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Abstract We present a two-stage optimization model to solve a location-
allocation problem: finding the optimal location of new facilitites and the
optimal partition of the consumers. The social planner minimizes the social
costs, i.e. the fixed costs plus the waiting time costs, taking into account
that the citizens are partitioned in the region according to minimizing the
capacity costs plus the distribution costs in the service regions. Theoretical
and computational aspects of the location-allocation problem are discussed
for the linear city and illustrated with examples.
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1. Introduction

Facility location problems deal with the question to locate some facilities in
a continuous or discrete space by minimizing the total cost of opening sites and
transporting goods or services to costumers (see, for example, Drezner, 1995, Love
et al., 1988, Nickel and Puerto, 2005).

Several papers study single or multiple facility location, competitive location or
dynamic location, and so on. In a Game Theory context, competitive models con-
sider facilities competing for costumers and their objective is to maximize the market
share they capture (allocation problem). The first competitive location model is in
Hotelling, 1929 where the location of two duopolists whose decision variables are
locations and prices is chosen. References for spatial competition can be found in
Aumann’s work (Aumann and Hart, 1992).

In a previous paper (Crippa et al., 2009), given the location of the facilitites,
the authors considered the problem of splitting the costumers in such a way to
minimize the waiting time effects and used optimal transportation tools. In another
paper (Murat et al., 2009) the problem of finding the best partition of the costumers
is considered together with the problem of finding the best location of the facilities
and an algorithm procedure is provided. The authors minimize a total cost function
in order to find at the same time the optimal costumer partition and the optimal
facility location.

In this paper we present a bilevel approach to the problem: we look for the
optimal location of the facilitites and also for the optimal partition of the costumers
of the given market region. We extend the model studied in (Murat et al., 2009) by
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considering the waiting time inside the cost function in the spirit of the model
studied in (Crippa et al., 2009).

More precisely, consider a distribution of citizens in an urban area in which a
given number of services must be located. Citizens are partitioned in service regions
such that each facility serves the costumer demand in one of the service regions. For
a fixed location of all the services, every citizen chooses the service minimizing the
total cost, i.e. the capacity acquisition cost plus the distribution cost (depending on
the travel distance). In our model there is a fixed cost of each service depending on its
location and an additional cost due to time spent in the queue of a service, depending
on the amount of people waiting at the service, but also on the characteristics of the
service (for example, its dimension). The objective is to find the optimal location
of the services in the urban area and the related costumers partition. We present a
two-stage optimization model to solve this location-allocation problem. The social
planner minimizes the social costs, i.e. the fixed costs plus the waiting time costs,
taking into account that the citizens are partitioned in the region according to
minimizing the capacity costs plus the distribution costs in the service regions.

In Section 2 the linear and the planar models are presented; in Section 3 com-
putational aspects and some examples are discussed; Section 4 contains concluding
remarks.

2. The bilevel problem

Let Ω be a compact subset in R2. Each point p = (x, y) ∈ Ω has demand
density D(p) such that

∫
Ω D(p)dp = 1 with dp = dxdy. The problem is to locate

n new facilities p1, ..., pn, pi = (xi, yi) ∈ Ω for any i ∈ N = {1, 2, ..., n}. Facility pi
serves the consumers demand in the region Ai ⊆ Ω: we have a partition of the set
Ω, i.e. ∪ni=1Ai = Ω and Ai ∩ Aj �= ∅ for any i �= j.

For any i ∈ N , we denote ωi =
∫
Ai
D(p)dp the total demand within each service

region Ai. Now we define for any i ∈ N :

1. Fi(pi) annualized fixed cost of facility i;
2. ai(pi) annualized variable capacity acquisition cost per unit demand;
3. Ci(pi) = c

∫
Ai
d2(pi, p)D(p)dp is the distribution cost in service region Ai, being

d(·, ·) the Euclidean distance in R2 and c the distribution cost per distance unit
that we suppose to be constant in Ω;

4. hi(ωi) total cost, in term of time spent to be served, of consumers of region Ai

using the service pi.

We denote by An the set of all partitions in n sub-regions of the region Ω,
A = (A1, ..., An) ∈ An and p = (p1, ..., pn) ∈ Ωn.

Definition 1. Any tuple < Ω; p1, ..., pn; l, Z > is called a facility location situation,
where Ω = [0, 1], pi ∈ Ω for any i ∈ N ; l, Z : Ωn ×An →R defined by

l(p,A) =

n∑
i=1

[Fi(pi) + ωihi(ωi)] , (1)

Z(p,A) =

n∑
i=1

[
ωiai(pi) + c

∫
Ai

d2(pi, p)D(p)dp

]
(2)
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where ωi is the total demand within service region Ai for any i = 1, ..., n, namely

ωi =

∫
Ai

D(p)dp. (3)

Given a facility location situation, the goal is to find an optimal location for
the facilities p1, ..., pn and also an optimal partition A1, ..., An of the consumers in
the market region Ω by minimizing the costs. We distinguish the total cost in a
geographical part that is given by Equation 2 and in a social part that is given by
Equation 1.

To this aim we propose a bilevel approach. Given the location of the new facil-
ities, we search the optimal partition of the costumers. Then, we optimize another
criterium to look for the optimal location of the facilties according to a bilevel
formulation.

For a given location p ∈ Ωn of the n facilities, the consumers have to decide
which is the best facility to use: they minimize the costs given by the distributions
costs, that depend on the distance from the chosen facility, plus the acquisition costs,
that is the capacity acquisition cost of the facility supposed to be linear with respect
to the density in the region where the chosen facility is. This is the geographical
part given by Equation 2.

For any p ∈ Ωn, the optimal partition of the consumers in the set An will be a
solution to the following lower level problem LL(p):

min
A∈An

Z(p,A). (4)

Suppose that the problem LL(p) has a unique solution for any p ∈ Ωn, let us
call it (A1(p), ..., An(p)) = A(p). The function mapping to any p ∈ Ωn the partition
A(p) represents for a given location of the new facilities, the best partition of the
consumers that minimize their costs coming from the mutual distribution of the
facilities and the costumers.

At this point the social planner proposes the best location of the n facilities in
such a way that additional costs - that are social costs - as the fixed cost of each
facility plus a cost due to the waiting time cost must be the lowest possible. These
costs are given by Equation 1.

More precisely, the optimal location of the facilitites p̄ ∈ Ωn solves the following
upper level problem UL:

min
p∈Ωn

l(p,A(p)), (5)

where for a given location p the optimal partition A(p) of Ω is given by the
unique solution of the problem LL(p).

The problem UL is known as a bilevel problem, since it is a constrained opti-
mization problem with the constraint that A(p) is the solution of another optimiza-
tion problem LL(p) for any p ∈ Ωn.

Definition 2. Any p̄ that solves the problem UL is an optimal solution to the
bilevel problem.

In this case the optimal pair is (p̄, A(p̄)) where p̄ solves the problem UL and
A(p) is the unique solution of the problem LL(p) for each p ∈ Ωn.
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Remark 1. In a Game Theory context, the solution of the upper level problem is
called Stackelberg strategy and the pair solution of the bilevel problem as given in
Definition 2 is called Stackelberg equilibrium (Başar and Olsder, 1995).

2.1. The linear city

We consider a linear region on the real line, i.e. a compact real interval Ω.
Without loss of generality we normalize it and assume Ω = [0, 1]. This assumption
corresponds to concrete situations as the location of a gasoline station along a
highway or the location of a railway station to improve the service to the inhabitants
of the region.

Let D(p) be the demand density s.t.
∫ 1

0
D(p)dp = 1 where dp = dx. We want

to locate n facilities pi = xi ∈ [0, 1] for any i = 1, ..., n with p1 < p2 < ... < pn.
A partition A = (A1, ..., An) of the region Ω = [0, 1] is given by a real vector
λ = (λ1, ..., λn−1) such that λi ∈ [pi, pi+1], i = 1, .., n− 1. The partition in this case
is: A1 = [0, λ1[,..., An =]λn−1, 1]. We denote λ0 = 0 and λn = 1.

A linear facility location situation is a tuple < Ω; p1, ..., pn; l1, Z1 >, where
Ω = [0, 1], pi ∈ Ω for any i ∈ N ; l1, Z1 : Ωn ×An →R defined by

l1(p, λ) =
n−1∑
i=0

[Fi+1(pi+1) + ωi+1hi+1(ωi+1)] (6)

Z1(p, λ) =

n−1∑
i=0

[
ωi+1ai+1(pi+1) + c

∫ λi+1

λi

d2(pi+1, p)D(p)dp

]
(7)

where ωi is the total demand within service region Ai = [λi−1, λi] for any
i = 1, ..., n, namely

ωi =

∫ λi

λi−1

D(p)dp. (8)

Definition 3. Any p̄ that solves the problem

min
p∈Ωn

l1(p, λ(p)) (9)

is an optimal solution to the bilevel problem, where for each p ∈ Ωn, λ(p) is the
unique solution of the problem LL(p)

min
λ∈[p1,p2]×....×[pn−1,pn]

Z1(p, λ) (10)

In this case the optimal pair is (p̄, λ(p̄)) where p̄ solves the problem UL and
λ(p) is the unique solution of the problem LL(p) for each p ∈ Ωn.

We assume in the following that:

1. the demand density D is a continuous function on Ω s.t.
∫ 1

0
D(p)dp = 1;

2. hi, Fi, ai are continous functions on Ω for any i = 1, ..., n;
3. for any p ∈ Ωn, the problem LL(p) has a unique solution λ(p) ∈ Ωn−1.

Proposition 1. Under assumptions 1-3, the problem UL has at least a solution
p̄ ∈ Ωn.
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Proof (of proposition). The function Z1(p, λ) is separable in λ since for any i =
1, ..., n

ωi =

∫ pi

λi−1

D(p)dp+

∫ λi

pi

D(p)dp (11)

and by assumptions has a unique minimum point λi(p) ∈ [pi, pi+1], i = 1, .., n−1
for any p ∈ Ωn. The map p ∈ Ωn → λ(p) ∈ Ωn−1 turns out to be a continuous
function by using the Berge’s theorem (Border, 1989).

The function l1(p, λ(p)) is continuous and the problem UL admits at least a
solution p̄ ∈ Ωn. ��

3. Numerical results

In this Section we present some computational results to solve the linear location-
allocation problem. Our approach is based on Genetic Algorithms (GAs), a heuris-
tic search technique modeled on the principle of evolution with natural selection.
Namely, the main idea is the reproduction of the best elements with possible
crossover and mutation. The detailed algorithm for a Stackelberg problem can be
found in (D’Amato et al., 2012), and also in (D’Amato et al., 2011) in the case of
non unique solution to the lower level problem.

The initial population is provided with a random seeding in the leader’s strat-
egy space. For each individual (or chromosome) of the leader population, a random
population for the follower player is generated and a best reply search for the fol-
lower player is made. The follower player best reply passes to the leader: the leader
population is sorted under objective function criterium and a mating pool is gener-
ated. Now a second step begins and a common crossover and mutation operation on
the leader population is performed. Again the follower’s best reply should be com-
puted, in the same way described above. This is the kernel procedure of the genetic
algorithm that is repeated until a terminal period is reached or an exit criterion is
met.

For the algorithm validation we consider the parameters as specified in Table 1.

Table1: GA details

Parameter Value

Population size (-) 50
Crossover fraction (-) 0.90
Mutation fraction (-) 0.10
Parent sorting Tournament between couple
Mating Pool (%) 50
Elitism no
Crossover mode Simulated Binary Crossover (SBX)
Mutation mode Polynomial

3.1. Test cases

Example 1. (Uniform density) We want to locate two new facilities in the linear
market region [0, 1] ⊂ R where the consumers are uniformly distributed (D(p) = 1
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for any p ∈ [0, 1]). The generic partition is A1 = [0, λ[, A2 =]λ, 1] for λ ∈ [0, 1].
Then the density of each part is ω1 = λ and ω2 = (1−λ). In this example the fixed
costs, the acquisition costs, the distribution costs and the waiting time costs are
respectively for ε > 0:

F1(p1) = p21, F2(p2) = p2/4, (12)

a1(p1) = p21, a2(p2) = p22, (13)

C1(p1) = 3

∫ λ

0

(p1 − p)2dp, C2(p2) = 3

∫ 1

λ

(p2 − p)2dp, (14)

h1(t) = (1 + ε)t, h2(t) = t. (15)

p1 p2
x = 0 x = 1

λ

Figure1: Location of two facilities in the linear city.

Let us consider the facility location situation < [0, 1]; p1, p2; l1, Z1 > where

l1(p1, p2, λ) = p21 + p2/4 + (1 + ε)λ2 + (1 − λ)2, (16)

Z1(p1, p2, λ) = p21λ+ p22(1 − λ) + (λ− p1)
3 + p31 + (1 − p2)

3 − (λ− p2)
3. (17)

Our problem is to find p1, p2 ∈ [0, 1] with 0 ≤ p1 < p2 ≤ 1 that solves

min
λ∈[p1,p2]

Z1(p1, p2, λ). (18)

The unique solution is

λ(p1, p2) =

{
2(p1+p2)

3 if 2p1 ≤ p2,

p2 if 2p1 > p2.
(19)

The social planner problem is

min
p1,p2∈[p1,p2]

l(p1, p2, λ(p1, p2)). (20)

It is possible to compute that for ε < 5
4 the solution is

(p̄1, p̄2) =

(
1

8
,
31− 4ε

32(2 + ε)

)
, (21)

and then
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λ̄ =
13

16(2 + ε)
. (22)

For ε = 1 the analytical solution is:

(p̄1, p̄2) = (
1

8
,
27

96
) = (0.125, 0.2812), λ̄ =

13

48
= 0.2708.

Remark 2. In the perfect symmetric situation where F1 = F2 = 0 and ε = 0, the
facility location situation is < [0, 1]; p1, p2; l1, Z1 > where

l1(p1, p2, λ) = λ2 + (1− λ)2, (23)

Z1(p1, p2, λ) = p21λ+ p22(1− λ) + (λ − p1)
3 + p31 + (1− p2)

3 − (λ − p2)
3. (24)

In this case λ̄ = 1
2 gives the optimal partition. Optimal location is any pair in

the set

{(p1, 3/4− p1), p1 ∈ [0,
1

4
]} ∪ {(p1, 1/2), p1 ∈]1/4, 1/2[}. (25)

Test cases.
Uniform density. In the case of uniform density, i.e. D(x) = 1 for any x ∈ [0, 1],
with ε = 1, the numerical computation gives:

(p̄1, p̄2) = (0.1238, 0.2811), λ̄ = 0.2694.

Figure2: History of implementation in the linear city with uniform density.

The convergence histories of the linear city with uniform density are reported
in Figure 2.

Beta-shaped density. In the case of beta-shaped density as in Figure 3, i.e.
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D(x) =
xα−1(1− x)β−1∫ 1

0 u
α−1(1− u)β−1du

,

for any x ∈ [0, 1], α = 4, β = 4, with ε = 1, we have the following results:

(p̄1, p̄2) = (0.1200, 0.4009), λ̄ = 0.3472.

The convergence histories of the linear city with beta-shaped density are re-
ported in Figure 4.

Figure3: A beta-shaped density function.

Figure4: History of implementation in the linear city with beta-shaped density.

Two beta-shaped density. In the case of two beta distributions summed on a partly
shared interval as in Figure 5,
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D(x) =
xα−1
1 (1− x1)

β−1 + xα−1
2 (1− x2)

β−1∫ k
0
uα−1
1 (1 − u1)β−1du1 +

∫ 1

1−k u
α−1
2 (1− u2)β−1du2

where x1 ∈ [0, k] and x2 ∈ [1 − k, 1], with k = 0.65, α = 4, β = 4, with ε = 1, we
have the following results:

(p̄1, p̄2) = (0.1251, 0.3509), λ̄ = 0.3176

The convergence histories of the linear city with two beta-shaped density are
reported in Figure 6.

Figure5: Two beta distribution summed density functions.

A summary of the analyzed test cases is reported in Table 2.

Table2: Test cases

Distribution p̄1 p̄2 λ̄

Uniform 0.1238 0.2811 0.2694
Beta 0.1200 0.4009 0.3472
Two-beta 0.1251 0.3509 0.3176

4. Concluding Remark

The problem studied in this paper has a lot of computational difficulties. An
algorithm based on sections of the elements A1, ..., An of the partitions is given in
(Murat et al., 2009) for a similar problem formulated as an optimization problem
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Figure6: History of implementation in the linear city with two beta-shaped density.

not by considering several hierarchical levels and without the waiting time costs.
The algorithm in (Murat et al., 2009) uses Voronoi diagrams. In this paper we ap-
poached the linear facility problem by using a genetic algorithm. The location in a
planar region together with computational aspects will be studied in a future re-
search. Also the circular region case (see, for example, Mazalov and Sakaguchi, 2003)
would be interesting to investigate.

For a given facility location situation < Ω; p1, ..., pn; l, Z >, it may happen also
that the lower level problem LL(p) has more that one solution. Let us call A(p) the
set of the solutions to LL(p) for any p. In this case we can define the upper level
problem in a different way. In a pessimistic framework, the social planner could use
the so called security strategy in order to prevent the worst that can happen when
the consumers organize themselveves in any of the partitions indicated in the set
A(p).

More precisely, the optimal location of the facilitites p̄ ∈ Ωn solves the following
upper level problem ULs:

min
p∈Ωn

max
A∈A(p)

l(p,A). (26)

Definition 4. Any p̄ that solves the problem ULs is called a security strategy to
the problem ULs.

The existence and properties of the security strategies will be investigated in
the future.
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