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Abstract In this article, the problem of hierarchial matrix clusterization is
discussed. For this, the influence of individuals on the community was used.
The problem of dividing the community into groups of related participants
has been solved, an appropriate algorithm for finding the most influential
community agents has been proposed. Clustering was carried out using an
algorithm for reducing the adjacency matrix of a directed graph with nodes
representing members of a social network and edges representing relation-
ships between them. The applications to the problems of working groups,
advertising in social networks and complex technical systems are considered.
Keywords: hierarchial matrix clusterization, influence of agents, working
groups, advertising in social networks.

1. Introduction

The article presents an algorithm that solves the problem of recognizing the
hierarchical structures in big groups, and also discusses the possibilities of its ap-
plication. We offer an overview of the models in which the proposed algorithm
is applied. The first model solves the problem of dividing a large team into small
working groups. The internal connections of groups are represented by an adjacency
matrix. Next, the clustering algorithm is used for the task of dividing the work team
into effective small groups. The effectiveness of groups is calculated based on the
characteristic function of the group, which takes into account interpersonal rela-
tionships. In the second model, communities in social networks are analyzed and
the problem of advertising distribution within groups is discussed. Practical and
numerical experiments were carried out to verify the adequacy of the models.

Hierarchical organizations include all systems where there is control over lower
levels. Hierarchical data structures and hierarchical management structures are used
in databases, management theory, decision theory, organization theory, big data,
sociology and psychology, social network analysis. The hierarchical system makes
it possible to simplify the management of complex systems (Li and Mavris, 2012;
Mitrishkin et al., 2009; Chmúrny, D. and R. Chmúrny, 1996). In the theory of de-
cision making, Thomas L. Saati in the 1970s developed the analytic hierarchy pro-
cess (AHP), a structured technique for organizing and analyzing complex deci-
sions (Saaty, 1980). However, determining the existing hierarchical structures on a
set of objects is often not an easy task. The existing methods of hierarchical cluster-
ing solve the problem of taxonomy, combining objects into clusters according to a
certain set of features (Vijaya and Ritika, 2017). In (Parygin et al., 2017), the task
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of identifying the hierarchical structure is solved by experts, in several iterations.
We propose an algorithm that solves the problem of analyzing relationships between
objects.

2. Algorithm of Hierarchical Clusterization

Let there be a set N . The elements of a set are nodes of a complex system or
members of a large team. The connections between the elements of the set can be
one-sided, two-sided, or absent. Thus, the set N can be represented as a directed
graph, the edges of which indicate the influence of elements on each other. For a
group of G elements, we make an adjacency matrix A = [aij ]n×n, n = |G| which
reflects the influence of the elements of the set on each other. This matrix is used
to divide a large group into clusters according to the following algorithm.

Let A = [aij ]n×n be a nonnegative matrix. For n > 1 matrix A is reducible if
for some permutation matrix P

Ã = PAP⊤ =

[
B C
O D

]
where B and D are square matrices and the superscript “⊤” means “transpose”.
Otherwise, A is irreducible. Irreducibility can be tested using the associated directed
graph. A directed graph G is a set of n nodes and a set of directed edges joining
two nodes. A directed graph is strongly connected if any two distinct nodes are
joined by an oriented path. It is unilaterally connected if it contains a directed path
from j to k or a directed path from k to j for every pair of nodes j, k. A directed
graph is weakly connected if the undirected underlying graph obtained by replacing
all directed edges of the graph with undirected edges is a connected graph. The
directed graph G(A) associated with an n×n nonnegative matrix A (the adjacency
matrix) is a directed graph of n nodes, such that there exists an edge (j, k) leading
from node j to node k if and only if akj > 0. We have the following property: a
matrix A is irreducible iff G(A) is strongly connected (Guo, Li and Shuai, 2006). It
is known that a graph can be considered as a binary relation on the set of its nodes.
The transitive closure of a binary relation R on a set X is the smallest relation
on X that contains R and is transitive. By constructing a transitive closure of the
graph, we can answer the reachability questions. Let T be the matrix of a transitive
graph, and T = PTP⊤ is its canonical form (Savitskaya, 2008). Then there are the
following cases:

1) T is a matrix of units. Then the graph G(A) is strongly connected, and the
matrix A is irreducible;

2) T is a block upper triangular matrix without any zeros, symmetric with
respect to the main diagonal. Then the matrix A is weakly reducible, and the graph
G(A) is one-way connected;

3) T is a block upper triangular matrix with some zero elements symmetric with
respect to the main diagonal. Then the matrix A is weakly reducible, and the graph
G(A) is weakly connected and has at least a pair of nodes inaccessible to each other;

4) none of the above is true. This means that the graph G(A) is disconnected.
To find the transitive closure of graph G(A), we will use the Floyd–Warshall

algorithm. First, let the entry tij = 1 if the nodes i and j of the graph G(A) are
connected, and otherwise tij = 0. Then we construct extra edges by the following



180 Elena A. Lezhnina, Elizaveta A. Kalinina

formula: tij = tij ∨ (tik ∧ tkj) where ∨ and ∧ stand correspondingly for logical
operations of conjunction and disjunction.

Now we have the following problem. Given a (0, 1)-matrix T that is generally
non-symmetric (this is the matrix of the transitive closure of G(A)), find its canon-
ical form. We will rely on the algorithm presented in Savitskaya, 2008.

Algorithm 1

For a given nonnegative matrix A, we want to find out whether it is irreducible.
Step 1. Construct the matrix T of the transitive closure of the graph G(A)

associated with A.
Step 2. If T is the matrix of ones, then A is irreducible. Otherwise, go to issue 3.
Step 3. Compute the column S of row sums of T , then construct a permutation

matrix P such that PS = S̃ where S̃ is the column with entries sorted in descending
order. The column S̃ contains k groups of equal entries with nj (j = 1, 2, . . . , k)
entries in j-th group,

∑k
j=1 nj = n = dim(A). Hence, we have the matrix

T = PTP⊤ =


T1 ∗ . . . ∗
0 T2 . . . ∗
...

...
. . .

...
0 0 . . . Tk


where Tj is a square matrix of size nj .

Step 4. In the matrix T , find zeroes symmetric w.r.t. its main diagonal. If
T does not have such zeroes, then the matrix A is associated with unilaterally
connected graph G(A). Otherwise, the graph G(A) is weakly connected, and we get
the pairs of nodes that are not connected.

Step 5. Find the matrix Ã = PAP⊤.
As a result we have m clusters with ni (i = 1, 2, . . . ,m) elements in each. Let’s

denote clusters as C1, C2, . . . , Cm. The elements of the first cluster are connected
with the participants of the subsequent clusters - the second, third, etc. The elements
of the second cluster are related to the elements of the third, fourth, etc., but not the
first. And in general elements from , cluster Ck are connected with elements of clus-
ters Ck+1, Ck+2, . . . , Cm and do not affect elements of cluster Ck−1, Ck−2, . . . , C1.
The proposed algorithm can be used to identify hierarchical structures in complex
networks.

To illustrate the algorithm, consider a group of elements. The graph in Figure 1
shows a diagram of the mutual influence of the group elements on each other.
Despite the small size of the group, it is quite difficult to determine the hierarchy
of relations here.

Algorithm 1 gives the following partition:

{3, 4} → {1, 2, 11} → {5, 6, 7, 8, 10, 12} → {9}. (1)

There are programs and applications that graphically illustrate the connections
within groups. For small groups of objects, they can help analyze hierarchical re-
lationships within a group. For example, the service edotor.net for a group with
Figure 1 gives the tree presented in Figure 2.

The presented tree still allows you to select a group of elements {3, 4} as the
most influential. However, when increasing the group to 30 elements with internal
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Fig. 1. The diagram of the mutual influence of the group of 12 elements

Fig. 2. The tree of the mutual influence of the group in Figure 1

connections, represented in the graph in Figure 3, edotor.net gives the tree repre-
sented in Figure 4. In this group, the most influential element is {11}, but it is
difficult to do this by visual analysis of the tree.

Interesting applications of this algorithm appear depending on the semantic
load of the connections between the two nodes of the graph. For example, one can
interpret the relationship as the influence of one element on another and determine
the characteristic function of a coalition of two elements. The methods of forming
a characteristic function can be different, depending on the problem being solved.

3. Applications

3.1. Model 1. Effective working groups
To demonstrate the work of the presented algorithm, we used it to solve the

problem of splitting a large team into effective small working groups.
One of the most popular and effective approaches to organizing activities is

the organizing of temporary working groups. An important indicator is the ef-
fectiveness of such groups, which strongly depends on the internal structure of
the working group and the relationship between team members (Moreno, 1941;
Campion et al., 1993, Gutiérrez et al., 2016). In (Gubanov et al., 2011) is shown
that the most optimal management in the working group has a hierarchical struc-
ture. In order to quickly and conflict-free build such an “ideal” hierarchical structure,
it is necessary to carefully form the composition of working groups. We will interpret
the connection between two elements as the power of influence of one element on the
other in the sense of whether one element (a member of the group) can be a leader
for the other. We introduce the characteristic function f(i, j). This function is not
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Fig. 3. The diagram of the mutual influence of the group of 20 elements

Fig. 4. The tree of the mutual influence of the group in Figure 3
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symmetrical, and its asymmetry makes it possible to determine the “direction” of
influence. Such a function can also be interpreted as an assessment of the effective-
ness of the pair. You can determine the values of this function, for example, using
questionnaires compiled by psychologists. To calculate the efficiency of a group S of
several participants, we define the effectiveness function as follows:

F (S) =
∑

{i,j}⊂S,f(i,j)>f(j,i)

f(i, j).

The algorithm for forming working groups. Let there be a group of partic-
ipants G with n people. Let’s assume that a large group is already divided into
influence groups. To simplify the description, we will call them clusters. We have
m clusters, each with ni people. Let’s denote them C1, C2, . . . , Cm. The members
of the first cluster influence (can lead) the participants of the subsequent clusters
— of the second, third, etc. The members of the second cluster influence the mem-
bers of the third, fourth, etc., but not the first. And in general, cluster members
Cr affect cluster members Cr+1, Cr+2, . . . , Cm and do not affect cluster members
Cr−1, Cr−2, . . . , C1. It is necessary to make q collectives with maximum efficiency.
Let’s assume for simplicity that the teams should have the same number of partici-
pants and the number of clusters coincides with the required number of participants
in workgroups. In this case, we take one person from each cluster. The important
thing here is to maximize the effectiveness of the group. That is, we are looking for
such a combination of group members that gives the maximum of the effectiveness
function F (S). The task of forming such groups can be solved in various ways. If
the initial group G consists of a small number of participants, then you can stop at
a simple search. For large groups, we propose the following algorithm.

Algorithm 2

Input: Matrix Ã constructed by Algorithm 1
Result: Division into working groups
i = 1

Step 1. If i ≤ m, then go to Step 2 otherwise output group members
Step 2. From cluster C2, take the element j which gives maxj∈C2

f(i, j).
Step 3. From cluster C3, take the element k which gives maxj∈C2

F ({i, j, k}).
Step 4. Etc. next across all clusters.
i = i+ 1

Go to Step 1.
This algorithm is used when the number of participants in clusters is the same

and coincides with the required number of groups. In the case when the number
of participants in each cluster is different, it is necessary to reformulate clusters to
new m clusters as follows: 1) If the number elements of the cluster is less than m,
then we combine this cluster with the next one. 2) If there are more elements in
the first cluster of “leaders” than m, we leave in the cluster C1 those elements i
that give first m maximal values of index I1i =

∑
j∈C2

f(i, j). If there are more than

m elements in a cluster with a number greater than 1, then we leave in the cluster
those elements j that give first m maximal values I2j =

∑
i∈C1

f(j, i) and transfer

the rest participants to subsequent clusters. In cases where an unequal number of
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participants is required in groups, or a certain level of efficiency is required, the
algorithm changes accordingly.

Numerical experiments. Practical experiments were conducted to demonstrate
the proposed algorithms. Three groups of university students attending geometry
classes took part in the experiments. The first experiment involved 35 students from
two different groups. The internal connections in this combined group are heteroge-
neous. Some students have never communicated with each other, some have already
had experience working together on projects. As a result of applying the algorithms,
the students were divided into 7 groups with presumably the same efficiency. Then
the students were asked to solve five problems of increased complexity in groups.
The authors of the article observed the interactions of students within groups. Af-
ter working together, the students named the team leaders. In six groups, the true
leaders matched those predicted by the algorithm. In one group, the leader’s place
was taken by a member of the group from the second cluster. All groups demon-
strated uniform efficiency. In the second experiment, the third group of 20 students
was divided into five working groups of 4 students. All students agreed with the
proposed division into groups and the appointment of group leaders. To study the
effectiveness of the developed algorithms, 50 relationship matrices were generated
for teams of 200 people. A greedy algorithm, an algorithm that selects commands
in an arbitrary way, and a new algorithm combining algorithms 1 and 2 of this
article were applied. According to the values of the effectiveness of the groups, the
new algorithm showed the best results. In terms of speed, the new algorithm loses.
However, it should be noted that the operation of the new algorithm in these ex-
periments did not exceed several minutes when implemented on a medium-power
personal computer. Considering how often such tasks have to be solved, such a lag
is not critical.

Remark 1. The results of our study are published in (Lezhnina et al., 2023).

3.2. Model 2. Distribution of advertising on social networks

Computer social networks occupy an important place in people’s lives. Inter-
acting in them, some agents influence the opinions of others, thereby inducing the
latter to certain actions. In recent years, advertising has become the main com-
mercial activity on the Internet. Users of a social network are logically grouped
according to one or several criteria, such as: friendship, values, interests, ideas, etc.
Since these communications are strong enough, buying a certain product, the user
can influence his environment, which will lead to an increase sales probabilities. To
carry out advertising on a social network, a company, first of all, develops a strategy.
It can be a traditional or Internet-oriented platform, targeted or non-targeted. In
any case, its main goal is to attract a small group of users to purchase the product.
This group will launch a cascading influence reaction, which will lead to a possible
increase in the group of users who bought the product as a result. Determining the
final number of customers is an important task for an advertising company, because
it can develop an effective strategy in order to increase profits. At the same time,
the spread of influence depends on many factors that are difficult to formalize. Due
to the high level of social influence in the networks, even a small group of buyers can
attract the attention of a large number of people to this product. A market based on
the principle of “word of mouth” can be much more effective than traditional mar-
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keting schemes, since users independently carry out advertising, influencing each
other.

Model. Agents within the network influence each other. The degrees of influence
of the agents will be specified by an matrix A = [aij ]n×n with entries aij , where
aij > 0 will denote the strength of the influence of the i-th agent on the j-th
agent (or the degree of trust of the j-th agent to the i-th agent). The magnitude of
the influence of agents depends on many factors. These factors can be friendships,
common interests, etc. In drawing up the model, we will use factors, by which we can
determine the degree of influence of agents. We introduce the factors that determine
the influence of some agents on others: xℓij ∈ [0, 1], ℓ = 1, 2, . . . , 8.

Here x1ij is the number of messages between the i-th and j-th agents: the more
people communicate with each other, the more they influence each other; x2ij is the
number of dialogs of the i-th and j-th agents, shows how often people communi-
cate with each other; x3ij stands for the number of common groups of the i-th and
j-th agents. A large number of common groups speaks of the common interests of
agents; x4ij is the number of common audio recordings of the i-th and j-th agents.
As well as general groups, it speaks of common interests and individually does not
play a big role, but, in combination with the first two factors, in some cases has
a rather large weight; x5ij are mutual friends of the i-th and j-th agents; x6ij —
status of the i-th agent for the j-th (best friends, family ties) (if indicated). This
factor can directly indicate the degree of trust between agents; x7ij — the number
of subscribers of the agent. With a large number of subscriptions, it is likely that
the agent is a well-known person and, accordingly, has an increased impact on his
subscribers; x8ij ∈ {0, 1} — use of innovation by the i-th agent (1 — used, 0 — not
used). Usually, those who listen to the opinion of a person who already uses the
product more than to a person who has only heard about this innovation, therefore
this factor is of great importance. Each factor has its own weight in determining
the degree of influence between agents. Moreover, this weight in different cases can
be determined in different ways. Therefore, to correctly determine the degree of
influence between agents, it is necessary to introduce a vector of coefficients that
would help in the correct proportions to establish the dependence of the degrees
of influence between agents on the above factors. We introduce this vector α of
coefficients with components αℓ ∈ [0; 1]; ℓ = 1, 2, . . . , 8. Each component of the coef-
ficient vector corresponds to the components of the factor vector that determine the
effect. Moreover, the components of the coefficient vector are subjective quantities
that vary depending on innovations. So, for example, with an innovation related to
a certain style of music, the coefficient α4 corresponding to the factor of general
audio recordings will be higher than the same coefficient with the innovation re-
lated to technological innovations. Now that the main factors and their weights are
determined in determining the degree of influence, we can determine the effects of
agents on each other. So, the degree of influence of the i-th agent on the j-th will be
directly proportional to the components of the vector of factors and the components
of the vector of coefficients corresponding to these factors, and is calculated by the
formula: Thus, since the i-th agent is affected by n other agents (their influence may
be 0), the total effect of all agents that are directly related to agent j on this agent
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j will be calculated by the formula:

aij =

8∑
ℓ=1

αℓx
ℓ
ij .

We have considered a connected social group via social media website vk.com.
Firstly, the 127 friends of one person were analyzed. The connections between them
were presented as a graph and the adjacency matrix A of this graph was created.
Following Algorithm 1, the matrix of the transitive closure T was calculated, using
appropriate modification of the Floyd–Warshall algorithm. Since the matrix T con-
tains zeros, matrix A is reducible, and this is confirmed to be true by the Step 5
of the Algorithm 2. The vector S̃ is the following:

S̃ = [105, . . . , 105, 2, 2, 0, . . . , 0]
⊤
,

where the cardinalities of each group are 105 for n1 = 105, 2 for n2 = 2 and 20 for
n3 = 0.

As a next step, the permutation matrix P was found, and the matrix T was
calculated. We found that it has 2540 zeroes, symmetrical w.r.t. main diagonal,
which means, that the graph has to be weakly connected. Since listing all of the not
connected pairs of vertices would be problematic due to the quantity, we present
here all such pairs for one node. We have that the node 1 is disconnected with nodes
5, 9, 10, 15, 17, 24, 35, 42, 44, 48, 68, 73, 76, 79, 86, 104, 114, 119, 120, 123, 124, 125.
Now we can offer product samples to some group of users who have a lot of influence
within the group, since the best way is to identify a group of the most influential
agents in order to provide them with discounts, benefits or special promotions.
That will contribute to the greatest distribution of goods, services or innovations
throughout the social network. To determine the proportion of customers, we use
the q-influence model presented in Zhao et al., 2009. According to the q-influence
model, node i will not acquire the goods if and only if it does not acquire it at
will and none of its neighbors who bought the goods have any influence on it. The
proportion of customers is determined from the equation

1− E[Y ] = (1− µ)

∞∑
k=0

P1(k + 1)(1− qE[Y ])k,

1− E[X] = (1− µ)

∞∑
k=1

P0(k)(1− qE[Y ])k.

Here X is a random variable that shows whether the node r bought the product as
a result Y is a random variable that shows whether the non-root node i will buy
the product only under the influence of advertising and its followers. X and Y are
distributed according to Bernoulli distribution. φi is a random variable having a
Bernoulli distribution, since takes the value 1 if the user decided to purchase the
product as he wanted (for example, without the influence of other nodes). (P (φi =
1) = p+), and 0 if the node acquires the goods under the influence of advertising
(P (φi = 0) = p−). As an advertisement, the company sends free samples ρ < 1
share of users.

Then the mathematical expectation φi has the form:

µ = ρp+(1− ρ)p−,
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P1(k) is the probability that the child node has degree k, P0(k) is the root node
has degree k, q is a threshold showing how many neighbors of a node a product
must buy in order for a node to buy it. Next, we can calculate the proportion of
users to whom the company will send free samples to reach the customer audience
N = E(X).

Now it is necessary to determine to whom exactly it is necessary to send samples,
that is, to identify the most influential agents. Algorithms exist for identifying such
agents, for example, in Gubanov et al., 2011.

Remark 2. The results of our study are published in Lezhnina et al., 2022.

3.3. Complex technical systems

As a rule, complex technical systems are managed hierarchically. If it is necessary
to “recognize” the structure of such a system, then the matrix clustering method
can also be used. At the experimental stand, the nodes of the system are tested: the
nodes are affected in turn, after which the connections are indicated: if changes occur
in some nodes when one of the nodes is affected, then their connections are denoted
1, the connection with nodes that do not respond to the impact on the tested node
is denoted 0. The resulting matrix is clustered, identifying the main control nodes.
A similar approach can be applied to the diagnosis of complex biological systems.
In group decision, the task of choosing the best alternative (candidate) out of many
is solved. Condorcet method Moulin, 1989 uses a pairwise comparison of all alterna-
tives to solve such problems. In the case of a large number of alternatives, when the
option “indifferent” is allowed, this task becomes time-consuming. However, if we
interpret the relationship between the elements as “better” or “worse”, we can build
an adjacency matrix based on the principle: if i better j, then aij = 1, otherwise
aij = 0. As a result, we will get one or more elements that are better than all the
others. Comparing the multiple elements is not a difficult problem.

4. Conclusion

The paper presents an overview of mathematical models in which the algorithm
of hierarchical clustering of sparse matrices is used and discusses the possibilities of
its application.

The work of algorithms for the problem of forming effective small working groups
and the problem of distributing advertising in social networks is demonstrated. The
efficiency of the proposed algorithms was evaluated.
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