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Abstract We investigate a noncooperative differential game in which two
firms compete in extracting a unique nonrenewable resource over time. The
respective times of extraction are random and after the first firm finishes
extraction, the remaining one continues and gets the final reward for win-
ning. An example is introduced where the optimal feedback strategy, i.e. the
optimal extraction rate, is calculated in a closed form.
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1. Introduction

In the last decades many economic models have been investigated with the pre-
cious help of the tools provided by differential game theory (see Dockner et al. (2000),
Jørgensen and Zaccour (2007)). Both deterministic and stochastic approaches have
been widely developed in a wide range of different frameworks.

The present paper aims to analyze a class of models of differential games where
2 firms are engaged in a competition of extraction of a nonrenewable resource. In
particular, we consider a framework where the terminal instants of extraction are
random variables having different cumulative distribution functions. The first firm
which stops extracting is the loser, whereas the remaining firm gets a terminal
reward and keeps extracting on its own until the exhaustion of the resource.

We are going to fully characterize the structure of the game and to determine
its dynamic equilibrium structure. Finally, we will feature an example which is a
modification of the standard model of extraction (see Rubio (2006)), with linear
state dynamics and a logarithmic payoff structure. It will be completely discussed
and its optimal feedback solution will be exhibited.

The rest of this paper is organized as follows: in Section 2, the basic charac-
teristics of the class of games under consideration are introduced. In Section 3, the
Hamilton-Jacobi-Bellman equations for the feedback information structure are de-
termined, whereas in Section 4 an example is featured and its solution is computed
in a closed form. Section 5 concludes the paper and outlines some possible future
developments.
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2. The Problem Statement

Consider 2 firms involved in a noncooperative differential game of resource ex-
traction with the following setup:

– given the different characteristics of the 2 firms, each one of them has a distinct
terminal time of extraction of the same resource;

– as soon as the first one finishes, it quits the game and there remains just one
firm left, which keeps extracting until its terminal time;

– the payoff of the game is composed of two components: the integral payoff
achieved while playing, and the final reward, assigned to the player which stays
alive after the retirement of its rival;

– the control variables of the players are their respective extraction rates u1(t),
u2(t) ∈ R+;

– the unique state variable of the game is the stock of resource x(t) ∈ R+, whose
evolutionary dynamics is expressed by the following differential equation:{

ẋ(t) = φ(t, x, u1, u2)

x(0) = x0 > 0
, (1)

where the transition function φ(·) ∈ C2(R4
+) is negatively affected by the firms’

extraction efforts:

∂φ

∂ui
≤ 0, for i = 1, 2;

– we denote by hi(t, x, u1, u2) ∈ C2(R4
+) the utility function of the i-th firm.

No intertemporal discount factor appears in the functional objectives of the
problem, because the discount structure is built on the characteristics of the
random terminal instants.

Let T1 and T2 be the random variables denoting the respective terminal instants of
the extracting firms, and assume that their c.d.f. F1(·), F2(·) and their p.d.f. f1(·)
and f2(·) are known.

We impose an asymmetry condition concerning the longevity of players: calling
ωi > 0 the upper bound of Ti, it is not restrictive to posit ω1 > ω2. Hence, the two
p.d.f. naturally differ:

F1(t) < 1 ∀ t < ω1, F1(ω1) = 1;

F2(t) < 1 ∀ t < ω2, F2(t) = 1 ∀ t ∈ [ω2, ω1].

At time T = min{T1, T2}, if player i is the only one remaining in the extraction
game, she receives the terminal payoff Φi(x(T )), subsequently, since she keeps play-
ing on her own, the game collapses to an optimal control problem.

If we indicate with x∗, u∗1, u
∗
2 the optimal state and strategies, and with h∗i (t) =

hi(t, x
∗, u∗1, u

∗
2), the expected payoff for the i-th player in the problem (1) will be

written as follows:

Ki(0, x0, u
∗
1, u

∗
2) = E

[∫ Ti

0

h∗i (t)dtI[Ti<Tj ] +

∫ Tj

0

h∗i (t)dtI[Ti>Tj ] + Φi(x
∗(T ))I[Ti>Tj ]

]
,

(2)
where I[·] is the indicator function and E[·] is the mathematical expectation.
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3. Hamilton-Jacobi-Bellman equations

From now on, we will write ω = ω1 in order to simplify notation. If (2) exists
and is finite, then it can be decomposed in the following sum of the expected payoff
plus the expected reward:

E

[∫ Ti

0

h∗i (t)dtI[Ti<Tj ] +

∫ Tj

0

h∗i (t)dtI[Ti>Tj ] + Φi(x
∗(T ))I[Ti>Tj ]

]
=

= E

[∫ Ti

0

h∗i (t)dtI[Ti<Tj ] +

∫ Tj

0

h∗i (t)dtI[Ti>Tj ]

]
+ E

[
Φi(x

∗(T ))I[Ti>Tj ]

]
. (3)

From now on, we will write the terms of (3) as follows:⎧⎪⎨⎪⎩
Ψ i1(T1, T2) :=

∫ Ti

0 h∗i (t)dtI[Ti<Tj ] +
∫ Tj

0 h∗i (t)dtI[Ti>Tj ]

Ψ i2(T1, T2) := Φi(x
∗(T ))I[Ti>Tj ]

.

We are going to separately calculate the two related expected values in the next
two Propositions.

Proposition 1.

E
[
Ψ i1(T1, T2)

]
= E

[∫ min{T1,T2}

0

h∗i (t)dt

]
.

Proof. Since T1 and T2 are independent random variables, the p.d.f. of the random
vector (T1, T2) must be the product of their p.d.f’s, i.e. an expression of the kind
f1(θ)f2(τ). We can note that:

E
[
Ψ i1(T1, T2)

]
=

∫ ω

0

∫ ω

0

∫ θ

0

h∗i (t)dtI[θ<τ ]f2(τ)dτf1(θ)dθ+

+

∫ ω

0

∫ ω

0

∫ τ

0

h∗i (t)dtI[θ>τ ]f1(θ)dθf2(τ)dτ. (4)

From now on, call Hi(θ) :=
∫ θ
0 h∗i (t)dt. Hence, (4) amounts to:

∫ ω

0

(∫ τ

0

Hi(θ)f1(θ)dθ

)
f2(τ)dτ +

∫ ω

0

(∫ θ

0

Hi(τ)f2(τ)dτ

)
f1(θ)dθ. (5)

Integrating by parts twice and taking into account that F1(ω) = F2(ω) = 1, we
obtain that the sum (5) is:∫ τ

0

Hi(θ)f1(θ)dθF2(ω)−
∫ ω

0

Hi(θ)f1(θ)F2(θ)dθ+

+

∫ θ

0

Hi(τ)f2(τ)dτF1(ω)−
∫ ω

0

Hi(τ)f2(τ)F1(τ)dτ =
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= Hi(ω)F1(ω)−
∫ ω

0

h∗i (θ)F1(θ)dθ −Hi(ω)F1(ω)F2(ω)+

+

∫ ω

0

F1(θ)[h
∗
i (θ)F2(θ) +Hi(θ)f2(θ)]dθ+

+Hi(ω)F2(ω)−
∫ ω

0

h∗i (τ)F2(τ)dτ −Hi(ω)F1(ω)F2(ω)+

+

∫ ω

0

F2(τ)[h
∗
i (τ)F1(τ) +Hi(τ)f1(τ))]dτ =

= −
∫ ω

0

h∗i (τ)[F1(τ) + F2(τ) − 2F1(τ)F2(τ)]dτ +

∫ ω

0

Hi(θ)[F1(τ)F2(τ)]
′dτ =

= −
∫ ω

0

h∗i (τ)[F1(τ) + F2(τ) − 2F1(τ)F2(τ)]dτ+

+Hi(ω)F1(ω)F2(ω)−
∫ ω

0

h∗i (τ)[F1(τ)F2(τ)]dτ =

(and since Hi(ω) =
∫ ω
0
h∗i (τ)dτ)

=

∫ ω

0

h∗i (τ)dτ −
∫ ω

0

h∗i (τ)[F1(τ) + F2(τ) − F1(τ)F2(τ)]dτ =

=

∫ ω

0

h∗i (τ)[1 − F1(τ)− F2(τ) + F1(τ)F2(τ)]dτ =

=

∫ ω

0

h∗i (τ)[1 − F1(τ)][1 − F2(τ)]dτ =

∫ ω

0

h∗i (τ)[1 − F (τ)]dτ,

where F (·) is the c.d.f. of the variable T = min{T1, T2}, which completes the proof.

Proposition 2.

E
[
Ψ i2(T1, T2)

]
=

∫ ω

0

Φi(x
∗(τ))fj(τ)(1 − Fi(τ))dτ.

Proof. Integrating by parts and taking into account that Fi(ω) = 1, we have that:

E
[
Φi(x

∗(T ))I[Ti>Tj ]

]
=

∫ ω

0

(∫ ω

0

Φi(x
∗(τ))I[θ>τ ]fj(τ)dτ

)
fi(θ)dθ =

= Fi(ω)

∫ ω

0

Φi(x
∗(τ))fj(τ)dτ −

∫ ω

0

Fi(θ)Φi(x
∗(θ))fj(θ)dθ =

=

∫ ω

0

Φi(x
∗(τ))fj(τ)dτ −

∫ ω

0

Fi(θ)Φi(x
∗(θ))fj(θ)dθ,

then, by considering a unique variable for integration, we conclude that

E
[
Φi(x

∗(T ))I[Ti>Tj ]

]
=

∫ ω

0

Φi(x
∗(τ))fj(τ)(1 − Fi(τ))dτ.

Hence, Propositions 1 and 2 entail the following result:
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Corollary 1. The expected payoff (2) for the problem starting at t = 0 is given by:

Ki(0, x0, u
∗
1, u

∗
2) =

∫ ω

0

h∗i (τ)[1 − F (τ)] + Φi(x
∗(τ))fj(τ)(1 − Fi(τ))dτ. (6)

Furthermore, if we consider any subgame starting at a subsequent instant t > 0,
we have to take into account the possibility that such game may not start at all,
namely that 0 < T < t. The related conditional probability can be expressed by
dividing the payoff integral by both the probabilities that t < T1 and that t < T2,
i.e. (1− F1(t))(1 − F2(t)) = 1− F (t).

The rationale for this is based on the fact that since we do not know the terminal
time of the game a priori, the payoff can be only defined by ensuring that the initial
instant is strictly smaller than both possible terminal instants.

We denote by Wi(t, x) the i-th optimal value function of the problem starting
at t ∈ (0, ω), with initial data x(t) = x. We have that:

Wi(t, x) =

1

(1− F1(t))(1 − F2(t))

ω∫
t

[h∗i (τ) (1− F (τ)) + Φi(x
∗(τ))fj(τ)(1 − Fi(τ))] dτ. (7)

If we call

W̃i(t, x) :=

ω∫
t

[h∗i (τ) (1− F (τ)) + Φi(x
∗(τ))fj(τ)(1 − Fi(τ))] dτ, (8)

the relation W̃i(·) = (1−F1(t))(1−F2(t))Wi(·) holds. Calculating the relevant first
order partial derivatives of (8) yields:

∂W̃i(t, x)

∂t
=

(1− F1(t))(1 − F2(t))
∂Wi(t, x)

∂t
−Wi(t, x) [f1(t)(1 − F2(t)) + (1− F1(t))f2(t)] ,

∂W̃i(t, x)

∂x
= (1− F1(t))(1 − F2(t))

∂Wi(t, x)

∂x
.

Consequently, after renaming W̃i := Wi, the Hamilton-Jacobi-Bellman equa-
tions can be rewritten as follows:

−∂W̃i(t, x)

∂t
= max

ui

[hi(t, x, u1, u2)(1− F1(t))(1 − F2(t))+

Φi(x(t))fj(t)(1 − Fi(t)) +
∂W̃i(t, x)

∂x
φ(t, x, u1, u2)], (9)

then, dividing both sides by (1 − F1(t))(1 − F2(t)), we obtain:
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−∂Wi(t, x)

∂t
+Wi(t, x)

[
f1(t)

1− F1(t)
+

f2(t)

1− F2(t)

]
=

max
ui

[hi(t, x, u1, u2) + Φi(x(t))
fj(t)

1 − Fj(t)
+
∂Wi(t, x)

∂x
φ(t, x, u1, u2)]. (10)

Finally, employing the form of the hazard functions λi(t) :=
fi(t)

1− Fi(t)
, the

Hamilton-Jacobi-Bellman equations read as:

−∂Wi(t, x)

∂t
+Wi(t, x) [λ1(t) + λ2(t)] =

max
ui

[hi(t, x, u1, u2) + Φi(x(t))λj(t) +
∂Wi(t, x)

∂x
φ(t, x, u1, u2)]. (11)

4. An example

Consider the following framework, borrowed from Rubio (2006) (Example 2.1)
and Dockner et al. (2000) (Example 5.7) and modified with the above discount fac-
tor. This example originally describes the joint exploitation of a pesticide, but its
structure makes it suitable for our aim. Note that, in contrast to Rubio (2006), we
confine our attention to the Nash equilibrium under simultaneous play, and we con-
sider the non-stationary feedback case, that is our optimal value function explicitly
depends on the initial instant t.

We fix m = 1, i.e., a unique state variable x(t), denoting the amount of the
resource, whereas the i-th payoff function explicitly depends on the rate of extraction
of the i-th player but not on the state variable:

hi(x(t), ui(t)) = lnui(t),

whereas the terminal payoff is given by

Φi(x
∗(T )) = ci ln(x(Ti)).

Note that hi(·) is well-defined and concave for ui > 0.
The transition function is linear and decreasing in the controls, so the dynamic

constraint is: {
ẋ = −u1 − u2

x(0) = x0 > 0
.

The kinematic equation ensures that the terminal payoff is well-defined in that the
resource cannot equal 0 in finite time.

Using the data of the above model, we obtain:

Wi(0, x0) = E

⎡⎣ Ti∫
0

lnu∗i dtI[Ti<Tj ] +

Tj∫
0

lnu∗i dtI[Ti>Tj ] + ci lnx(Tj)I[Ti>Tj ]

⎤⎦ .
The i-th optimal value function of the problem starting at t ∈ (0, ω), and with

initial condition x(t) = x, is given by:
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Wi(t, x) =

1

(1− Fi(t))(1 − Fj(t))

ω∫
t

[lnu∗i (τ, x(τ)) (1− F (τ)) + ci lnx(τ)fj(τ)(1 − Fi(τ))] dτ.

(12)

In compliance with the previous Section, the Hamilton-Jacobi-Bellman equa-
tions are given by:

−∂Wi(t, x)

∂t
+Wi(t, x) [λi(t) + λj(t)] =

max
ui

[
ln(ui) + ci lnx(t)λj(t)−

∂Wi(t, x)

∂x
(ui + u∗j )

]
. (13)

In order to explicitly determine the optimal strategy in the feedback Nash struc-
ture, we guess the following ansatz for the solution to (13):

Wi(t, x) = Ai(t) ln x+Bi(t),

where Ai(t) and Bi(t) are unknown functions of t, such that the following limits are
satisfied:

lim
t→ω

Ai(t) = 0, lim
t→ω

Bi(t) = 0. (14)

The relevant first order partial derivatives to be employed in (13) are:

∂Wi(t, x)

∂t
= Ȧi(t) lnx+ Ḃi(t),

∂Wi(t, x)

∂x
=

Ai(t)

x
.

Maximizing the r.h.s. of (13) yields:

1

u∗i
− ∂Wi(t, x)

∂x
= 0 ⇐⇒ u∗i =

x

Ai(t)
.

Hence, plugging u∗i ,
∂Wi(t, x)

∂t
and

∂Wi(t, x)

∂x
into (13), we obtain the following

equation:

−Ȧi(t) lnx− Ḃi(t) + (Ai(t) ln x+Bi(t)) [λi(t) + λj(t)] =

ln
x

Ai(t)
+ ci lnxλj(t)−

Ai(t)

x

(
x

Ai(t)
+

x

Aj(t)

)
. (15)

After collecting terms with and without lnx, we determine the following ODEs
for the time-dependent coefficients of Wi(t, x):

−Ȧi(t) +Ai(t) [λi(t) + λj(t)]− 1− ciλj(t) = 0, (16)

−Ḃi(t) +Bi(t) [λi(t) + λj(t)] + lnAi(t) + 1 +
Ai(t)

Aj(t)
= 0, (17)

composing a Cauchy problem endowed with the transversality conditions:

lim
t−→ω

Ai(t) = 0, lim
t−→ω

Bi(t) = 0. (18)
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Proposition 3. The optimal feedback strategy for the i-th firm is given by:

u∗i (t, x) =
x∫ ω

t (1 + ciλj(τ))e
−

∫ τ
t
(λi(θ)+λj(θ))dθdτ

. (19)

Proof. We just consider the Cauchy problem in Ai(t), because the explicit calcu-
lation of Bi(t) can be avoided in that Bi(t) does not appear in the expression of
u∗i : {

Ȧi(t) = Ai(t) [λi(t) + λj(t)]− 1− ciλj(t)

lim
t→ω

Ai(t) = 0
,

whose general solution is given by:

Ai(t) = e
∫ t
0
(λi(τ)+λj(τ))dτ

(
C −

∫ t

0

(1 + ciλj(τ))e
−

∫ τ
0
(λi(s)+λj(s))dsdτ

)
, (20)

where the constant C is determined by employing the transversality condition on
Ai(t):

C =

∫ ω

0

(1 + ciλj(τ))e
−

∫ τ
0
(λi(s)+λj(s))dsdτ,

leading to the solution:

A∗
i (t) = e

∫
t
0
(λi(τ)+λj(τ))dτ

[∫ ω

t

(1 + ciλj(τ))e
−

∫
τ
0
(λi(s)+λj(s))dsdτ

]
. (21)

We can simplify:

A∗
i (t) =

∫ ω

t

(1 + ciλj(τ))e
−

∫ τ
t
(λi(s)+λj(s))dsdτ. (22)

Finally, the expression of the optimal feedback strategy for the i-th firm can be
achieved from the FOCs of the model:

u∗i (t, x) =
x

A∗
i (t)

=
x∫ ω

t (1 + ciλj(τ))e
−

∫
τ
t
(λi(θ)+λj(θ))dθdτ

. (23)

As a further application, we can consider the circumstance where the two dis-
tributions of the firms are the standard exponential distributions, i.e.

fi(t; λi) =

{
λie

−λit, if t ≥ 0

0, if t < 0
,

whose means are respectively λ−1
1 , λ−1

2 , both positive, with λ1 �= λ2, ensuring
asymmetry.

In this case the hazard functions are constant, i.e. λ1(t) ≡ λ1 and λ2 ≡ λ2, then
substituting in (19) we obtain the two optimal feedback strategies:

u∗1(t, x) =
(λ1 + λ2)x

(1 + c1λ2)[1− e−(λ1+λ2)(ω−t)]
, (24)

u∗2(t, x) =
(λ1 + λ2)x

(1 + c2λ1)[1− e−(λ1+λ2)(ω−t)]
. (25)
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5. Concluding remarks

This paper intends to be a contribution to the literature of differential games
in an area which can be defined as deterministic, but enriched with some stochastic
elements. In particular, it is focused on the feature of extraction games that is def-
initely realistic: the uncertainty about the terminal times of an extracting activity.

The dynamic feedback equilibrium structure has been determined and the spe-
cific technicalities of this setting have been pointed out. As an example, a model of
nonrenewable resource extraction with a logarithmic utility structure was examined
and solved in a closed form.

There exist some possible further extensions, also concerning the example we
developed. It would be interesting to check the specific optimal strategies in pres-
ence of more complex hazard functions (for example, the Weibull distribution) or
endowed with alternative payoff structures. Another interesting development might
consist in considering a competition among more than 2 firms, having different
terminal times.
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