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Abstract The main purpose of this work is to optimize cash flow in case of
the encashment process in the ATM network. The solution of these problems
is based on some modified algorithms for the Vehicle Routing Problem with
Time Windows. A numerical example is considered.
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1. Introduction

Nowadays ATM network and credit cards are the essential parts of modern
lifestyle, and one of the most actual problem in the bank’s ATM network is opti-
mization of cash flow and organization of uninterrupted work. Serving the ATMs
network is a costly task: it takes employees’ time to supervise the network and make
decisions about cash management and it involves high operating costs (financial,
transport, etc.). Banks could reduce their costs applying competent encashment
strategy and optimizing encashment routes in ATM network.

For the purpose of reducing bank’s costs we could use algorithms for solving
Vehicle Routing Problems (VRP). According to (Toth, 2001), the Vehicle Routing
Problem is a problem of designing optimal routes for servicing a set of customers by
a set of vehicles. The solution of the VRP calls for determination of a set of routes,
each route is performed by a single vehicle that starts and ends in its own depot.
This set of routes must satisfy the following conditions: all the requirements of the
customers are fulfilled, all the operational constraints are satisfied, and the global
transportation cost is minimized.

In previous paper (Gubar et al., 2011) we explore one of the modifications of
VRPs, the Capacitated Vehicle Routing Problem, where the capacity restrictions
for each vehicle are essential. Now we take under consideration the Vehicle Routing
Problem with Time Windows (VRPTW) and focus on the fact that additionally
each customer is associated with a time interval, called a time window. The service
of each customer must start within a given time window. Such additional constraints
allow to satisfy the requirements of real-life situations more carefully.

Thus, in this work we consider a problem in which a set of geographically
dispersed ATMs with known requirements must be served with a fleet of money
collector teams stationed in the depot in such a way as to minimize some distribution
objective. We assume that the money collector teams are identical with the equal
capacity and must start and finish their routes at the depot.



122 Elena Gubar, Maria Zubareva

2. Formulation of the Vehicle Routing Problem with Time Windows

Consider the presentation of the VRPTW, where V = (0, 1, . . . , n) is the com-
plete set of vertices, each vertex corresponds to an ATM, vertex 0 corresponds to
the depot. For each pair of ATMs, or ATMs and the depot, there is an associated
cost cij . Each stop i requires a supply of qi units from depot 0. A set of M identical
vehicles of capacity Q is located at the depot and is used to service the stops; these
M vehicles comprise the homogeneous vehicle fleet. It is required that every vehicle
route starts and ends at the depot and that the load carried by each vehicle is no
greater than Q.

A travel time between ATMs i and j is denoted as tij . Each stop is associated
with a service time σi required by a vehicle to visit the ATM and to unload the
quantity qi (we assume σ0 = 0). The start time of the service at stop i must be
within a given time window [ai, bi]. A vehicle is permitted to arrive at stop i before
the beginning of the time window and wait at no cost until time ai. Also vehicles
are time-constrained at the depot in that each vehicle must leave the depot and
return back within the time window [a0, b0].

The variable xijk is 0−1 binary, it equals to 1 if and only if vehicle k visits stop
j immediately after visiting stop i and 0 if not. The continuous variable sik denotes
the time vehicle k begins service at stop i. It is assumed that s0k is the departure
time of vehicle k from the depot.

Here we present the formalization of the basic VRPTW problem (Hall, 2003):

min
M∑
k=1

∑
i∈V

∑
j∈V

cijxijk, (1)

M∑
k=1

∑
j∈V

xijk = 1, i ∈ Vc, (2)

∑
i∈Vc

qi
∑
j∈V

xijk ≤ Q, k = 1, . . . ,M, (3)

∑
j∈Vc

x0jk ≤ 1, k = 1, . . . ,M, (4)

∑
i∈V

xijk −
∑
i∈V

xjik = 0, j ∈ Vc, k = 1, . . . ,M, (5)

sik + σi + tij − L(1− xijk) ≤ sjk, i ∈ V, j ∈ Vc, k = 1, . . . ,M, (6)

sik + σi + ti0 − L(1− xi0k) ≤ b0, i ∈ Vc, k = 1, . . . ,M, (7)

ai ≤ sik ≤ bi, i ∈ V, k = 1, . . . ,M, (8)

xijk ∈ {0, 1}, i, j ∈ V, k = 1, . . . ,M. (9)

Constraints (2) state that each ATM must be visited exactly once. Constraints
(3) are the capacity limitation on the vehicles. Constraints (4) force each vehicle to
be used at most once and constraints (5) state that if a vehicle visits ATM, it must
also depart from it. Constraints (6) impose that vehicle k cannot arrive at stop j
before sik + σi + tij , if it travels from i to j. Constraints (7) force each vehicle k to
return to the depot before time b0. The scalar L can be any large number.
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Constraints (8) ensure that all time windows are respected and constraints (9)
are the integrality constraints.

2.1. Methods for solving VRPTW

General approaches for solving Vehicle Routing Problem with Time Windows
could be divided into three groups: exact methods, heuristic and metaheuristic
methods.

In exact methods the mixed-integer programming formulation of the VRPTW is
solved. Such methods include branch-and-bound, branch-and-cut algorithms, and
other techniques for solving integer programming problems. But the VRPTW is
considered NP-hard and for problems of practical size computing exact solutions
could be too complicated.

Because of the high complexity level of the VRPTW approximate heuristic and
metaheuristic methods are of prime importance. Heuristic methods search for not
optimal, but approximately optimal high-quality solution in acceptable time.

Heuristics methods for solving VRPTW could be divided into following groups:

1. Route construction heuristics: select stops sequentially until a feasible so-
lution has been created. Stops are chosen based on some cost minimization
criterion, often subject to the restriction that the selection does not create a
violation of vehicle capacity or time window constraints. Among these methods
are known:

– extension to the savings heuristic of Clarke and Wright (Clarke et al., 1964);
– time-oriented nearest neighbor;
– Solomons time-oriented sweep heuristic (Solomon, 1987).

2. Solution Improvement Methods: based on the concept of iteratively im-
proving the solution to a problem by exploring neighboring vertices.

Metaheuristic methods are the next step in development of heuristic methods.
They try overcome the local minima in the searching process, while solution im-
provement methods stop after finding local solutions in the selected neighborhood.
Among metaheuristic methods are known:

– ant colony optimization;
– simulated annealing;
– tabu search;
– genetic algorithms.

In current work we focus on the simulated annealing metaheuristcs for Vehicle
Routing Problem with Time Windows and apply it for designing optimal routes for
money collector teams.

2.2. Simulated Annealing

Simulated Annealing is an algorithmic approach to solving combinatorial op-
timization problems (Woch et al., 2009). The name of the algorithm derives from
an analogy between solving optimization problems and simulating the annealing of
solids. This method accepts search movements that temporarily produces degra-
dations in a current solution found to a problem as a way to escape from local
minima.

The simulated annealing algorithm is as follows (Chiang et al., 1996):
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Step 1. Obtain an initial feasible solution S for the VRPTW
Step 2. Set the cooling parameters including the initial temperature T , the cooling

ratio r, and the epoch length Len
Step 3.

3.1 For 1 < i < Len do
3.1.1 Pick a random neighbor solution S′

3.1.2 Let A = Cost(S′)− Cost(S)
3.1.3 If A < 0, then set S = S′

3.1.4 If A > 0, then set S = S′ with probability
3.2. Set T = rT

Step 4. Return S

The simulated annealing algorithm starts with the initial feasible solution. To
find this initial routes we use a time-oriented nearest-neighbor heuristic method,
that belongs to the class of route construction algorithms.

2.3. A Time-Oriented Nearest-Neighbor Heuristic

In terms of our problem of designing optimal routes in ATM network the nearest-
neighbor heuristic could be described in the following way. This heuristic starts every
route by searching the unrouted ATM ”closest” to the bank or the last ATM added
without violating feasibility. This search is performed among all the ATMs who can
feasibly be added to the end of the emerging route. A new route is started any time
the search fails, unless there are no more ATMs to add (Solomon, 1987).

The metric used in this approach tries to account for both geographical and
temporal closeness of ATMs. Let the last ATM on the current partial route be
ATM i and let j denote any unrouted ATM that could be visited next. Let the
metric cij measures the distance between two ATMs, Tij — the time difference
between the end of service at i and the beginning of service at j, and vij — the
urgency of delivery to ATM j:

Tij = gj − (gi + σi), vij = bj − (gi + σi + tij), (10)

where gi — the time of beginning servicing ATM i and gj — the time of beginning
servicing ATM j.

gj = max{aj , gi + σi + tij}, (11)

where ai — the lower bound of time window, σi — service time of ATM i, and tij
— travel time between ATMs i and j. Then the metric for searching ”closest” ATM
is:

dij = δ1cij + δ2Tij + δ3vij , δ1 + δ2 + δ3 = 1, (12)

δ1 ≥ 0, δ2 ≥ 0, δ3 ≥ 0.

3. Numerical simulation

Here we represent the application of simulated annealing heuristic for certain
ATM network. We assume that the bank has three collector teams with equal vehicle
capacity Q = 12 cartridges and each ATM requires qi = 3 cartridges. Suppose
that money collector teams should service 9 ATMs located at the different subway
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Table1: Distances between ATMs and bank, m

Bank 2 3 4 5 6 7 8 9 10
Bank 0 3250 6530 9000 5005 10007 6680 7810 7650 3940
2 3250 0 2930 10000 4870 13500 5480 3860 6770 1280
3 6530 2930 0 10120 7940 13070 10610 5410 9180 4050
4 9000 10000 10120 0 13690 6000 11900 14500 15100 10540
5 5005 4870 7940 13690 0 15300 5990 5970 2750 4030
6 10007 13500 13070 6000 15300 0 11100 14560 14600 10480
7 6680 5480 10610 11900 5990 11100 0 9070 4690 6500
8 7810 3860 5410 14500 5970 14560 9070 0 8300 4670
9 7650 6770 9180 15100 2750 14600 4690 8300 0 5010
10 3940 1280 4050 10540 4030 10480 6500 4670 5010 0

stations of St.Petersburg: 2 – Tekhnologicheskiy Institut, 3 – Moskovskie Vorota, 4 –
Lomonosovskaya, 5 – Vasileostrovskaya, 6 – Prospekt Bol’shevikov, 7 – Ploschad’
Lenina, 8 – Narvskaja, 9 – Chkalovskaja and 10 – Sennaja Ploschad’. Distances
between ATMs and the Bank are given in the Table 1.

Time windows for each ATM are given in the Table 2.

Table2: Time windows, h

i 2 3 4 5 6 7 8 9 10
ai 10 11 10 11 13 13 10 10 10
bi 13 18 13 18 18 16 13 18 13

Suppose that working day of money collector teams starts at 10:00 and ends at
18:00, which means that [a0, b0] = [10, 18], and average speed of teams is va = 20
km/h. We also take into account traffic, route features, etc.

We construct the initial solution using the nearest neighbor heuristic with pa-
rameters δ1 = 0.4, δ2 = 0.4, δ3 = 0.2. Routes, which were constructed are repre-
sented in the Table 3 and Figure 1. The distance travelled on these routes corre-
sponds to 71657 meters. The initial solution was simulated in Maple system.

Table3: The initial solution

Route 1 0-2-10-5-9-0
Route 2 0-3-8-7-0
Route 3 0-4-6-0

Then we apply the simulated annealing heuristic for this initial solution with
given parameters of the initial temperature T = 1000, the cooling ratio α = 0.99,
and the epoch length Len = 500. Routes that we received in Maple system are
represented in the Table 4 and Figure 2.
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Figure1: The initial solution

Table4: Solution obtained by simulated annealing algorithm

Route 1 0-10-5-9-7-0
Route 2 0-3-8-2-0
Route 3 0-4-6-0

The optimal solution in the current model consists of three routes, one for each
collector team. The first team drives through ATMs 10-5-9-7 (subway stations:
Sennaja Ploschad’, Vasileostrovskaya, Chkalovskaja, Ploschad’ Lenina), the second
team goes through ATMs 3-8-2(subway stations: Moskovskie Vorota, Narvskaja,
Tekhnologicheskiy Institut ) and the third team goes through ATMs 4-6 (subway
stations: Lomonosovskaya, Prospekt Bol’shevikov). Every route begins and ends at
the bank, vehicle capacity on each route is not exceeded, and time windows are
satisfied (see Tables 2 and 5).

Table5: Time of beginning servicing ATMs, h

Route 1 Route 2 Route 3
i 10 5 9 7 3 8 2 4 6
gi 10:12 11:00 11:39 13:00 11:00 11:47 12:28 10:27 13:00
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Figure2: Solution obtained by simulated annealing algorithm

The first money collector team returns to the bank at 13:20, the second — at
12:38, the third — at 13:30. That means that the time window of working day is
also satisfied.

All ATMs are assigned to a route and total travel costs are minimized. Thus, we
got optimal routes for the current request. The distance travelled on this optimal
route corresponds to 66147 meters, this is a minimal length of all possible routes
for the money collector teams.
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