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Abstract The main purpose of current work is constructing the evolutio-
nary model of influenza epidemic in urban population and estimation the
impact of the preventive measures to the population. Also in this work we
select risk-group from the population and research the epidemic process in
it. Total urban population and risk group are divided into three subgroups
Susceptible, Infected and Recovered and during the epidemic individuals
transfer from one subgroup to the other. During the epidemic season the
quantitative structure of the subgroups is changed, but these changes could
be different in risk-group and in vaccinated subgroup. In the model we as-
sume that vaccination company occurs before season epidemic of influenza
begins, to avoid repeated infection of vaccinated individuals. We construct
an evolution of epidemic and take into account vaccination and infection
expenses, from the society point of view. Numerical simulation are also pre-
sented in the paper.

Keywords: Evolutionary game, vaccination problem, replicative dynamic,
epidemic process, epidemic models, SIR model.

1. Introduction

One of the most important problem is the protection of population during an-
nual flu epidemic season. The influenza epidemic is a fast spreading process, involv-
ing the large part of total population. To protect population and reduce sickness
rate society should to focus on the organization of preventive measures. One of the
most effective procedures to avoid the epidemic is vaccination. However, in addition
to influenza, other forms of respiratory viral diseases circulate in the population,
and individuals, vaccinated against the influenza can be infected by one of these
forms, which reduces the effectiveness of vaccination. Hence vaccination can not be
absolutely effective and moreover total vaccination is very expensive. Whereas com-
plete vaccination is not effective epidemiologist offer to vaccinate only risk-group to
avoid epidemic in total population. Previous research proofed that about 70 % of
population should be vaccinated before the epidemic season to avoid epidemic of in-
fluenza. Also it was proofed that if society focus on some risk-groups from the total
population and apply vaccination to them it is allow to reduce epidemic duration
and numbers of infected humans during the epidemic.

Population can be divided in several subpopulations, i.e. ”children”, ”social pro-
fessions”, ”medical professions”, aged person, etc. For example the most amenable
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to the influenza is the risk-group ”children”, as far as they have numerous contacts
with other subgroups in population and at the same time the weak self-control.

A large number of research show that the economic damage is reduced, when the
risk-group ”children” is totally vaccinated. Vaccination about 80 percent individuals
in this group reduces the sickness rate in total population up to 80 - 90 percent.

Monitoring the evolution of several epidemics created the basis for a pheno-
menological model, describing the phases of individuals’ states changing. In the
works Ross (1911), Ross (1915), Ross (1916), he attempted to give the first quanti-
tative description of an malaria epidemic, nowadays many current models are closely
linked with his researches. Later Kermack and Mc Kendrick (1927) generalized this
approach and built a stochastic and determine models of epidemics.

By analogy with the classical model presented by Kermack W.O., and Mc
Kendrick A.G. in our work mechanism of infection is realized through meeting
between Susceptible and Infected individuals. Evolution of the epidemic process is
modeled as a sequential changing states from Susceptible individuals to Infected
individuals and finally to Recovered individuals. Simple scheme of the epidemic
process is presented in the Fig 1.
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Figure1: Simple scheme of the epidemic process.

This process is described by a system of ordinary differential equations:

dS/dt = −aSI,
dI/dt = aSI − bI,

dR/dt = bI,
S + I +R = N = const,

S(0) = S0, I(0) = I0, R(0) = R0 ≥ 0,

(1)

where S – is number of Susceptible individuals, I – is number of Infected individuals,
R – is number of Recovered individuals, aSI – is infection intensity during the
meeting between Susceptible and Infected individuals, bI – is recovery intensity
(b = 1/T , T – is disease’s duration), S+I+R – total number of individuals, involved
in epidemic process (considering as a constant), a, b – are constant nonnegative
coefficients. Additionally in the model initial conditions of the epidemic beginning
are used:

aSI − bI > 0, S0 ≥ b/a. (2)

In the paper Fu et al. (2010) the vaccination problem is considered from the
point of view one individual, in the current work we focus on social aspect of vac-
cination problem and estimate the costs of vaccination company and the infection
costs that include health care expenses, lost productivity and the possibility of pain
or mortality. We assume that vaccination company occurs before the seasonal epi-
demic begins, because it is necessary take into account regulation immune system
of individual after vaccination, because failing health after vaccination not allow
to resist against another viruses. Unfortunately flu vaccines are effective only for
one season owing to mutation of pathogens and waning immunity. We suppose that
influenza epidemic continues until there are no more newly infected individuals.
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Figure2: Simple scheme of the epidemic process with vaccination company in preepi-
demic period.

2. Model of epidemic process in risk-group

In our model we construct evolutionary model of epidemic process, which are
based on Susceptible-Infected-Recovered (SIR) model
Zhitkova, Kolesin (2004), Fu et al. (2010) for total urban population and risk-group.
The SIR model is appropriated for a large class of deceases including influenza.
Complete vaccination in total urban population is considered as ineffective, hence
from the total population we select i-th risk-group and assume that all individuals
in the group have the equal rate of susceptibility. In the model we focus on one
risk-group (”children”) and define it as large but finite, well mixed population of
individuals. Total urban population and risk-group are divided to three subpopu-
lations: Susceptible (S), Infected (I) and Recovered (R). Denote as Si, Ii, Ri –
the fractions of Susceptible (S), Infected (I) and Recovered (R), respectively. Let
values Si

p, Ii
p, Ri

p are corresponding fractions of Susceptible (S), Infected (I) and
Recovered (R) individuals in total urban population. The scheme of the epidemic
process evolution subject to mutual infection of individuals from the risk-group and
total urban population is following:
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Figure3: Scheme of the epidemic process evolution in case of mutual infection of
individuals

In current section we describe the process of influenza epidemic in terms of evo-
lutionary game theory. Consider dynamic of epidemic progress as evolutionary game
and suppose that state of the total urban population and risk-group in each time
moment t can be described in the same way by value x(t) = (xS(t), xI(t), xR(t)).
Values xi are defined by following expression

xi =
pi(t)
3∑
i=1

pi(t)

, i = S, I, R, (3)
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where pi(t) ≥ 0 – is number of individuals in i-th subpopulation, p(t) =
3∑
i=1

pi(t), i =

S, I, R – total number of individuals in populations Susceptible, Infected and Re-
covered respectively.

Suppose that in total urban population and in the risk group individuals can be
randomly matched and as a result they transfer from one subpopulation to another.
During the transition individuals can also change their income, i.e. if susceptible
become infected then he has treatment costs and his income decrease. At the same
time if infected becomes recovered then his income will increase. Further we describe
the changes of individuals incomes. Here we assume that individuals in risk-group
are not vaccinated, then each unvaccinated individual has risk to be infected during
the seasonal epidemic. Suppose that during the meeting, two Susceptible keep their
conditions and do not switch over to Infected, hence we can say that Susceptible do
not have any healthcare expenses. During the meeting of Susceptible and Infected,
Susceptible with uniform probability can switch over to Infected or keep their own
condition, therefore Susceptible may obtain some infection expenses. Infected have
own infection expenses. During the meeting Susceptible and Recovered, both keep
their own conditions, Susceptible do not have any healthcare expenses, but Recov-
ered could receive their immunity in case of disease. We describe the individuals’
transfers using payoff general matrix, that corresponds to the relations between the
randomly matched individuals from different subgroups and it is presented below:

S I R
S (β, β) (β − cδ, α+ γ) (β, β)
I (α+ γ, β − cδ) (α+ γ − σ, α+ γ − σ) (α+ γ, β)
R (β, β) (β, α + γ) (β, β)

Payoff matrix for total urban population and risk-group differ by δ.
In table below we present parameters of the model:

Table1: Model’s parameters

Parameter Definition

β player’s payoff
c treatment costs
δ probability of transition from a state

”susceptible” to the state ”infected”
α = (β − c) income with treatment costst
γ = cφ payoff growth, on conditions that ”infected”

transfer to ”recovered”
φ probability of transition from a state

”infected” to the state ”recovered”
σ = cψ payoff decrease,

when individuum gets worse
ψ probability that individuum get worse

when one ”infected” meet another

During the epidemic we have a chain of changes of population states that can
be described by evolutionary dynamics Weibull, (1995).
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ẋi = [u(ei, x)− u(x, x)]xi = u(ei − x, x)xi, i = S, I, R, (4)

where ei, i = S, I, R – are pure strategy of the individual, u(x, x) =
k∑
i=1

xiu(e
i, x) –

is average payoff in the population. Using initial states for all subpopulations solve
this system of differential equations and get distribution of Susceptible, Infected and
Recovered individuals after seasonal epidemic of influenza. Initial state consists of
large part of Susceptible, several Infected and a little part of Recovered individuals,
randomly distributed throughout the population.

To illustrate the evolution on the population states we use special package
[Sandholm (2010)] and the resulting trajectories for different values of model’s pa-
rameters are presented below:
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Figure4: Epidemic process in total urban population

These diagrams show that in the first case: δ = 0.1, φ = 0.2 all trajectories
aspire to the boundary xR, xS and this boundary is the set of stable states. In the
second case with model’s parameters δ = 0.1, φ = 0.6 all trajectories will aspire to



112 Gubar Elena, Fotina Lidia, Nikitina Irina, Zhitkova Ekaterina

the vertex xR and it is stable. Here state (0.6, 0.4, 0) is also equilibrium state but
it is not stable.
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Figure5: Epidemic process in risk-group

For the risk-group we receive that with parameters δ = 0.9, φ = 0.1 and δ =
0.9, φ = 0.15 as in previous case boundary xR, xS is the set of stationary states. For
values δ = 0.9, φ = 0.6 and δ = 0.9, φ = 0.9 state xR is stationary and (0.53, 0.47, 0)
is equilibrium point but it is not stable.

Unfortunately this simulations are not allow us to receive a numerical strength
of each subpopulation and to solve this problem in following section we use special
algorithm to get a numbers of Susceptible, Infected and Recovered in population
and risk-group.

2.1. Numerical simulation with Gillespie algorithm

In this section we consider how epidemic progress in total population and in
risk group depends on human compliance. Numerical simulations present duration
and effectiveness of the epidemic process. To simulate the epidemic process we use
Gillespie algorithm Gillespie (1976), Fu et al. (2010), which are presented below:
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1. At time t calculate transition rate pi(t), i ∈ Nr for each susceptible and infected
individual. Here Nr is number of individuals in risk-group. The rate at which
susceptible individuals transfer to infected is pi(t) = δl, l is number of infected
neighbors. l(t) ∈ (0, . . . , Nneib(t)), Nneib(t) = [ηNxI(t − Δt)], where η — is
probability to meet infected individuum; N — is total number individuals in
population; xI(t−Δt) — is part of infected at instant moment t−Δt. The rate
at which infected individuals transfer to recovered is pi(t) = ψ. Total transition
rate is λ(t) =

∑
i

pi(t).

2. Chose the time interval Δt then next transition occurs in moment t′ = t+Δt.
3. Verify the transition condition between subgroups for each individual k:

k−1∑
j=1

pj(t)/λ(t) < z <
k∑

j=1

pj(t)/λ(t),
0∑

j=1

pj(t)/λ(t) = 0

4. Repeat steps 1-3 until the number of infected individuals I(t) becomes 0.

The results of the simulation we give in diagrams (Tables 2,4) and tables with
parameters interpretation and values for different cases (Tables 3,5).

Case 1: In this case we consider risk group and total urban population with
small amount of the infected neighbors. Risk-group and total urban population
differ by parameter δ which is transmission rate from Susceptible to Infected or it
can be interpreted as probability that susceptible human becomes infected.

Table2: Simulation results for risk-group

Susceptible Infected Recovered

We received that in total urban population epidemic duration is 106 days and
epidemic peak occurs at 16-th day and in risk-group epidemic duration is 104 days
and epidemic peak is at 18-th day. Shares of infected individuals in risk-group
and total urban population at the epidemic peak are 0.499 and 0.446 respectively.
Simulation results are presented on Tables 2-5.
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Table3: Simulation results for risk-group

Variable Definition Value

δ Transmission rate from Susceptible to Infected 0,95
φ Transmission rate from Infected to Recovered 0,875
xI(0) Initial share of Infected 0,001
T Epidemic duration (days) 104
T Epidemic peak(day) 18

xS(T ) Share of susceptible at time T 0.230
xI(T ) Share of infected at time T 0.499
xR(T ) Share of recovered at time T 0.271

Table4: Simulation results for total urban population

Susceptible Infected Recovered

Table5: Simulation results for total urban population

Variable Definition Value

δ Transmission rate from Susceptible to Infected 0,25
φ Transmission rate from Infected to Recovered 0,875
xI(0) Initial share of Infected 0,001
T Epidemic duration (days) 106

T Epidemic peak(day) 16
xS(T ) Share of susceptible at time T 0.320
xI(T ) Share of infected at time T 0.446
xR(T ) Share of recovered at time T 0.234
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Case 2: In this case we consider risk group and total urban population with
large amount of the infected neighbors. To define the number of infected neigh-
bors we use initial value for xI(0) = 0.3. As in case 1 risk-group and total urban
population differ by parameter δ.

Table6: Results for risk-group (large number of infected neighbors)

Susceptible Infected Recovered

Table7: Results for risk-group(large number of infected neighbors)

Variable Definition Value

δ Transmission rate from Susceptible to Infected 0,95
φ Transmission rate from Infected to Recovered 0,875
xI(0) Initial share of Infected 0,3
T Epidemic duration (days) 121
T Epidemic peak(day) 15
xS(T ) Share of susceptible at time T 0.286
xI(T ) Share of infected at time T 0.494

xR(T ) Share of recovered at time T 0.220

In this case we received that in total urban population epidemic duration is 117
days and epidemic peak occurs at 14-th day and in risk-group epidemic duration
is 121 days and epidemic peak is at 15-th day. Also in this case we suppose that
each susceptible individual has high possibility to meet infected, because in total
each individual has large number of infected neighbors. As in previous simulations
for the risk-group the intensity of the transition from the Susceptible to Infected
is higher and hence infection spreads faster but depending of parameter l epidemic
lasts in risk-group longer. All results are presented in Tables 6-9.

3. Epidemic process in total urban population with vaccination

In this section all Susceptible (S) individuals are vaccinated and the society
spend money on the vaccination company (this expenses include immediate mone-
tary cost, the opportunity cost of time spent to get the vaccine, number of medical
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Table8: Results for total urban population (large number of infected neighbors)

Susceptible Infected Recovered

Table9: Results for total urban population (large number of infected neighbors)

Variable Definition Value

δ Transmission rate from Susceptible to Infected 0,25
φ Transmission rate from Infected to Recovered 0,875
xI(0) Initial share of Infected 0,3
T Epidemic duration (days) 117

T Epidemic peak(day) 14
xS(T ) Share of susceptible at time T 0.304
xI(T ) Share of infected at time T 0.468
xR(T ) Share of recovered at time T 0.228
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teams and any other perceived or actual effects.) However we assume that vacci-
nation do not guarantee perfect immunity from the seasonal infection decease and
Susceptible individuals keep small risk to be infected. In our work we define epidemic
process as an evolutionary game with following structure.

As in section 2. let N is a size of total urban population and total population
is divided into three subgroups: Susceptible, Infected and Recovered. Let K =
{S, I, R} is a set of pure strategies, which correspond to the individual’s state. Also
denote as xS , xI , xR the shares of susceptible, infected and recovered individuals in
total population respectively.

Then we describe the epidemic dynamics in total population over the time.
Assume that during the meeting two susceptible individuals keep their conditions
and do not switch over to Infected, but Susceptible individuals have some vaccina-
tion expenses. During the meeting of Susceptible and Infected, Susceptible can with
uniform possibility switch over to Infected or keep their own condition, therefore
Susceptible may obtain some infection expenses, but meanwhile their already had
some vaccination expenses. Infected have their own healthcare expenses. Recovered
could receive their immunity in case of disease or during vaccination campaign,
then their expenses include monetary cost of vaccine or some healthcare costs. Pay-
off matrix (matrix of transition rates) for this situation is following:

S I R
S (β−q, β−q) (β−q−cθδ, α+ γ) (β−q, β)
I (α+ γ, β−q−cθδ) (α+ γ − σ, α+ γ − σ) (α + γ, β)
R (β, β−q) (β, α+ γ) (β, β)

In table below we present physical interpretation of model’s parameters:

Table10: Model’s parameters

Parameter Definition

β individuum’s payoff
q vaccination cost
c treatment costs
θ probability that vaccination is not effective
δ probability of transition from a state Susceptible to the

state Infected
α = (β − c) income with the cost of treatment
γ = cφ payoff growth, on conditions that Infected transfer to Re-

covered
φ probability of transition from a state Infected to the state

Recovered
σ = cψ payoff decrease, when individuum gets worse
ψ probability that individuum get worse when one Infected

meets another
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3.1. Numerical simulation with Gillespie algorithm

In this section we use modified Gillespie algorithm for the model of epidemic
process with vaccination.

1. At time t calculate transition rate pi(t), i ∈ N for each susceptible and infected
individual. Here N is number of all individuals in population. The rate at which
susceptible individuals transfer to infected is pi(t) = δm,m is number of infected
neighbors. m(t) ∈ (0, . . . , I(t)), I(t) is number of infected individuals. The rate
at which infected individuals transfer to recovered is pi(t) = ψ. Total transition
rate is λ(t) =

∑
i

pi(t).

2. Chose the time interval Δt then next transition occurs in moment t′ = t+Δt.

3. Verify the transition condition between subgroups for each individuum k:
k−1∑
j=1

pj(t)/λ(t) < z <
k∑

j=1

pj(t)/λ(t),
0∑

j=1

pj(t)/λ(t) = 0.

4. Repeat steps 1-3 until the number of infected individuals I(t) becomes 0.

For numerical simulation we suppose that only 0.1 percent of Susceptible sub-
group in total urban population is vaccinated.

We use following parameters values for numerical simulations: β = 1, q = 0, 05,
c = 0, 8, θ = 0, 5, δ = 0, 9, α = 0, 2, γ = 0, 7, φ = 0, 875, σ = 0, 04, ψ = 0, 05; And
we present results of the simulation with Gillespie Algorithm in Table 11.

Epidemic spreading in total urban population with and without vaccination in
Susceptible subpopulation. Left figures show epidemic process with vaccination and
right figure show process without vaccination of susceptible part of population. After
Gillespie algorithm with model parameters δ = 0, 9 and φ = 0, 875 we receive, that
if Susceptible subpopulation is vaccinated then epidemic continues 117 days and
epidemic peak is at 18-th day. If susceptible subpopulation is not vaccinated then
epidemic peak occurs at 16-th day and epidemic process continues for 110 days. This
fact we can interpret as follows, if we have vaccinated subpopulation of susceptible
then individuals transfer to infected with lower intensity. The frequency of the
meetings between Susceptible and Infected human is rare in this case, thus epidemics
proceeds longer, but the number of infected is less and hence the treatment costs
are also decrease including costs of nonworking days for the working part of urban
population.
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Table11: Simulation results
xS — Susceptible

Epidemic process with vaccination Epidemic process without vaccination

xI — Infected
Epidemic process with vaccination Epidemic process without vaccination

xR — Recovered
Epidemic process with vaccination Epidemic process without vaccination
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Table12: Simulation results

Epidemic process with vaccina-
tion, (initial values)

Epidemic process without vacci-
nation, (initial values)

xS(0) = 0, 899; xS(0) = 0, 999;
xI(0) = 0, 001; xI(0) = 0, 001;
xR(0) = 0, 1; xR(0) = 0, 0;

Epidemic process with vaccina-
tion, (at epidemic peak T )

Epidemic process without vacci-
nation, (at epidemic peak T )

xS(T ) = 0, 239; xS(T ) = 0, 323;
xI(T ) = 0, 387; xI(T ) = 0, 417;
xR(T ) = 0, 374; xR(T ) = 0, 26;
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