of coalitions. Let x belong to g–solution of
(N,A, c, v). Suppose that x does not belong to the Weakly Proportional solution
of (N,A, c, v), i.e., there exist Q,S ∈ A such that Q ∩ S = ∅ and x(Q)/v(Q) >
x(S)/v(S). There exists i0 ∈ Q with xi0 > 0. Since A is mixed, there exists j0 ∈ N
such that Aj0 = Ai0 ∪ {S} \ {Q}. Then∑

T∈Ai0\Aj0

g(x(T )/v(T )) = g(x(Q)/v(Q)),

∑
T∈Aj0\Ai0

g(x(T )/v(T )) = g(x(S)/v(S)),

hence ∑
T∈Ai0

g(x(T )/v(T )) >
∑

T∈Aj0

g(x(T )/v(T )),

but this contradicts Property 3. Thus, x belongs to the Weakly Proportional solution
of (N,A, c, v).

Let g–solution be always contained in the Weakly Proportional solution. Let Bi
be components of the graph G(A) used in Theorem 1. Then A satisfies C2 and in
view of Proposition 5, satisfies C1. Suppose that A is not mixed at N . Then there
exist i0 ∈ N , Q ∈ Ai0 , and S ∈ A with S ∩ Q = ∅ such that for each j ∈ N ,
Aj �= Ai0 ∪ {S} \ {Q}. Let 0 < ε < 1/|N |. We take the following v:
v(S) = 1,
v(P ) > 1 for P ∈ Ai0 \ {Q},
v(T ) = ε otherwise.
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Let x belong to g–solution and to the Weakly Proportional solution of (N,A, 1, v).
Since x is weakly proportional and v(S)+v(Q) > 1 we have x(Q) < v(Q) = ε. There
exists j0 ∈ N such that xj0 ≥ 1/|N |. Then j0 �∈ Q. We shall prove that∑

T∈Ai0

g(x(T )/v(T )) <
∑

T∈Aj0

g(x(T )/v(T )), (10)

and this contradicts Property 3.

The following 3 cases are possible.
1. j0 �∈ S.
2. j0 ∈ S, Ai0 \ Aj0 �= {Q}.
3. j0 ∈ S, Ai0 \ Aj0 = {Q}.

Case 1. ∑
T∈Ai0\Aj0

g(x(T )/v(T )) ≤ g(x(Q)/v(Q)) < 0.

Since j0 �∈ S, x(T ) > v(T ) = ε for all T ∈ Aj0 \ Ai0 , therefore,∑
T∈Aj0\Ai0

g(x(T )/v(T )) ≥ 0,

this implies (10).

Case 2. Let P0 ∈ Ai0 \ Aj0 \ {Q}, then x(P0) < v(P0) and∑
T∈Ai0\Aj0

g(x(T )/v(T )) ≤ g(x(Q)/v(Q)) + g(x(P0)/v(P0)) < g(x(Q)/v(Q)).

If T ∈ Aj0 \ Ai0 then either T = S or x(T ) > v(T ) = ε, therefore∑
T∈Aj0\Ai0

g(x(T )/v(T )) ≥ g(x(S)/v(S)).

Since x(Q)/v(Q) = x(S)/v(S), we obtain (10).

Case 3. ∑
T∈Ai0\Aj0

g(x(T )/v(T )) = g(x(Q)/v(Q)).

Since Aj0 �= Ai0 ∪ {S} \ {Q}, there exists T0 ∈ Aj0 \ Ai0 such that T0 �= S. Then∑
T∈Aj0\Ai0

g(x(T )/v(T )) ≥ g(x(S)/v(S)) + g(x(T0)/v(T0)) > g(x(S)/v(S).

Since x(Q)/v(Q) = x(S)/v(S), we obtain (10). ��

6. When different generalizations give the same result?

Definition 8. A collection of coalitions A is totally mixed at N if A = ∪ki=1P i,
where P i are partitions of N and for each collection {Si}ki=1 (Si ∈ P i), we have
∩ki=1Si �= ∅.
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Example 7. Let N = {1, 2, 3, 4}, C = B1 ∪ B2, where
B1 = {{1, 2}, {3, 4}},
B2 = {{1, 3}, {2, 4}},
then C is totally mixed at N .

Theorem 4. Let g ∈ G. The g–solution of (N,A, c, v) coincides with the weakly
proportional solution of (N,A, c, v) for all c > 0, v if and only if A is totally mixed
at N .

Proof. LetA be totally mixed atN . Then A is mixed atN and it follows from Theo-
rem 3 that g–solution of (N,A, c, v) is always contained in the Weakly Proportional
solution of (N,A, c, v). Since x(S) are uniquely defined for all x ∈ WP(N,A, c, v),
this implies coincidence of g–solution and the Weakly Proportional solution of
(N,A, c, v).

Now suppose that WP(N,A, t, v) coincides with g–solution of (N,A, t, v) for

all c > 0, all v with v(T ) > 0. By Proposition 5, A =
⋃k
i=1 Bi, where Bi are subsets

of partitions of N . If each Bi is a partition P i of N then by Theorem 1, for each
collection {Si}ki=1 with Si ∈ P i, we have ∩ki=1Si �= ∅, so A is totally mixed at N .

Let some Bi be not a partition of N . Then without loss of generality, there
exists q < k such that ∪qi=1Bi does not cover N and ∪qi=1Bi ∪ Bj covers N for each
j > q. Denote N0 =

⋃
S∈∪q

i=1Bi S. We consider 2 cases.

Case 1. For each j = q + 1, . . . , k, there exists Sj ∈ Bj, such that if each Sj is
taken out from Bj , then the remaining elements of ∪kj=q+1Bj cover (N \N0).

Let j0 ∈ N \ N0, Aj0 = {Qi}i∈M , then Qi ∈ Bi, i ∈ {q + 1, . . . , k}. Since
A is mixed by Theorem 3, there exists j1 ∈ N such that Aj1 = {Si}i∈M , then
j1 ∈ N \N0, hence Case 1 is impossible.

Case 2. If Sj ∈ Bj is taken out from Bj, j = q + 1, . . . , k, then the remaining
elements of ∪kj=q+1Bj do not cover N \N0.

For each j = q+1, . . . , k, Sj ∈ Bj, we have Sj ∩ (N \N0) �= ∅. Indeed, suppose
that Sj0 ⊂ N0 for some j0 > q. Then if we take Sj0 and arbitrary Sj ∈ Bj for j > q,
j �= j0 out from ∪kj=q+1Bj, the remaining elements of ∪kj=q+1Bj cover N \N0 as if

{N0} ∪ Bj0 covers N .
Let

C = {(N \N0) ∩ S : S ∈ ∪kj=q+1Bj, S ∩ P = ∅ for some P ∈ A}.

Note that P, S ∈ ∪kj=q+1Bj, P �= S, P ∩ (N \ N0) ∈ C imply P ∩ (N \ N0) �=
S ∩ (N \N0).

Indeed, suppose that P ∩(N \N0) = S∩(N \N0). There exists P 1 ∈ A such that
P ∩P 1 = ∅. If we take S, P 1 and arbitrary Sj ∈ Bj for j > q with P �∈ Bj out from
∪kj=q+1Bj, the remaining elements of ∪kj=q+1Bj cover N \ N0 because {N0} ∪ Bj0
covers N , where Bj0  S, but this is impossible in the considered case.

For arbitrary problem (N,A, c, v), where A is under the Case 2, consider the
problem (N \ N0, C, c, w), where w(T ) = v(S) for T = S ∩ (N \ N0) ∈ C. As was
proved above, w is well defined. Under the Case 2, due to Theorem 1, there exists
y ∈ WP(N \N0, C, c, w). Let x ∈ R|N |, xi = 0 for i ∈ N0, xi = yi for i ∈ N \N0,
then x ∈ WP(N,A, c, v), x(N0) = 0.
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Let ṽ(S) = |S|/|N | for all S ∈ A, x̃i = 1/|N | for all i ∈ N , then x̃ belongs to
g–solution of (N,A, 1, ṽ) as if x̃(S) = ṽ(S) for all S ∈ A, but x̃(N0) > 0. Thus in
the Case 2 g–solution does not coincide with the Weakly Proportional solution for
some problem. ��

Corollary 1. The Proportional Nucleolus, g–solutions, and the Weakly Propor-
tional solution of (N,A, c, v) coincide for all c > 0, all v with v(T ) > 0 if and
only if A is totally mixed at N .

Definition 9. A collection of coalitions A is strongly mixed at N if A = ∪ki=1Bi,
where
Bi is a partition of N for i ≤ k1 where 0 ≤ k1 ≤ k;
Bi is a proper subset of a partition of N for k1 < i ≤ k;
Q ∈ Bi, S ∈ Bj, and i �= j imply Q ∩ S �= ∅;
|Ai| = m for each i ∈ N , where k1 ≤ m ≤ k;
for each M1 ⊂ {k1 + 1, . . . , k} with |M1| = m − k1, St ∈ Bt (t ∈ M = M1 ∪
{1, . . . , k1}), we have ∩t∈MSt �= ∅.

Remark 3. If A is totally mixed at N then A is strongly mixed at N (k = k1).

Remark 4. If A is strongly mixed at N then A is mixed at N .

Remark 5. If A is mixed at N , A = ∪ki=1Bi, and |Ai| = k− 1 for each i ∈ N , then
A is strongly mixed at N .

Proof. For eachM = M1∪{1, . . . , k1} with |M | = k−1, if q �∈M , q ∈ {k1+1, . . . , k},
then there exists i ∈ N \

⋃
T∈Bq T . Since |M | = k − 1, Ai = M . Then A is strongly

mixed because A is mixed. ��

Example 8. N = {1, 2, 3}, A = {{1, 2}, {1, 3}, {2, 3}}, then all Bi are singletones
and A is strongly mixed but not totally mixed.

Example 9. N = {1, 2, . . . , 12}, A = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
B2 = {{3, 5, 9, 10}, {4, 6, , 11, 12}},
B3 = {{1, 7, 9, 11}, {2, 8, 10, 12}}.
Then A is strongly mixed at N but not totally mixed.

Example 10. Let N = {1, 2, . . . , 6}, A = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5, 6}},
B2 = {{1, 4}, {2, 5}},
then A is mixed at N but not strongly mixed.

Theorem 5. Let A be strongly mixed at N . Then the Proportional Nucleolus of
(N,A, c, v) coincides with g–solution of (N,A, c, v) for all g ∈ G, c > 0, v and is
contained in the Weakly Proportional solution.

Proof. Let A be strongly mixed. Then A is weakly mixed and, by Theorem 2, the
Proportional Nucleolus is contained in the Weakly Proportional solution. We prove
that the Proportional Nucleolus coincides with g–solution. If all Bi are partitions
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of N , then g–solution coincides with the Weakly Proportional solution, hence it
coincides with the Proportional Nucleolus. Let k1 < k, g ∈ G.

Let x belong to the Proportional Nucleolus of (N,A, c, v). We prove that xi > 0
implies ∑

T∈Ai

g(x(T )/v(T )) ≤
∑
S∈Aj

g(x(S)/v(S)) for all j ∈ N \ {i}. (11)

Suppose that (11) is not fulfilled for some i = i0, j = j0, and xi0 > 0. Denote

M(i) = {t : Bt ∩ Ai �= ∅}.

Since A is weakly mixed, it follows from Theorem 2 that there exist Ci0 ⊂ Ai0 \Aj0

and Cj0 ⊂ Aj0 \ Ai0 such that S �∈
⋃
t∈M(i0)

Bt for all S ∈ Cj0 , |Ci0 | = |Cj0 |, and∑
T∈Ci0

g(x(T )/v(T )) >
∑
S∈Cj0

g(x(S)/v(S)).

There exist Q ∈ Ci0 and P ∈ Cj0 such that x(Q)/v(Q) > x(P )/v(P ). Since A is
strongly mixed, there exists j1 ∈

⋂
T∈Ai0∩{P}\{Q} T . Take δ > 0 such that δ ≤ xi0

and (x(Q)− δ)/v(Q) > (x(P ) + δ)/v(P ).
Let y = {yi}i∈N , yi0 = xi0 − δ, yj1 = xj1 + δ, yq = xq otherwise. Then

x(P )/v(P ) < y(P )/v(P ) < y(Q)/v(Q) < x(Q)/v(Q) and x(T ) = y(T ) for all
T ∈ A \ {P,Q}, but this contradicts the definition of the Proportional Nucleolus.

Thus, xi > 0 implies (11) and, by Property 4, x belongs to g–solution of
(N,A, c, v). Since both g–solution and the Proportional Nucleolus are defined by
{x(T )}T∈A, the Proportional Nucleolus and g–solution coincide. ��
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