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1. Introduction

In this article we revisit Cournot equilibrium uniqueness results for homoge-
neous Cournot oligopolies. Henceforth, unless otherwise specified, by an oligopoly we
mean a homogeneous Cournot oligopoly, and by an equilibrium a Cournot equilib-
rium. In our revision we try to highlight the most significant equilibrium uniqueness
results appeared to date in the published literature1 and to provide several ‘unaes-
thetic’ generalizations thereof which—in our opinion—has nothing to do with the
methodological contributions provided by these results.

The aforementioned ‘unaesthetic’ generalizations are seldom provided in the
literature; perhaps, the main reason for this is that these generalizations require
technicalities which often partially hide an author’s main contribution. Nonetheless
these generalizations sometimes appear. Thus, with this article we facilitate—in
our opinion—the discernment of methodological novelties that have little (or even
nothing) to do with ‘unaesthetic’ generalizations. Nonetheless providing these gen-
eralization is of interest and deserves an examination: this is the aim of the following
sections.

Equilibrium uniqueness can be interpreted as the simultaneous occurrence of
equilibrium existence and equilibrium semi-uniqueness (i.e., the existence of at most
one equilibrium). We are not aware of equilibrium uniqueness results that deal with
‘unspecific’ oligopolies with continuous profit functions and an indefinite number
of possibly non-identical firms and that do not assume the quasi-concavity of the
conditional profit functions2 (see also Vives (2001) for an overview of the literature).

1 We shall not consider various (still) unpublished works like Ewerhart (2011).
2 The conditional profit function of a firm, for a given production of the opponents, is the
profit function of the firm as a function of only its production. The terminology and the
setting will be fixed next in Section 2.
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So, to the best of our knowledge, in all the aforementioned uniqueness results for
‘unspecific’ oligopolies equilibrium existence follows easily from the Nikaido-Isoda
theorem for games in strategic form (or—though less directly—from Kakutani fixed
point theorem) in case strategy sets are compact or when some other ‘compactness’
conditions are imposed on profit functions.

So, in light of the previous discussion, it should not wonder that many of our
‘unaesthetic’ generalizations will concern existence results, semi-uniqueness results,
sufficient conditions for the quasi-concavity of conditional profit functions and ‘com-
pactness’ conditions for profit functions. These results are mostly presented through
Sections 3–4. However, though the previous results are our main concern, in Sec-
tions 3–4 we shall also present some generalizations of ancillary results (and also a
few formulations of well-known results of independent interest—such as, e.g., those
in Section 4.5—for which it is difficult to provide an exact reference in the liter-
ature). In Section 5 our inquiry leads to some ‘unaesthetic’ generalizations (The-
orems 8,12,13) of three well-known and important equilibrium uniqueness results;
there we also present and review two other results of the literature which together
with the other three represent—in our opinion—the most significant equilibrium
uniqueness results appeared to date in the published literature.3

The reader will not find in this article any innovation with respect to the tech-
niques used to date in the equilibrium existence or semi-uniqueness results. Indeed,
all our ‘unaesthetic’ generalizations are brought about by the relaxation of the as-
sumptions needed on the set of production profiles where some of these techniques
are applied unessentially. As we shall see in Section 5, our ‘unaesthetic’ general-
izations also allow us to compare results which would be very difficult to compare
otherwise (this is the case, e.g., of the comparison of Theorems 7 and 9 in Section
5.2).

2. Setting

2.1. Games in Strategic Form

We deal with n player games in strategic form where N := {1, . . . , n} (with
n ≥ 1) is the set of players and for all i ∈ N , Xi is player i’s strategy set and fi is
player i’s payoff function. Henceforth, Xi is non-empty and

fi : X→ IR

where X := X1 × · · · ×Xn.
For i ∈ N , let Xı̂ := X1×· · ·×Xi−1×Xi+1×· · ·×Xn. We sometimes identify

X with Xi × Xı̂ and then write x ∈ X as x = (xi;xı̂). For i ∈ N and z ∈ Xı̂,

the conditional payoff function f
(z)
i : Xi → IR is defined by f

(z)
i (xi) := fi(xi; z).

x ∈ X is a (Nash) equilibrium if, for all i ∈ N , xi is a maximiser of f
(xı̂)
i . By

E

we denote the set of equilibria. If the game is Γ , then we also denote this set by
E(Γ ). For i ∈ N , the correspondence Ri : Xı̂ � Xi is defined by

Ri(z) := argmax f
(z)
i .

3 Some of our results can be further generalized by relaxing the smoothness conditions on
cost functions and by allowing arbitrary values of the price function at the origin. We
have not presented these generalizations for expositional convenience.
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Ri is called the best reply correspondence of player i.

2.2. Oligopolies

By a (homogeneous Cournot) oligopoly we mean a game in strategic form where
each strategy set Xi is a non-empty subset of IR+, the payoff function (also called
profit function) of player (also called firm) i is given by

fi(x) = p(

n∑
l=1

xl)xi − ci(xi).

Here ci : Xi → IR is called the cost function of firm i and p : Y → IR is called the
price function (or inverse demand function); the domain Y of p is the Minkowsi-sum
Y :=

∑n
l=1Xl.

If there exists

v ∈ Y

such that p(y) > 0 (0 < y < v) and p(y) ≤ 0 (y > v), then such v is unique. In this
case we refer to it as the market satiation point of p.

The aggregate revenue function r : Y → IR is defined by

r(y) := p(y)y.

A Nash equilibrium of an oligopoly is also referred to as a Cournot equilibrium.
From now on we always assume, unless stated otherwise, that for each player

i ∈ N

Xi = IR+, or Xi = [0,mi] where mi > 0.

In case Xi = [0,mi], we say that firm i has a capacity constraint.4

3. Games in Strategic Form

3.1. Marginal Reductions

Consider a game in strategic form. By a linear co-strategy function we mean
a function q : X → IR of the form q(x) :=

∑n
l=1 qlxl with the ql positive. The

linear co-strategy function given by x �→
∑n

l=1 xl is denoted by α. Given a linear
co-strategy function, we write Yq := q(X); also we write Y instead of Yα . Finally,
we also write z =

∑m
l=1 zl for z ∈ IRm.

Let i ∈ N . Any pair (ti; q) where q is a linear co-strategy function and

ti : Xi × Yq → IR,

is called a full marginal reduction of fi if fi is partially differentiable with respect
to its i-th variable and

Difi(x) = ti(xi, q(x)) for every x ∈ X. (1)

Note that the existence of a full marginal reduction of fi implies that fi is
continuous in each variable.

4 So if at least one firm does not have a capacity constraint, then Y = IR+ and otherwise
Y = [0,

∑n
l=1 ml].
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The most important property of the full marginal reductions is that in any
equilibrium e for all i ∈ N

ei ∈ Int(Xi)⇒ ti(ei, q(e)) = 0; (2)

ei = 0⇒ ti(ei, q(e)) ≤ 0; (3)

Xi = [0,mi] ∧ ei = mi ⇒ ti(ei, q(e)) ≥ 0. (4)

For i ∈ N , a linear co-strategy function q : X→ IR and Z ⊆ X we define

Wi(Z; q) := {(xi, q(x)) | x ∈ Z} ⊆ Xi × Yq.

Let Z be a subset of X and i ∈ N . Any two-tuple (ti; q) where q is a linear
co-strategy function and ti : Vi → IR a function with Wi(Z, q) ⊆ Vi ⊆ Xi × Yq, is
called a marginal reduction of fi on Z (with domain Vi) if for every x ∈ Z, fi is
partially differentiable w.r.t. its i-th variable at x and Difi(x) = ti(xi, q(x)). So a
full marginal reduction of fi is nothing else than a marginal reduction of fi on X
with domain Xi × Yq.

Marginal reductions are very useful objects as was first shown in Corchón (2001).

3.2. Quasi-concave Conditional Payoff Functions

The three propositions in this subsection will give sufficient conditions in terms
of marginal reductions for conditional profit functions to be quasi-concave.

Proposition 1. Sufficient for all conditional payoff functions of player i to be con-
cave is that there exists a full marginal reduction (ti; q) of fi with ti decreasing in
its first variable and in its second variable. Strict concavity holds if in addition ti is
strictly decreasing in at least one of the variables. �

Proof. We prove the first statement; the proof of the other statement is analogous.

Fix z ∈ Xı̂. Write a =
∑

l qlzl. The concavity of f
(z)
i is equivalent to the decreasing-

ness ofDf
(z)
i . Take xi, xi

′ ∈ Xi with xi < xi
′. By (1),Df

(z)
i (x′i) = ti(xi

′, qixi
′+a) ≤

ti(xi, qixi
′ + a) ≤ ti(xi, qixi + a) = Df

(z)
i (xi). ��

Various variants, like the following, with a same proof hold: sufficient for all
conditional payoff functions of player i to be concave is that there exists a full
marginal reduction (ti;α) of fi such that for every y ∈ Y the function ti(·, y) is
decreasing on {xi ∈ Xi | xi ≤ y} and such that for every xi ∈ Xi the function
ti(xi, ·) is decreasing on {y ∈ Y | y ≥ xi}. Here is another (technical) variant:

Proposition 2. Fix i ∈ N, w ∈ Y \ {0} and z ∈ Xı̂ with z < w. Suppose there
exists a marginal reduction (ti;α) of fi on {(xi; z) | xi ∈ Xi ∩ [0, w − z [ } with

domain (Xi∩ [0, w− z[ )× [0, w [. Sufficient for f
(z)
i to be concave on Xi∩ [0, w− z [

is that for all y ∈ [0, w [, the function ti(·, y) is decreasing on Xi ∩ [0, w − z [∩[0, y]
and that for all xi ∈ Xi ∩ [0, w− z [ the function ti(xi, ·) is decreasing on [xi, w [. �

Proof. Note that Dif
(z)
i (xi) = ti(xi, xi + z) for every xi ∈ Xi ∩ [0, w − z [. Let

ai, bi ∈ Xi ∩ [0, w − z [ with ai < bi. Now ai + z, bi + z ∈ [ai, w [ and ai, bi ∈
Xi ∩ [0, w − z [∩[0, bi + z]. We obtain Dif

(z)
i (ai) = ti(ai, ai + z) ≤ ti(ai, bi + z) ≤

ti(bi, bi + z) = Df
(z)
i (bi). ��
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Proposition 3. Sufficient for all conditional payoff functions of player i to be
strictly pseudo-concave5 is that there exists a full marginal reduction (ti; q) of fi
such that for all xi ∈ Xi and y ∈ Yq with xi ≤ y

– D1ti(xi, y) < 0;

– ti(xi, y) = 0 ⇒ D2ti(xi, y) ≤ 0;

– ti : Int(Xi) × Int(Yq) is differentiable and D1ti, D2ti : Int(Xi) × Int(Yq) → IR
are continuous. �

Proof. Fix z ∈ Xı̂. Write a =
∑

l qlzl. Consider h = f
(z)
i � Int(Xi). We have

Dh(xi) = ti(xi, qixi + a) and D2h(xi) = D1ti(xi, qixi + a) + qiD2ti(xi, qixi + a).
So h is a twice continuously differentiable function on the open interval Int(Xi).
For all xi in this interval we have h′(xi) = 0 ⇒ h′′(xi) < 0. Théorème 9.2.6. in

Truchon (1987) guarantees that h is strictly pseudo-concave. As f
(z)
i is continuous,

it follows that also f
(z)
i is strictly pseudo-concave. ��

3.3. Equilibrium Existence

In this subsection we consider a game in strategic form without the extra as-
sumptions made about the strategy sets at the end of Subsection 2.2.

The Nikaido-Isoda theorem states that sufficient conditions for the existence of
an equilibrium are: strategy sets are convex compact subsets of a finite dimensional
normed real linear space, payoff functions are continuous and the set of maximisers
of each conditional payoff function is convex.

The next theorem concerns a simple generalisation of this result allowing for
non-compact strategy sets. Its proof directly follows from the following fundamental
observation for a game in strategic form Γ : let, for each player i, Wi be a non-empty
subset of Xi and let Γ ′ be the game in strategic form with the same player set, Wi

as strategy set and fi � W as payoff function for player i, then,

E(Γ ) ∩W ⊆ E(Γ ′);

argmax f
(z)
i � Wi ⊆ argmax f

(z)
i (i ∈ N, z ∈ Xı̂) ⇒ E(Γ ′) ⊆ E(Γ ).

Theorem 1. Suppose for each player i there exists a non-empty subset Wi of Xi

such that for every z ∈ Xı̂

argmax f
(z)
i � Wi ⊆ argmax f

(z)
i .

Then the following conditions are sufficient for the existence of an equilibrium:

a. every Wi is a convex compact subset of a finite dimensional normed real linear
space;

b. every fi � W is continuous;

c. the set of maximisers of each f
(z)
i � Wi is convex. �

5 And therefore also strictly quasi-concave.



214 Pierre von Mouche, Federico Quartieri

3.4. Equilibrium Semi-uniqueness

The following proposition is a simple improvement of the semi-uniqueness result
in Corchón (2001). It is good to provide here again a proof (in three lines).

Proposition 4. Sufficient for #E ≤ 1 to hold is that for every i ∈ N there exists
a full marginal reduction (ti; q) of fi for which ti is strictly decreasing in its first
variable and decreasing in its second. �

Proof. By contradiction, suppose a and b are two different equilibria. We may
suppose q(b) ≥ q(a). Fix j with bj > aj . We obtain tj(aj , q(a)) ≥ tj(aj , q(b)) >
tj(bj, q(b)). But, by (2) the contradiction tj(aj , q(a)) ≤ 0 ≤ tj(bj, q(b)) follows. ��

Here is an improvement of Proposition 4 (with exactly the same proof):

Proposition 5. Suppose for every i ∈ N there exists a marginal reduction (ti; q)
of fi on E with domain {(xi, q(x)) | x ∈ E}. Sufficient for #E ≤ 1 to hold is that
for every a,b ∈ E with q(b) ≥ q(a) and i ∈ N one has: bi > ai ⇒ ti(ai, q(a)) >
ti(bi, q(b)). �

Here is a variant of Proposition 4 (with a same proof when q is replaced by α):

Proposition 6. Suppose for every i ∈ N there exists a full marginal reduction
(ti;α) of fi. Sufficient for #E ≤ 1 to hold is that for every i ∈ N and xi ∈ Xi, the
function ti(xi, ·) is decreasing on {y ∈ Y | y ≥ xi} and that for every i ∈ N and
y ∈ Xi, the function ti(·, y) is decreasing on {xi ∈ Xi | xi ≤ y}. �

For variants that can deal with payoff functions fi that are left and right dif-
ferentiable with respect to its i-th variable see Folmer and von Mouche (2004) and
von Mouche (2011). Also there cases are allowed which can handle derivatives with
value +∞ and −∞.

3.5. Decreasing Best Reply Correspondences

Henceforth, by the essential domain of best reply correspondence Ri we mean
the the set

X
(ess)
ı̂ = {z ∈ Xı̂ | Ri(z) �= ∅}.

Proposition 7. Let i ∈ N . Suppose (ti; q) is a full marginal reduction of fi. Let

X
(ess)
ı̂ be the essential domain of Ri Sufficient for every single-valued selection of

the correspondence

Ri : X
(ess)
ı̂ � Xi

to be decreasing,6 is that for all z, z′ ∈ X
(ess)
ı̂ with z < z′, x ∈ Ri(z), x

′ ∈ Ri(z
′)

one has
x < x′ ⇒ ti(x

′, q(x′; z′)) < ti(x, q(x; z)).

In particular the following property is sufficient: ti is decreasing in the first and in
the second variable and strictly decreasing in at least one of them. �

Proof. By contradiction. So suppose z, z′ ∈ X
(ess)
ı̂ with z < z′, x ∈ Ri(z), x′ ∈

Ri(z
′) and x < x′. It follows that Df

(z)
i (x) ≤ 0 and Df

(z′)
i (x′) ≥ 0, i.e., the

contradiction ti(x, q(x; z)) ≤ 0 ≤ ti(x
′, q(x′; z′)). ��

6 I.e., for all z, z′ ∈ X
(ess)
ı̂ with z < z′ (i.e., zl ≤ z′l for all l �= i with at least one strict

inequality), x ∈ Ri(z), x
′ ∈ Ri(z

′) one has x ≥ x′.
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4. Oligopolies

4.1. Market Satiation Points

Proposition 8. If p is concave with a non-zero market satiation point v, then for
each e ∈ E one has e ≤ v. �
Proof. If v �∈ Int(Y ), then each firm has a capacity constraint and v =

∑
lml. In

this case the statement is evident. Now suppose v ∈ Int(Y ).
As p is concave and v ∈ Int(Y ), p is continuous at v. This implies p(v) = 0.

As v > 0, there is a ∈ ]0, v [ with p(a) > 0. As p is concave, it follows that p(y) <
0 (y > v). Now suppose e ∈ E. We prove by absurd that e ≤ v. So suppose e > v.

Fix j ∈ N such that ej > 0. Now f
(eı̂)
j (ej) = p(e)ej − cj(ej) < −cj(ej) = f

(eı̂)
j (0),

which is a contradiction with e ∈ E. ��
The following result essentially is due to Szidarovszky and Yakowitz (1982).

Proposition 9. Suppose p has a non-zero market satiation point v and

ci(xi) > ci(0) (i ∈ N, xi ∈ Xi with xi ≥ v/n).

Then for each equilibrium e

1. e �= 0 ⇒ p(e) > 0;
2. e ≤ v;
3. p(v) ≤ 0 ⇒ e < v. �
Proof. 1. By way of contradiction assume that e �= 0 and p(e) ≤ 0. Then

fi(e) = p(e)ei − ci(ei) ≤ −ci(ei) (i ∈ N).

As e ∈ E, it follows for every i ∈ N that fi(e) ≥ fi(0; eı̂) = −ci(0) and therefore
ci(ei) ≤ ci(0). If i has a capacity constraint and mi < v/n, then ei ≤ mi < v/n.
If i has a capacity constraint and mi ≥ v/n, then ei ≥ v/n would imply the
contradiction ci(ei) > ci(0). If i does not have a capacity constraint, then ei ≥ v/n
again would imply the contradiction ci(ei) > ci(0). So ei < v/n (i ∈ N). But now
0 < e <

∑n
l=1 v/n = v and therefore p(e) > 0, which is a contradiction.

2. This follows from 1.
3. By 2 we have e ≤ v. If e = v holds, then e �= 0 and p(e) = p(v) ≤ 0, which

is a contradiction with 1. ��
Almost all results for oligopolies in the literature deal with decreasing price

functions that have a market satiation point. Results like Proposition 9 (assuming
a weak monotonicity assumption for the cost functions) imply that in many results
only the properties of p on [0, v] and of ci on Xi ∩ [0, v] matter; in such cases one
may call [0, v] (resp. Xi∩ [0, v]) the relevant domain of p (resp. ci). This implies that
various results in the literature, like Theorem 7 below, can be improved by taking
these domains into consideration. In order to make this point clearer, consider for
example the following result, guaranteed by Theorem 7, for a duopoly without
capacity constraints: if p(y) = 7−y and cost functions are convex, then there exists
at most one equilibrium. However, as this theorem does not deal with the relevant
domain of p, it does not imply the following result: if p(y) = 7−y (0 ≤ y ≤ 7), p(y) ≤
0 (y ≥ 7) and cost functions are convex, then there exists at most one equilibrium.
However, combining Theorem 7 with the next theorem leads to Theorem 8 below
and does imply this result.
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Theorem 2. Consider an oligopoly where the price function p has a market sa-
tiation point and each cost function is increasing and has 0 as unique minimiser.
Let

p̃ := max (p, 0).

Then if we replace in the oligopoly the price function p by p̃, the set of equilibria
does not change. �

Proof. Let Γ be the original game and Γ ′ the modified game. Let v be the market
satiation point of p. Note that p̃ also has a market satiation point and that this
again is v. Proposition 9 guarantees

e ∈ E(Γ ) \ {0} ⇒ [p(e) > 0, e ≤ v], e ∈ E(Γ ′) \ {0} ⇒ [p̃(e) > 0, e ≤ v].

Fix i ∈ N , xi ∈ Xi. Denote the profit function of firm i in Γ ′ by f̃i.

– E(Γ ) ⊆ E(Γ ′): suppose e ∈ E(Γ ). Let a =
∑n

l=1,l 	=i el. If p(xi + a) > 0, then

f̃i(xi; eı̂) = p̃(xi + a)xi − ci(xi) = p(xi + a)xi − ci(xi) = fi(xi; eı̂) ≤ fi(ei; eı̂) =
p(ei + a)ei − ci(ei) = p̃(ei + a)ei − ci(ei) = f̃i(ei; eı̂). If p(xi + a) ≤ 0, then
xi ≥ ei holds and we obtain f̃i(xi; eı̂) = p̃(xi + a)xi − ci(xi) ≤ −ci(xi) ≤
−ci(ei) ≤ p̃(ei + a)ei − ci(ei) = f̃i(ei; eı̂).

– E(Γ ′) ⊆ E(Γ ): suppose e ∈ E(Γ ′). Let a =
∑n

l=1,l 	=i el. We have fi(xi; eı̂) =

p(xi+a)xi−ci(xi) ≤ p̃(xi+a)xi−ci(xi) = f̃i(xi; eı̂) ≤ f̃i(ei; eı̂) = p̃(ei+a)ei−
ci(ei) = p(ei + a)ei − ci(ei) = fi(ei; eı̂). ��

A problem is that dealing with p � [0, v] and ci � Xi ∩ [0, v] complicates the
proofs (and the presentation). What we would like to have are general results that
enable us to derive simply from a result in terms of p and the cost functions ci a
variant in terms of p � [0, v] and ci � Xi[0, v]. Theorem 2 is a first step into this
direction.

Finally, we provide here a simple result in case p has 0 as market satiation point.

Proposition 10. Suppose p has 0 as market satiation point and each cost function
has 0 as a minimiser. Then:

1. 0 is an equilibrium.

2. If 0 is also the unique minimiser of each cost function, then 0 is the unique
equilibrium. �

Proof. Note that p(xi)xi ≤ 0 (xi ∈ Xi) and ci(0) ≤ ci(xi) (xi ∈ Xi).

1. For every xi ∈ Xi we have f
(0)
i (0) = −ci(0) ≥ −ci(xi) ≥ p(xi)xi − ci(xi) =

f
(0)
i (xi). Thus 0 ∈ E.

2. Having 1, we need to prove that e ∈ E ⇒ e = 0. So suppose e ∈ E. Let
i ∈ N . We shall prove by contradiction that ei = 0. So suppose ei > 0. As e ∈ E,

we have f
(eı̂)
i (ei) ≥ f

(eı̂)
i (0), i.e., p(e)ei− ci(ei) ≥ −ci(0). So p(e)ei ≥ ci(ei)− ci(0).

In the last inequality the left-hand side is non-positive and the right-hand side is
positive, which is absurd. ��
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4.2. Fisher-Hahn and Related Conditions

The following conditions (and its variants) play an important role in uniqueness
results for oligopolies.

– p is differentiable, ci is twice differentiable and

Dp(y)−D2ci(xi) < 0 (xi ∈ Xi, y ∈ Y ); (5)

Dp(y)−D2ci(xi) < 0 (xi ∈ Xi, y ∈ Y, xi ≤ y). (6)

– p is twice differentiable and

Dp(y) + xiD
2p(y) ≤ 0 (xi ∈ Xi, y ∈ Y ); (7)

Dp(y) + xiD
2p(y) < 0 (xi ∈ Xi, y ∈ Y ); (8)

Dp(y) + xiD
2p(y) ≤ 0 (xi ∈ Xi, y ∈ Y, xi ≤ y); (9)

Dp(y) + yD2p(y) ≤ 0 (y ∈ Y ). (10)

– p is twice differentiable and

2Dp(y) + yD2p(y) ≤ 0 (y ∈ Y ); (11)

2Dp(y) + yD2p(y) < 0 (y ∈ Y ); (12)

p(y)D2p(y)− (Dp(y))2 ≤ 0 (y ∈ Y ). (13)

If p and ci are differentiable, then we define ti : Xi × Y → IR by

ti(xi, y) := Dp(y)xi + p(y)−Dci(xi). (14)

This (ti;α) is a full marginal reduction of fi. So if p is differentiable and ci is twice
differentiable, then (14) implies for all xi ∈ Xi and y ∈ Y

Dp(y)−D2ci(xi) = D1ti(xi, y).

Besides, if p is twice differentiable and ci is differentiable, then

Dp(y) +D2p(y)xi = D2ti(xi, y).

Also note that for a twice differentiable price function: (11) is equivalent to the
concavity of the aggregate revenue r; (12) is equivalent to strict concavity of r; (13)
is for positive p equivalent to log-concavity of p.

We also refer to condition (5) as the first Fisher-Hahn condition (for firm i),
to (8) as the second Fisher-Hahn condition (for firm i), to (7) as the weak second
Fisher-Hahn condition (for firm i).7 Condition (10) is called the marginal revenue
condition.

As first shown in Novshek (1985), the marginal revenue condition plays an im-
portant role in equilibrium existence proofs. Proposition 11(1) below shows that the

7 The first and second Fisher-Hahn conditions were introduced in Hahn (1962) in the
context of investigations on the dynamic stability of the Cournot equilibrium. Hahn
still did not seem to be aware of the importance of these conditions (see Theorem 11)
for the uniqueness of that equilibrium (he just assumed to be unique).
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marginal revenue condition implies Dp ≤ 0. Proposition 11(2) shows that in case
Y = IR+ the weak second Fisher-Hahn condition and the marginal revenue condi-
tion are equivalent. Proposition 11(2,4) shows that the marginal revenue condition
implies the concavity of r.

The first Fisher-Hahn condition is used in various results which allow for non-
convex cost functions. In these results non-convexity of the cost functions is ‘com-
pensated’ by the monotonicity properties of the price function. Proposition 11(6)
below implies that such results likely deal with situations where each firm has a
capacity constraint or where there exists a market satiation point.

Of course, we have the implications (5) ⇒ (6) and (7) ⇒ (9). Here are some
other relations:

Proposition 11. 1. (10) implies Dp ≤ 0. Also (9) implies Dp ≤ 0.
2. (10) implies (9). In case Y = IR+, (9) and (10) are equivalent.
3. (11) implies Dp(y) ≤ 0 (y ∈ Y \{0}). And (12) implies Dp(y) < 0 (y ∈ Y \{0}).
4. (9) implies (11).
5. Sufficient for (7) to hold is that p is twice differentiable, decreasing and concave.
6. Suppose Y = IR+ and p is decreasing. If p > 0, then (5) implies that cost

functions are convex. �

Proof. 1. The second statement follows by taking xi = 0.
First statement: let g(y) = yDp(y). We have Dg ≤ 0 and g(0) = 0. It follows

that g ≤ 0 and from this Dp(y) ≤ 0 (y �= 0). Taking y = 0 in (10) gives Dp(0) = 0.
So Dp ≤ 0.

2. First statement: suppose (10) holds and let xi ∈ Xi and y ∈ Y with xi ≤ y. So
Dp(y)+ yD2p(y) ≤ 0. By 1, Dp ≤ 0. If, D2p(y) ≤ 0, then Dp(y)+xiD

2p(y) ≤ 0. If
D2p(y) > 0, then Dp(y)+xiD

2p(y) ≤ −yD2p(y)+xiD
2p(y) = (xi− y)D2p(y) ≤ 0.

The proof of the second statement now follows immediately.
3. We prove the first statement; the proof of the second is analogous. Fix y �= 0.

As r is concave and differentiable at y, it follows that r(0) ≤ r(y) +Dr(y)(0 − y),
i.e., 0 ≤ p(y)y − y(Dp(y)y + p(y)) and therefore y2Dp(y) ≤ 0. As y �= 0, it follows
that Dp(y) ≤ 0.

4. By 1, Dp ≤ 0, so (11) holds.
5. Evident.
6. As p is decreasing, Dp ≤ 0 holds. Let ε > 0. Consider the point 7 ∈ Y .

As limy→+∞
p(y)−p(7)

y−7 = 0, there exists y > 7 such that p(y)−p(7)
y−7 ≥ −ε. The first

mean value theorem implies the existence of ξ ∈ ]7, y [ with Dp(ξ) = p(y)−p(7)
y−7 . Thus

Dp(ξ) ≥ −ε. It follows that supy∈IR++
Dp(y) = 0. By (5) Dp(y) < D2ci(xi) (xi ∈

Xi, y ∈ Y ). It follows that D2ci(xi) ≥ 0 (xi ∈ Xi). So ci is convex. ��

Condition (11) does not imply (9) and therefore by Proposition 11(2) nor the
marginal revenue condition: for p(y) = 1/(y+1), r is concave and so (11) holds and

one has Dp(y) + xiD
2p(y) = (y + 1)−3(2xi − y − 1).

4.3. Quasi-concave Conditional Profit Functions

Proposition 1 implies the following.

Proposition 12. If the first and the weak second Fisher-Hahn condition for firm
i hold, then p is decreasing and each conditional profit function of firm i is strictly
concave. �
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The next proposition, based on the following principle for a function g : I → IR
where I = IR+ or I = [0, b] with b > 0, will be useful.

Principle: sufficient for g to be quasi-concave is that there exists s ∈ I such that
g is quasi-concave on [0, s [, decreasing on {x ∈ I | x ≥ s} and continuous at s.

Proposition 13. Fix i ∈ N . Suppose p has a market satiation point v, p(y) = 0 for
all y ∈ Y with y ≥ v and p is continuous at v. Suppose ci is increasing and at each
point of Xi ∩ [0, v] continuous. Also suppose for each z < v the conditional profit

function f
(z)
i is quasi-concave on {xi ∈ Xi | xi < v − z}. Then each conditional

profit function of firm i is quasi-concave. �

Proof. Consider a conditional profit function f
(z)
i . If z ≥ v, then f

(z)
i = −ci is

decreasing and therefore quasi-concave. Now suppose z < v. In case v − z �∈ Xi,

f
(z)
i is quasi-concave. In case v − z ∈ Xi, f

(z)
i is quasi-concave on [0, v − z [ and

decreasing on {xi ∈ Xi | xi ≥ v − z}. Also f
(z)
i is continuous at v − z. The above

principle implies that f
(z)
i is quasi-concave. ��

Theorem 3. Fix i ∈ N . Suppose p has a non-zero market satiation point v. Further
suppose

a. p is continuous, p(y) = 0 for all y ∈ Y with y ≥ v and p is on [0, v [ twice
differentiable;

b. ci is increasing, on Xi∩ [0, v [ twice differentiable and continuous at v if v ∈ Xi;
c. for every xi ∈ Xi ∩ [0, v [ and y ∈ [0, v [ with xi ≤ y

Dp(y)−D2ci(xi) ≤ 0, xiD
2p(y) +Dp(y) ≤ 0.

Then p is decreasing and each conditional profit function is quasi-concave. �

Proof. Taking xi = 0 in condition c we have Dp(y) ≤ 0 (0 ≤ y < v). With condition
a it follows that p is decreasing.

Let z ∈ Xı̂ with z < v. By Proposition 13 the proof is complete if we can

show that f
(z)
i is concave on I = Xi ∩ [0, v − z [. Define ti : (Xi ∩ [0, v [)× [0, v [ by

ti(xi, y) = Dp(y)xi + p(y)−Dci(xi).
We now verify the conditions of Proposition 2 with w = v. Well, let y ∈ [0, v [.

As Dp(y) − D2ci(xi) ≤ 0 (xi ∈ Xi ∩ [0, y]), it follows that the function ti(·, y) is
decreasing onXi∩[0, v−z [∩[0, y]. Now let xi ∈ Xi∩[0, v−z [ . As xiD

2p(y)+Dp(y) ≤
0 (y ∈ [xi, v [), it follows that the function ti(xi, ·) is decreasing on [xi, v [. ��

Remark: the theorem remains true if we replace ‘xiD
2p(y)+Dp(y) ≤ 0’ in c by

‘yD2p(y) +Dp(y) ≤ 0. (Proof: use a variant of Proposition 11(2).)

For i ∈ N and a ∈
∑

l 	=iXl, let ri;a : Xi → IR be defined by

ri;a(xi) := p(xi + a)xi. (15)

So ri;0 = r � Xi. The proof of the following proposition can be essentially found in
Murphy et al. (1982).

Proposition 14. 1. Sufficient for r to be (strictly) concave is that p is concave
and (strictly) decreasing.
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2. Let I be an interval of IR with 0 ∈ I ⊆ Xi. Sufficient for ri;a to be (strictly)
concave on I is that r is (strictly) concave on I + {a} and p is decreasing on
I + {a}.

3. Suppose r is concave and ci is convex. Then each conditional profit function of
firm i is concave. If, in addition, r is strictly concave or ci is strictly convex,
then each conditional profit function of firm i is (strictly) concave. �

Proposition 15. Let i ∈ N and suppose p has a market satiation point v and

a. p is continuous at v and p(y) = 0 for all y ∈ Y with y ≥ v;
b. ci is increasing on Xi and continuous at each point of Xi ∩ [0, v];
c. r is concave on [0, v] and ci is convex on Xi ∩ [0, v].

Then each conditional profit function f
(z)
i is quasi-concave. �

Proof. Fix z with z < v. By Proposition 13 the proof is complete if we can show

that f
(z)
i is quasi-concave on I = Xi ∩ [0, v − z [. We have f

(z)
i = ri;z − ci. As in

the proof of Proposition 11(3) we see that p is decreasing on ]0, v]. We distinguish
between two cases.

Case where v−z �∈ Xi. NowXi = [0,mi] andmi ≤ mi+z < v. SoXi∩[0, v] = Xi

and therefore ci is convex. Now we show that ri;z is concave and then the proof is
complete. As Xi + {z} ⊆ [0, v [, r is concave on Xi + {z}. As ri;0 = r � Xi, ri;0 is
concave. And if z > 0, Proposition 14(2) implies that ri;z is concave.

Case where v− z ∈ Xi. As ci is convex on [0, v− z [, the proof is complete if ri;z
is concave on [0, v − z [. Again apply Proposition 14(2). ��

The proofs of the following three propositions are based on a sufficient condition
for quasi-concavity which we used in the proof of Proposition 3 (i.e., the mentioned
Theorem 9.2.6 there). As far as we know, it was in Vives (2001) where this sufficient
condition was first used in the oligopolistic literature.

Proposition 16. Fix i ∈ N . Suppose p and ci are twice continuously differentiable,
p is decreasing and log-concave and ci is increasing.

1. For every xi ∈ Xi and y ∈ Y : ti(xi, y) = 0 ⇒ D2ti(xi, y) ≤ 0.
2. If the first Fisher-Hahn condition holds, then each conditional profit function of

firm i is strictly pseudo-concave. �

Proof. 1. As ci is increasing, we have Dci(xi) ≥ 0 and as p is decreasing, we have
Dp(y) ≤ 0. Also ti(xi, y) = 0 = xiDp(y) + p(y) − Dci(xi). As p is log-concave,

(13) holds and we obtain D2ti(xi, y) = Dp(y) + xiD
2p(y) ≤ Dp(y) + xi

(Dp(y))2

p(y) =
Dp(y)
p(y) (p(y) + xiDp(y)) =

Dp(y)
p(y) Dci(xi) ≤ 0.

2. This follows from Proposition 3. That its conditions hold, follows from 1. ��

Proposition 17. Fix i ∈ N . Suppose ci is increasing, p has a non-zero market
satiation point v and p(y) = 0 for all y ∈ Y with y ≥ v. Also suppose p is continuous,
decreasing and p � [0, v [ is log-concave and twice continuously differentiable. Suppose
ci is twice continuously differentiable on Xi ∩ [0, v[ and continuous at v if v ∈ Xi.
Finally suppose for all y ∈ [0, v [ and xi ∈ Xi with xi ≤ y

Dp(y)−D2ci(xi) < 0.

Then each conditional profit function of firm i is quasi-concave. �
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Proof. Fix z with z < v. By Proposition 13 the proof is complete if we can show

that f
(z)
i is quasi-concave on I = Xi ∩ [0, v− z [. Let h = f

(z)
i � Int(I). The function

h is twice continuously differentiable. With y = xi+z we have Dh(xi) = Dp(y)xi+
p(y) − Dci(xi) and D2h(xi) = 2Dp(y) + D2p(y)xi − D2ci(xi). As in the proof of
Proposition 16 it follows for each xi ∈ Int(I) that Dh(xi) = 0 ⇒ D2h(xi) < 0.
Again it follows that h is strictly pseudo-concave and therefore quasi-concave. As

f
(z)
i is continuous, it follows that also f

(z)
i is quasi-concave. ��

Here is a variant of Proposition 17 which can be proved in the same way:

Proposition 18. Fix i ∈ N . Suppose ci is twice continuously differentiable and p
is log-concave, decreasing and twice continuously differentiable. If for all y ∈ Y and
xi ∈ Xi with xi ≤ y it holds that Dp(y)−D2ci(xi) < 0, then each conditional profit
function of firm i is quasi-concave. �

We conjecture that the following variant of Proposition 18 is true: if p is log-
concave and decreasing and ci is convex, then each conditional profit function of
firm i is quasi-concave.

4.4. Equilibrium Existence

Theorem 1 is central for the following fundamental existence result.

Theorem 4. For each firm i with a capacity constraint mi, let xi = mi. If there is
a firm i without capacity constraint, then suppose the price function p is decreasing
and for each such firm i there exists xi > 0 with r(x) ≤ ci(x) − ci(0) (x ≥ xi).
Let Wi = [0, xi] (i ∈ N). If each profit function is continuous on W and each
conditional profit function i of firm i is quasi-concave on Wi, then there exists an
equilibrium. �

Proof. For each z ∈ Xı̂ we prove the inclusion

argmax f
(z)
i � Wi ⊆ argmax f

(z)
i .

Indeed, this is trivial if i has a capacity constraint. Now suppose i does not have a
capacity constraint. With ri;z : IR+ → IR defined by (15), we have to prove

argmax (ri;z − ci) � Wi ⊆ argmax (ri;z − ci).

Suppose x�i is a maximiser of (rz − ci) � Wi and let xi ∈ Xi. If xi ∈ Wi, then
(ri;z − ci)(xi) ≤ (ri;z − ci)(x

�
i ). And if xi �∈ Wi, then xi > xi and, using the

decreasingness of p,

(ri;z − ci)(xi) = (r − ci)(xi) + (p(xi + z)− p(xi))xi ≤ −ci(0) + 0 = −ci(0)

= (ri;z − ci)(0) ≤ (ri;z − ci)(x
�
i ).

Now apply Theorem 1. ��

Theorem 4 together with the results of Subsection 4.3. lead to various existence
results (which we shall not formulate here explicitly).
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4.5. Decreasing Best Reply Correspondences

The following two theorems do not follow from Proposition 7. We cannot give a
reference for the following result which however is related to results in Vives (2001)
and Amir (2005).

Theorem 5. Fix a firm i. Let X
(ess)
ı̂ be the essential domain of Ri. Sufficient for

each single-valued selection of the correspondence

Ri : X
(ess)
ı̂ � Xi

to be decreasing is that p is differentiable and for every xi ∈ Xi the function Y → IR
defined by y �→ Dp(y)xi + p(y) is strictly decreasing. �

Proof. Fix i. By contradiction, assume that z1, z2 ∈ X
(ess)
ı̂ with z1 < z2 and xk ∈

Ri(zk) (k = 1, 2) with x1 < x2. Write ak = zk (k = 1, 2). Define the functions
w1, w2 : [x1, x2]→ IR by

wk(ξ) := p(ξ + ak)ξ.

As Dwk(ξ) = Dp(ξ + ak)ξ + p(ξ + ak), we have Dw1 > Dw2. So D(w1 − w2) > 0.
This implies that w1 −w2 is strictly increasing and therefore that (w1 −w2)(x2) >
(w1 − w2)(x1), i.e., that

p(x2 + a1)x2 − p(x2 + a2)x2 > p(x1 + a1)x1 − p(x1 + a2)x1. (16)

As xk ∈ Ri(zk), we have

p(x2 + a1)x2 − ci(x2) ≤ p(x1 + a1)x1 − ci(x1),

p(x1 + a2)x1 − ci(x1) ≤ p(x2 + a2)x2 − ci(x2).

This implies

p(x1 + a2)x1 − p(x2 + a2)x2 ≤ ci(x1)− ci(x2) ≤ p(x1 + a1)x1 − p(x2 + a1)x2.

Therefore p(x1 + a2)x1 − p(x2 + a2)x2 ≤ p(x1 + a1)x1 − p(x2 + a1)x2, which is a
contradiction with (16). ��

The following theorem (dealing with a very general setting) is—essentially—the
proof needed in Theorem 4 of Dubey et al. (2006), who refer the reader to a (not
so explicit) proof by Amir (1996). Here we provide a result without unnecessary
topological assumptions.

Theorem 6. Assume that, for all i ∈ N , Xi is a (possibly not convex and not
closed) non-empty subset of IR+ and that ci is strictly increasing. Let H be the
convex hull of Y and assume that p has a strictly decreasing log-concave extension
to H. Then, for all i ∈ N ,

x, z ∈ X, ξ ∈ Ri (xı̂) , ζ ∈ Ri (zı̂) and
∑

l∈N\{i}
xl <

∑
l∈N\{i}

zl imply ζ ≤ ξ. �
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Proof. Pick i ∈ N . By way of contradiction, assume that x, z ∈ X, ξ ∈ Ri (xı̂),
ζ ∈ Ri (zı̂),

∑
l∈N\{i} xl <

∑
l∈N\{i} zl and ξ < ζ. Henceforth put

xı̂ =
∑

l∈N\{i}
xl and zı̂ =

∑
l∈N\{i}

zl.

First suppose ξ = 0. Then ζ ∈ Ri (zı̂) implies that p
(
ξ + zı̂

)
ξ − ci (ξ) ≤

p
(
ζ + zı̂

)
ζ − ci (ζ). Clearly p

(
ξ + xı̂

)
ξ = p

(
ξ + zı̂

)
ξ; as p is strictly decreasing

and positive, we have p
(
ζ + zı̂

)
ζ < p

(
ζ + xı̂

)
ζ. Therefore p

(
ξ + xı̂

)
ξ − ci (ξ) <

p
(
ζ + xı̂

)
ζ − ci (ζ), in contradiction with ξ ∈ Ri (xı̂).

Henceforth suppose 0 < ξ. Let p̃ be a strictly decreasing log-concave extension
to H . By well-known properties of concave functions, the concavity of ln p̃ implies
ln p̃

(
ζ + xı̂

)
− ln p̃

(
ζ + zı̂

)
≥ ln p̃

(
ξ + xı̂

)
− ln p̃

(
ξ + zı̂

)
, and hence, by the proper-

ties of the logarithm,
p̃(ζ+xı̂)
p̃(ζ+zı̂)

≥ p̃(ξ+xı̂)
p̃(ξ+zı̂)

; clearly,

p
(
ζ + xı̂

)
p
(
ζ + zı̂

) ≥ p
(
ξ + xı̂

)
p
(
ξ + zı̂

) . (17)

As ζ ∈ Ri (zı̂), we must have

p
(
ζ + zı̂

)
ζ − ci (ζ) ≥ p

(
ξ + zı̂

)
ξ − ci (ξ) ; (18)

then the strict increasingness of ci and the positivity of p imply

p
(
ζ + zı̂

)
ζ > p

(
ξ + zı̂

)
ξ > 0. (19)

From (17), as p is strictly decreasing and positive, we have

p
(
ζ + xı̂

)
ζ

p
(
ζ + zı̂

)
ζ
− 1 ≥

p
(
ξ + xı̂

)
ξ

p
(
ξ + zı̂

)
ξ
− 1 > 0. (20)

From (19) and (20),

(
p(ζ+xı̂)ζ
p(ζ+zı̂)ζ

− 1

)
p
(
ζ + zı̂

)
ζ >

(
p(ξ+xı̂)ξ
p(ξ+zı̂)ξ

− 1

)
p
(
ξ + zı̂

)
ξ, hence

p
(
ζ + xı̂

)
ζ − p

(
ζ + zı̂

)
ζ > p

(
ξ + xı̂

)
ξ − p

(
ξ + zı̂

)
ξ. (21)

From (18) and (21),

p
(
ζ + xı̂

)
ζ − ci (ζ) > p

(
ξ + xı̂

)
ξ − ci (ξ) . (22)

As ξ ∈ Ri (xı̂), we have that p
(
ξ + xı̂

)
ξ − ci (ξ) ≥ p

(
ζ + xı̂

)
ζ − ci (ζ), which is in

contradiction with (22). ��

5. Five Powerful Equilibrium (Semi-)uniqueness Results

5.1. Result of Murphy-Sherali-Soyster

In Murphy et al. (1982) the following equilibrium semi-uniqueness result was
proved:
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Theorem 7. Suppose no firm has a capacity constraint, the aggregate revenue func-
tion is concave and cost functions are convex. Also suppose the price function is
continuously differentiable and strictly decreasing and cost functions are continu-
ously differentiable. Each of the following conditions is sufficient for the existence
of at most one Cournot equilibrium: (I) The aggregate revenue function is strictly
concave. (II) All cost functions are strictly convex.

Note that in this result the aggregate revenue function may be strictly decreasing
somewhere. The proof in Murphy et al. (1982) is complex and uses some not so
elementary results from mathematical programming. The difficulties are related
to the fact that for the oligopolies therein (in case of twice differentiable price
functions) the marginal revenue condition may not hold, and related with this (also
see Theorem 5(1)) that best reply correspondences may not have decreasing single-
valued selections. For example, consider the duopoly without capacity constraints
with cost functions c1 = c2 = x/100 and price function p(y) = 1/(y + 1). This
duopoly satisfies the conditions of Theorem 1(I). It can be easily verified, e.g., that
each best reply is 16 when the opponent produces 3 and it rises up to 21 when the
opponent produces 8.

Clearly, 1/(1 + y) is strictly decreasing and not log-concave, so the concavity
of r does not imply the log-concavity of p. Also, the log-concavity and the strict
decreasingness of p do not imply the concavity of r (consider, e.g. p(y) = e−y).

Proposition 14(3) guarantees that in Theorem 7 all conditional profit functions
are strictly concave. Therefore, we see with Theorem 4 that the following additional
assumption is sufficient for equilibrium existence: there exists x > 0 such that for
each firm i without capacity constraint p(x)x ≤ ci(x)− ci(0) for all x ≥ x.

The following result is a market satiation point variant of Theorem 7.

Theorem 8. Suppose no firm has a capacity constraint, the price function p has a
non-zero market satiation point v with p(y) = 0 for all y ≥ v and each cost function
i increasing and 0 is its unique minimiser. Suppose the aggregate revenue function
is concave on [0, v] and cost functions are convex. Also p is continuously differen-
tiable on [0, v] and strictly decreasing on [0, v] and cost functions are continuously
differentiable. Each of the following conditions is sufficient for the existence of a
unique Cournot equilibrium: (I) The aggregate revenue function is strictly concave
on [0, v]. (II) All cost functions are strictly convex. �

Proof. Denote the game by Γ . First we prove equilibrium semi-uniqueness. As r is
concave on [0, v], r(0) = r(v) = 0 and r > 0 on ]0, v [ it follows that D−r(v) < 0
and, as D−r(v) = D−p(v)v+p(v) = D−p(v), also that D−p(v) < 0. Let p̆ : Y → IR
be defined by

p̆(y) =

{
p(y) if y ∈ [0, v],

D−p(v)(y − v)− (y − v)2 if y ≥ v.

Then p̆ is continuously differentiable and strictly decreasing. The with p̆ associated
revenue function r̆ is concave, and strictly concave if r is strictly concave on [0, v].
Denote the game where p is replaced by p̆ by Γ̆ . Γ̆ satisfies the general conditions in

Theorem 7 and also I or II holds there. Therefore #E(Γ̆ ) ≤ 1. Let
˜̆
Γ be the game

obtained by replacing in Γ̆ the price function p̆ by max (p̆, 0). Then, by Theorem 2,

E(
˜̆
Γ ) = E(Γ̆ ). Let Γ̃ be the game obtained by replacing in Γ the price function p

by max (p, 0). Again by Theorem 2, E(Γ̃ ) = E(Γ ). But Γ̃ =
˜̆
Γ . Thus #E(Γ ) ≤ 1.
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Proposition 15 guarantees that all conditional profit functions are quasi-concave.
Therefore, we see with Theorem 4 that there exists an equilibrium. ��

5.2. Result of Gaudet-Salant

The result in Gaudet and Salant (1991) we are interested in is the following
equilibrium semi-uniqueness result.

Theorem 9. Suppose

a. no firm has a capacity constraint;
b. the price function p has a non-zero market satiation point v and p(y) = 0 for

all y ≥ v;
c. p is decreasing;
d. p is continuous and p � [0, v [ is twice continuously differentiable;
e. each cost function ci is twice continuously differentiable;
f. every ci is strictly increasing, even Dci(xi) > 0 (xi > 0);
g. for every i and y ∈ [0, v [ there exists α < 0 such that Dp(y)−D2ci ≤ α;
h. for each Cournot equilibrium e∑

k∈{j∈N | ej>0}
−D2p(e)ek +Dp(e)

Dp(e)−D2ck(ek)
< 1. (23)

Then there exists at most one Cournot equilibrium. �

First note that in Theorem 9 by Proposition 9(3) for each equilibrium e it holds
that e < v and that therefore Dp(e) in condition h makes sense. Also note that
with ti : IR+ × [0, v [ defined by ti(xi, y) = Dp(y)xi + p(y)−Dci(xi), (23) becomes:
for each equilibrium e ∑

k∈{j∈N | ej>0}
−D2ti(ei; e)

D1ti(ei; e)
< 1.

If in Theorem 9 in addition, for every y ∈ [0, v [, the (marginal revenue) condition
Dp(y) + yD2p(y) ≤ 0 holds, then (the remark after) Theorem 3 guarantees that
conditional profit functions are quasi-concave and Theorem 4 that the game has a
unique equilibrium.

The proof of Theorem 9 in Gaudet and Salant (1991) develops a seminal tech-
nique independently created by Selten (1970) and Szidarovszky (1970), also called
(in Vives (2001)) the technique of the cumulative best reply correspondence. The-
orem 9 is a variant of a result in Kolstad and Mathiesen (1987). It improves upon
this result (but does not imply it) by not excluding degenerate equilibria. The
proof given in Gaudet and Salant (1991) is much more elementary than the proof
in Kolstad and Mathiesen (1987) which deals with equilibria as the solution of a
complementarity problem to which differential topological fixed point index theory
is applied.

It is good to note that Theorem 9 does not imply the much more simple result
in Theorem 11 below. It would be interesting to have an improvement of Theorem 9
that implies results like Theorem 11. As the main objects in Theorem 9 are the
marginal reductions ti, a variant for aggregative games should be possible.
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There are various reasons why Theorem 9 does not imply Theorem 7: for ex-
ample, Theorem 7 allows never vanishing price functions as 1/(y + 1). This point
is quite straightforward. Note, however, that Theorem 9 does not imply Theorem 8
for the case where p is twice continuously differentiable on [0, v [ and cost functions
continuously twice differentiable. For instance, it can be checked that the duopoly
without capacity constraints, strictly convex cost functions

c1 (x1) = x1 +
1

100
(x1 − 2)4 − 16

100
, c2 (x2) = 1000

(
(x2 + 1)2 − 1

)
,

and price function (note that r � [0, v] is concave)

p (y) =

⎧⎪⎨⎪⎩
y2 − 6y + 13 if y ∈ [0, 2] ,
8
y + 1 if y ∈ [2, 3] ,

max
(
0, 8y + 1− (y−3)3

y

)
if y ∈ [3,+∞[ ,

satisfies the conditions of Theorem 8 and has a unique equilibrium, which is e =(2, 0).
However, this duopoly does not satisfy the conditions of Theorem 9 because

∑
k∈{j∈N | ej>0}

−D2p (e) ek +Dp (e)

Dp (e)−D2ck (ek)
= −

(
2 · 2− 2

−2− 0

)
= 1.

Besides, it is good to note, that in general the proof of Gaudet and Salant (1991)
cannot be adapted to oligopolies with cost functions that are not twice differentiable
because of its very formulation.

5.3. Result of Szidarovszky-Okuguchi

Oligopolies with price functions that are unbounded at 0 lead to special interest-
ing complications. In Szidarovszky and Okuguchi (1997) the following was proven:

Theorem 10. Suppose there are least two firms. Suppose no firm has a capacity
constraint, each cost function ci is twice differentiable with ci(0) = 0, Dci > 0,
D2ci > 0 and the price function is given by p(y) = d/y (y > 0) where d > 0.8 Then
there exists a unique equilibrium. �

In this equilibrium uniqueness result profit functions are not continuous. There-
fore standard existence results like that of Nikaido-Isoda cannot be used. Thus in
Theorem 10 also equilibrium existence is an issue. Theorem 10 was obtained by the
technique of the cumulative best reply correspondence. It would be interesting to
have a variant of Theorem 10 that allows for a larger class of price functions that
are unbounded at 0.

5.4. Result of Corchón

Proposition 4 implies the following result of Corchón (2001).

Theorem 11. If for each firm i the first and the weak second Fisher-Hahn condition
hold, then there exists at most one equilibrium. �
8 Remember that the value of p at 0 is not important. So the value of p(0) can be chosen
arbitrarily.



Equilibrium Uniqueness Results for Cournot Oligopolies Revisited 227

Predecessors of Theorem 11 can be found in Okuguchi (1976), Szidarovszky
and Yakowitz (1977) and Szidarovszky and Yakowitz (1982). Concerning the signs
of the inequalities in the Fisher-Hahn conditions, we note that Dp(y)−D2ci(xi) ≤
0 (i ∈ N, xi ∈ Xi, y ∈ Y ) and D2p(y)y + Dp(y) < 0 (y ∈ Y ) are not sufficient
for equilibrium semi-uniqueness. That this is true can be seen from the following
example: n = 2, X1 = X2 = IR+, p(y) = −6y and ci(xi) = −6x2i .

With the following theorem we provide a market satiation point variant of
Theorem 11.

Theorem 12. Suppose each cost function ci has 0 as unique minimiser, the price
function p has a non-zero market satiation point v with p(v) ≤ 0 and

a. p is twice differentiable on [0, v [;

b. every ci is twice differentiable on Xi ∩ [0, v [;

c. for every xi ∈ Xi ∩ [0, v [ and y ∈ [0, v [

Dp(y)−D2ci(xi) < 0, xiD
2p(y) +Dp(y) ≤ 0.

Then the game has at most one equilibrium.

If in addition p is continuous, ci is increasing, p(y) = 0 for all y ∈ Y with y ≥ v,
every ci is continuous at v if v ∈ Xi, then the game has a unique equilibrium. �

Proof. First we prove semi-uniqueness. Define ti : (Xi∩ [0, v [)× [0, v [ by ti(xi, y) =
Dp(y)xi+p(y)−Dci(xi). Condition c implies that ti is strictly decreasing in its first
variable and decreasing in its second. Proposition 9(3) guarantees that e ∈ [0, v [ for
all e ∈ E. This in turn implies that (ti;α) is a marginal reduction of fi on E with
domain (Xi ∩ [0, v [ )× [0, v [. Proposition 5 applies and guarantees that #E ≤ 1.

In order to prove existence under the additional assumptions, we first prove
that each conditional profit function is quasi-concave. By Proposition 13 the proof

is complete if we can show that for z ∈ Xı̂ with z < v the function f
(z)
i is quasi-

concave on I = {xi ∈ Xi | xi < v − z}. So fix such an z. Well this quasi-concavity
is guaranteed by Theorem 3

By Theorem 3, p is decreasing. Theorem 4 applies and guarantees that there
exists an equilibrium. ��

5.5. Result of Vives

In Vives (2001) the following uniqueness result is presented.

Suppose no firm has a capacity constraint, the price function p has a non-zero
market satiation point v and p(y) = 0 for all y ≥ 0. Also suppose p � [0, v [ and the
cost functions ci are twice continuously differentiable and p � [0, v [ is log-concave
with negative derivative. Finally suppose for every firm i that Dci > 0 and that
Dp(y)−D2ci(xi) < 0 for every xi ∈ Xi and y ∈ [0, v [. Then the game has a unique
equilibrium.

This result was derived by the technique of the cumulative best reply correspon-
dence. In our next result we provide an improvement of the above result of Vives
with a more elementary proof relying on Proposition 5.
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Theorem 13. Suppose each cost function is increasing and has 0 as unique min-
imiser, the price function p has a non-zero market satiation point v and p(y) = 0
for all y ∈ Y with y ≥ v. Also suppose p is continuous, p � [0, v [ is decreasing,
differentiable and log-concave and every ci � Xi ∩ [0, v [ is differentiable. Finally ,
suppose for all i, xi ∈ Xi ∩ [0, v [ and y ∈ ]0, v [

Dp(y)−D2ci(xi) < 0.

Then the game has a unique equilibrium. �

Proof. Semi-uniqueness: first note that by Proposition 9(3), e < v (e ∈ E). Next
note that (ti;α) with ti : {(xi,x) | x ∈ X with x < v} defined by ti(xi, y) =
Dp(y)xi+p(y)−Dci(xi) is a marginal reduction of fi. We now prove semi-uniqueness
by verifying the condition in Proposition 5.

So suppose a,b ∈ E with b ≥ a and bi > ai. We have to prove that

Dp(a)ai + p(a)−Dci(ai) > Dp(b)bi + p(b)−Dci(bi). (24)

Well, the function Xi ∩ [0, v [→ IR defined by

xi �→ Dp(y)xi −Dci(xi)

is strictly decreasing. This implies Dp(a)ai −Dci(ai) > Dp(a)bi −Dci(bi). So also

Dp(a)ai + p(a)−Dci(ai) > Dp(a)bi + p(a)−Dci(bi).

We now prove that
Dp(a)bi + p(a) ≥ Dp(b)bi + p(b). (25)

Having this, (24) follows. Well, if a = b, then (25) holds. Now suppose a < b. As
p � [0, v[ is log-concave and differentiable, Dp

p is decreasing on [0, v[ and therefore

the function Dp
p bi + 1 this is too. As b is an equilibrium and bi > 0, we have

Dp(b)bi + p(b) −Dci(bi) ≤ 0. From this fact and from the increasingness of ci we

obtain Dp(b)
p(b) bi + 1 ≥ Dci(bi)

p(b) ≥ 0. As p(a) ≥ p(b) > 0 we obtain

Dp(a)bi + p(a) = p(a)(
Dp(a)

p(a)
bi + 1) ≥ p(a)(

Dp(b)

p(b)
bi + 1)

≥ p(b)(
Dp(b)

p(b)
bi + 1) = Dp(b)bi + p(b).

Uniqueness: apply Proposition 17 and Theorem 4. ��

Of course, also a variant without market satiation point is possible.
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