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Abstract Let be N the set of players and M the set of projects. The coali-
tional model of decision-making over the set of projects is formalized as
family of games with different fixed coalitional partitions for each project
that required the adoption of a positive or negative decision by each of
the players. The players’ strategies are decisions about each of the project.
Players can form coalitions in order to obtain higher income. Thus, for each
project a coalitional game is defined. In each coalitional game it is required
to find in some sense optimal solution. Solving successively each of the coali-
tional games, we get the set of optimal n-tuples for all coalitional games. It
is required to find a compromise solution for the choice of a project, i. e. it is
required to find a compromise coalitional partition. As an optimality princi-
ples are accepted generalized PMS-vector (Grigorieva and Mamkina, 2009,
Petrosjan and Mamkina, 2006) and its modifications, and compromise solu-
tion.

Keywords: coalitional game, PMS-vector, compromise solution.

1. Introduction

The set of agents N and the set of projects M are given. Each agent fixed his
participation or not participation in the project by one or zero choice. The partici-
pation in the project is connected with incomes or losses which the agents wants to
maximize or minimize. Agents may form coalitions. This gives us an optimization
problem which can be modeled as game. This problem we call as static coalitional
model of decision-making.

Denote the players by i ∈ N and the projects by j ∈M . The family M of differ-
ent games are considered. In each game Gj , j ∈M the player i has two strategies ac-
cept or reject the project. The payoff of the player in each game is determined by the
strategies chosen by all players in this gameGj . As it was mentioned before the play-
ers can form coalitions to increase the payoffs. In each game Gj coalitional partition
is formed and the problem is to find the optimal strategies for coalitions and the im-
putation of the coalitional payoff between the members of the coalition. The games
G1, . . . , Gm are solved by using the PMS-vector (Grigorieva and Mamkina, 2009,
Petrosjan and Mamkina, 2006) and its modifications.

Then having the solutions of games Gj , j = 1, m the new optimality principle
- “the compromise solution” is proposed to select the best projects j∗ ∈ M . The
problem is illustrated by example of the interaction of three players.

� This work was supported by the Russian Foundation for Fundamental Researches under
grants No.12-01-00752-a.
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2. State of the problem

Consider the following problem. Suppose

– N = {1 , . . . , n} is the set of players;
– Xi = {0 ; 1} is the set of pure strategies xi of player i , i = 1, n. The strategy
xi can take the following values: xi = 0 as a negative decision for the some
project and xi = 1 as a positive decision;

– li = 2 is the number of pure strategies of player i;
– x is the n-tuple of pure strategies chosen by the players;
– X =

∏
i=1 , n

Xi is the set of n-tuples;

– μi =
(
ξ0i , ξ

1
i

)
is the mixed strategy of player i, where ξ0i is the probability

of making negative decision by the player i for some project, and ξ1i is the
probability of making positive decision correspondingly;

– Mi is the set of mixed strategies of the i-th player;
– μ is the n-tuple of mixed strategies chosen by players for some project;
– M =

∏
i=1, n

Mi is the set of n-tuples in mixed strategies for some project;

– Ki (x) : X → R1 is the payoff function defined on the set X for each player
i , i = 1, n , and for some project.

Thus, for some project we have noncooperative n-person game G (x):

G (x) =
〈
N, {Xi}i=1 , n, {Ki (x)}i=1 , n , x∈X

〉
. (1)

Now suppose M = {1 , . . . , m} is the set of projects, which require making
positive or negative decision by n players.

A coalitional partitions Σj of the set N is defined for all j = 1 , m:

Σj =
{
Sj1 , . . . , S

j
l

}
, l ≤ n , n = |N | , Sjk ∩ Sjq = ∅ ∀ k �= q,

l⋃
k=1

Sjk = N .

Then we have m simultaneous l-person coalitional games Gj (xΣj ) , j = 1 , m , in a
normal form associated with the respective game G (x):

Gj (xΣj ) =

〈
N,

{
X̃Sj

k

}
k=1 , l , Sj

k∈Σj
,
{
H̃Sj

k
(xΣj )

}
k=1 , l , Sj

k∈Σj

〉
, j = 1 , m .

(2)
Here for all j = 1 , m:

– x̃Sj
k
= {xi}i∈Sj

k
is the l-tuple of strategies of players from coalition Sjk , k = 1, l;

– X̃Sj
k
=
∏
i∈Sj

k

Xi is the set of strategies x̃Sj
k
of coalition Sjk , k = 1, l, i. e. Carte-

sian product of the sets of players’ strategies, which are included into coalition
Sjk;

– xΣj =
(
x̃Sj

1
, . . . , x̃Sj

l

)
∈ X̃, x̃Sj

k
∈ X̃Sj

k
, k = 1, l is the l-tuple of strategies

of all coalitions;
– X̃ =

∏
k=1, l

X̃Sj
k
is the set of l-tuples in the game Gj (xΣj );
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– lSj
k
=
∣∣∣X̃Sj

k

∣∣∣ = ∏
i∈Sj

k

li is the number of pure strategies of coalition Sjk;

– lΣj =
∏

k=1,l

lSj
k
is the number of l-tuples in pure strategies in the game Gj (xΣj ).

– M̃Sj
k
is the set of mixed strategies μ̃Sj

k
of the coalition Sjk , k = 1, l;

– μ̃Sj
k
=

(
μ̃1
Sj
k

, ... , μ̃
l
S
j
k

Sj
k

)
, μ̃ξ

Sj
k

≥ 0 , ξ = 1, lSj
k
,

l
S
j
k∑

ξ=1

μ̃ξ
Sj
k

= 1, is the mixed

strategy, that is the set of mixed strategies of players from coalition Sjk , k =
1, l;

– μΣj =
(
μ̃Sj

1
, . . . , μ̃Sj

l

)
∈ M̃, μ̃Sj

k
∈ M̃Sj

k
, k = 1, l, is the l-tuple of mixed

strategies;

– M̃ =
∏

k=1, l

M̃Sj
k
is the set of l-tuples in mixed strategies.

From the definition of strategy x̃Sj
k

of coalition Sjk it follows that

xΣj =
(
x̃Sj

1
, . . . , x̃Sj

l

)
and x = (x1 , . . . , xn) are the same n-tuples in the games

G(x) and Gj (xΣj ). However it does not mean that μ = μΣj .

Payoff function H̃Sj
k

: X̃ → R1 of coalition Sjk for the fixed projects j, j =

1, m, and for the coalitional partition Σj is defined under condition that:

H̃Sj
k
(xΣj ) ≥ HSj

k
(xΣj ) =

∑
i∈Sj

k

Ki (x) , k = 1 , l , j = 1 , m , Sjk ∈ Σj , (3)

where Ki (x) , i ∈ Sjk , is the payoff function of player i in the n-tuple xΣj .

Definition 1. A set of m coalitional l-person games defined by (2) is called
static coalitional model of decision-making.

Definition 2. Solution of the static coalitional model of decision-making in pure
strategies is x∗

Σj∗ , that is Nash equilibrium (NE) in a pure strategies in l-person

game Gj∗(xΣj∗ ), with the coalitional partition Σj∗ , where coalitional partition Σj∗

is the compromise coalitional partition (see 2.2).

Definition 3. Solution of the static coalitional model of decision-making in
mixed strategies is μ∗

Σj∗ , that is Nash equilibrium (NE) in a mixed strategies in

l-person game Gj∗(μΣj∗ ), with the coalitional partition Σj∗ , where coalitional par-
tition Σj∗ is the compromise coalitional partition (see 2.2).

Generalized PMS-vector is used as the coalitional imputation (Grigorieva and
Mamkina, 2009, Petrosjan and Mamkina, 2006).

3. Algorithm for solving the problem

3.1. Algorithm of constructing the generalized PMS-vector in a
coalitional game.

Remind the algorithm of constructing the generalized PMS-vector in a coali-
tional game (Grigorieva and Mamkina, 2009, Petrosjan and Mamkina, 2006).

1. Calculate the values of payoff H̃Sj
k
(xΣj ) for all coalitions Sjk ∈ Σj , k = 1, l ,

for coalitional game Gj(xΣj ) by using formula (3).
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2. Find NE (Nash, 1951) x∗Σj or μ∗
Σj (one or more) in the game Gj(xΣj ). The

payoffs’ vector of coalitions in NE in mixed strategies E
(
μ∗
Σj

)
=
{
v
(
Sjk

)}
k=1, l

.

Denote a payoff of coalition Sjk in NE in mixed strategies by

v
(
Sjk

)
=

lΣj∑
τ=1

pτ, jH̃τ, Sj
k
(x∗Σj ), k = 1, lΣj ,

where

– H̃τ, Sj
k

(
x∗Σj

)
is the payoff of coalition Sjk, when coalitions choose their pure

strategies x̃∗
Sj
k

in NE in mixed strategies μ∗
Σj .

– pτ, j =
∏

k=1,l

μ̃ξk
Sj
k

, ξk = 1, lSj
k
, τ = 1, lΣj , is probability of the payoff’s realization

H̃τ, Sj
k

(
x∗Σj

)
of coalition Sjk.

The value H̃τ, Sj
k

(
x∗Σj

)
is random variable. There could be many l-tuple of NE

in the game, therefore, v
(
Sj1

)
, ...., v

(
Sjl

)
, are not uniquely defined.

The payoff of each coalition in NE E
(
μ∗
Σj

)
is divided according to Shapley’s

value (Shapley, 1953) Sh (Sk) =
(
Sh
(
Sjk : 1

)
, ... , Sh

(
Sjk : s

))
:

Sh
(
Sjk : i

)
=

∑
S′⊂Sj

k

S′�i

(s′−1) ! (s−s′) !
s !

[v (S′)− v (S′\ {i})] ∀ i = 1, s , (4)

where s =
∣∣∣Sjk∣∣∣ (s′ = |S′|) is the number of elements of sets Sjk (S′), and v (S′) are

the total maximal guaranteed payoffs all over the S′ ⊂ Sk.

Moreover

v
(
Sjk

)
=

s∑
i=1

Sh
(
Sjk : i

)
.

Then PMS-vector in the NE in mixed strategies μ∗
Σj in the game Gj(xΣj ) is

defined as

PMSj (μ∗
Σj ) =

(
PMSj1 (μ

∗
Σj) , ..., PMSjn (μ

∗
Σj )
)
,

where

PMSji (μ
∗
Σj ) = Sh

(
Sjk : i

)
, i ∈ Sjk, k = 1, l.

3.2. Algorithm for finding a set of compromise solutions.

We also remind the algorithm for finding a set of compromise solutions (Malafeyev,
2001; p.18).

CPMS (M) = arg min
j

max
i

{
max
j

PMSji − PMSji

}
.
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Step 1. Construct the ideal vector R = (R1, . . . , Rn) , where Ri = PMSj
∗

i =

max
j

PMSji is the maximal value of payoff’s function of player i in NE on the set M ,

and j is the number of project j ∈M :⎛⎝ PMS11 ... PMS1n
... ... ...

PMSm1 ... PMSmn

⎞⎠
↓ ... ↓

PMS
j∗1
1 ... PMSj

∗
n
n

Step 2. For each j find deviation of payoff function values for other players
from the maximal value, that is Δj

i = Ri − PMSji , i = 1 , n:

Δ =

⎛⎝ R1 − PMS11 ... Rn − PMS1n
... ... ...

R1 − PMSm1 ... Rn − PMSmn

⎞⎠ .

Step 3. From the found deviations Δj
i for each j select the maximal deviation

Δj
i∗j

= max
i

Δj
i among all players i:

⎛⎝ R1 − PMS11 ... Rn − PMS1n
... ... ...

R1 − PMSm1 ... Rn − PMSmn

⎞⎠ =

⎛⎝ Δ1
1 ... Δ1

n

... ... ...
Δm

1 ... Δm
n

⎞⎠ → Δ1
i∗1

... .
→ Δm

i∗m

Step 4. Choose the minimal deviation for all j from all the maximal deviations

among all players i Δj∗

i∗
j∗

= min
j

Δj
i∗j

= min
j

max
i

Δj
i .

The project j∗ ∈ CPMS (M) , on which the minimum is reached is a compromise
solution of the game Gj(xΣj ) for all players.

3.3. Algorithm for solving the static coalitional model of decision-
making.

Thus, we have an algorithm for solving the problem.

1. Fix a j , j = 1 , m.

2. Find the NE μ∗
Σj in the coalitional game Gj(xΣj ) and find imputation in

NE, that is PMSj
(
μ∗
Σj

)
.

3. Repeat iterations 1-2 for all other j , j = 1 , m.

4. Find compromise solution j∗, that is j∗ ∈ CPMS (M).

4. Example

Consider the set M = {j}j=1, 5 and the set N = {I1 , I2 , I3} of three players,
each having 2 strategies in noncooperative game G (x): xi = 1 is “yes” and xi = 0
is “no” for all i = 1 , 3. The payoff’s functions of players in the game G (x) are
determined by the table 1.
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Table1: The payoffs of players.

The strategies The payoffs The payoffs of coalition
I1 I2 I3 I1 I2 I3 {I1, I2} {I2, I3} {I1, I3} {I1, I2, I3}
1 1 1 4 2 1 6 3 5 7
1 1 0 1 2 2 3 4 3 5
1 0 1 3 1 5 4 6 8 9
1 0 0 5 1 3 6 4 8 9
0 1 1 5 3 1 8 4 6 9
0 1 0 1 2 2 3 4 3 5
0 0 1 0 4 3 4 7 3 7
0 0 0 0 4 2 4 6 2 6

1. Compose and solve the coalitional game G2 (xΣ2) , Σ2 = {{I1, I2} , I3}, i. e.
find NE in mixed strategies in the game:

η = 3/7 1− η = 4/7

0
0

ξ = 1/3
1− ξ = 2/3

1 0
(1, 1) [6, 1] [3, 2]
(0, 0) [4, 3] [4, 2]
(1, 0) [4, 5] [6, 3]
(0, 1) [8, 1] [3, 2] .

It’s clear, that first matrix row is dominated by the last one and the second is
dominated by third. One can easily calculate NE and we have

y =
(
3/7 4/7

)
, x =

(
0 0 1/3 2/3

)
.

Then the probabilities of payoffs’s realization of the coalitions S = {I1, I2} and
N\S = {I3} in mixed strategies (in NE) are as follows:

η1 η2
ξ1 0 0
ξ2 0 0

ξ3 1/7
4/21

ξ4 2/7
8/21

.

The Nash value of the game in mixed strategies is calculated by formula:

E (x, y) =
1

7
[4, 5] +

2

7
[8, 1] +

4

21
[6, 3] +

8

21
[3, 2] =

[
36

7
,
7

3

]
=

[
5
1

7
, 2

1

3

]
.

In the table 2 pure strategies of coalition N\S and its mixed strategy y are
given horizontally at the right side. Pure strategies of coalition S and its mixed
strategy x are given vertically. Inside the table players’ payoffs from the coalition S
and players’ payoffs from the coalition N\S are given at the right side.

Divide the game’s Nash value in mixed strategies according to Shapley’s value
(4):
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Table2: The maximal guaranteed payoffs of players I1 and I2.

Math. Expectation

min 1
min 2
max

2.286 2.000
4.143 1.000
2.714 2.429
0.000 4.000
v (I1) v (I1)
2.286 2.000
0.000 1.000
2.286 2.000

The strategies of N\ S,
the payoffs of S and the payoffs of N\ S

η = 0.43
+1

1− η = 0.57
+2

0 − (1 , 1)
ξ = 0.33 + (1 , 2)

1− ξ = 0.67 + (2, 1)
0 − (2 , 2)

⎛⎜⎜⎝
(4 , 2) (1 , 2)
(3 , 1) (5 , 1)
(5 , 3) (1 , 2)
(0 , 4) (0 , 4)

⎞⎟⎟⎠

Sh1 = v (I1) +
1
2 [v (I1, I2)− v (I2)− v (I1)] ,

Sh2 = v (I2) +
1
2 [v (I1, I2)− v (I2)− v (I1)] .

Find the maximal guaranteed payoffs v (I1) and v (I2) of players I1 and I2. For
this purpose fix a NE strategy of a third player as

ȳ =
(
3/7 4/7

)
.

Denote mathematical expectations of the players’ payoffs from coalition S when
mixed NE strategies are used by coalitionN\S by ES(i, j) (ȳ) , i, j = 1, 2. In the table
2 the mathematical expectations are located at the left, and values are obtained by
using the following formulas:

ES(1, 1) (ȳ) =
(
3
7 · 4 +

4
7 · 1 ;

3
7 · 2 +

4
7 · 2 ;

3
7 · 1 +

4
7 · 2

)
=
(
2 2
7 ; 2 ; 1 4

7

)
;

ES(1, 2) (ȳ) =
(
3
7 · 3 +

4
7 · 5 ;

3
7 · 1 +

4
7 · 1 ;

3
7 · 5 +

4
7 · 3

)
=
(
4 1
7 ; 1 ; 3 6

7

)
;

ES(2, 1) (ȳ) =
(
3
7 · 5 +

4
7 · 1;

3
7 · 3 +

4
7 · 2;

3
7 · 1 +

4
7 · 2

)
=
(
2 5
7 ; 2

3
7 ; 1

4
7

)
;

ES(2,2) (ȳ) =
(
3
7 · 0 +

4
7 · 0 ;

3
7 · 4 +

4
7 · 4 ;

3
7 · 3 +

4
7 · 2

)
=
(
0; 4 ; 2 3

7

)
.

Third element here is mathematical expectation of payoffs of the player I3 (see table
1 too).

Then, look at the table 1 or table 2,

minH1 (x1 = 1, x2, ȳ) = min
{
2 2
7 ; 4

1
7

}
= 2 2

7 ;
minH1 (x1 = 0, x2, ȳ) = min

{
2 5
7 ; 0

}
= 0;

∣∣∣∣ v (I1) = max
{
2 2
7 ; 0

}
= 2 2

7 ;

minH2 (x1, x2 = 1, ȳ) = min
{
2; 2 3

7

}
= 2 ;

minH2 (x1, x2 = 0, ȳ) = min {1; 4} = 1;

∣∣∣∣ v (I2) = max {2; 1} = 2.

Thus, maxmin payoff for player I1 is v (I1) = 2 2
7 and for player I2 is v (I2) = 2.

Hence,

Sh1 (ȳ) = v (I1) +
1
2

(
5 1
7 − v (I1)− v (I2)

)
= 2 2

7 + 1
2

(
5 1
7 − 2 2

7 − 2
)
= 2 5

7 ;
Sh2 (ȳ) = 2 + 3

7 = 2 3
7 .
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Thus, PMS-vector is equal:

PMS1 = 2
5

7
; PMS2 = 2

3

7
; PMS3 = 2

1

3
.

2. Solve the cooperative game G5 (xΣ5), Σ5 = {N = {I1, I2, I3}}, see table 3.

Table3: Shapley’s value in the cooperative game.

The strategies The payoffs The payoff Shapley’s
of players of players of coalition value

I1 I2 I3 I1 I2 I3 HN (I1, I2, I3) λ1HN λ2HN λ3HN

1 1 1 4 2 1 7
1 1 2 1 2 2 5
1 2 1 3 1 5 9 2.5 3.5 3
1 2 2 5 1 3 9 2.5 3.5 3
2 1 1 5 3 1 9 2.5 3.5 3
2 1 2 1 2 2 5
2 2 1 0 4 3 7
2 2 2 0 4 2 6

Find the maximal payoff HN of coalition N and divide him according to Shap-
ley’s value (4), (Shapley, 1953):

Sh1 =
1

6
[v (I1, I2) + v (I1, I3)− v (I2)− v (I3)] +

1

3
[v (N)− v (I2, I3) + v (I1)] ;

Sh2 =
1

6
[v (I2, I1) + v (I2, I3)− v (I1)− v (I3)] +

1

3
[v (N)− v (I1, I3) + v (I2)] ;

Sh3 =
1

6
[v (I3, I1) + v (I3, I2)− v (I1)− v (I2)] +

1

3
[v (N)− v (I1, I2) + v (I3)] .

Find the guaranteed payoffs:

v (I1, I2) = max {4, 3} = 4; v (I1, I3) = max {3, 2} = 3;

v (I2, I3) = max {3, 4} = 4 ;

v (I1) = max {1, 0} = 1 ; v (I2) = max {2, 1} = 2; v (I3) = max {1, 2} = 2 .

Then

Sh
(2, 1, 1)
1 = Sh

(1, 2, 2)
1 = Sh

(1, 2, 1)
1 =

1

3
+

1

6
+

1

3
[9− 4] +

1

3
=

1

3
+

1

6
+

5

3
+

1

3
= 2

1

2
,

Sh
(2, 1, 1)
2 = Sh

(1, 2, 2)
2 = Sh

(1, 2, 1)
2 =

1

2
+

1

3
+

1

3
[9− 3] +

2

3
=

1

2
+

1

3
+

6

3
+

2

3
= 3

1

2
,

Sh
(2, 1, 1)
3 = Sh

(1, 2, 2)
3 = Sh

(1, 2, 1)
3 =

1

3
+

1

3
+

1

3
[9− 4] +

2

3
=

1

3
+

1

3
+

5

3
+

2

3
= 3.

3. Solve noncooperative game G1 (xΣ1), Σ1 = {S1 = {I1} , S2 = {I2} ,
S3 = { I3}} . In pure strategies NE not exist.
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Table4: Solution of noncooperative game.

The strategies The payoffs Pareto-optimality (P)
of players of players and Nash arbitration scheme

I1 I2 I3 I1 I2 I3 Nash arbitration scheme P
1 1 1 4 2 1 (4− 1) (2− 2) (1− 2) < 0 -
1 1 2 1 2 2 (1− 1) (2− 2) (2− 2) = 0 +
1 2 1 3 1 5 (3− 1) (1− 2) (5− 2) < 0 -
1 2 2 5 1 3 (5− 1) (1− 2) (3− 2) < 0 -
2 1 1 5 3 1 (5− 1) (3− 2) (1− 2) < 0 -
2 1 2 1 2 2 (1− 1) (2− 2) (2− 2) = 0 +
2 2 1 0 4 3 (0− 1) (4− 2) (3− 2) < 0 -
2 2 2 0 4 2 (0− 1) (4− 2) (2− 2) < 0 -

From p. 2 it follows that the guaranteed payoffs v (I1) = 1 ; v (I2) = 2; v (I3) =
2 . Find the optimal strategies with Nash arbitration scheme, see table 4. Then
optimal n-tuple are ((1) , (1) , (2)) and ((2) , (1) , (2)), the payoff in NE equals
((1) , (2) , (2)).

A detailed solution of games for various cases of the coalitional partition of play-
ers is provided in (Grigorieva, 2009). Present the obtained solution in (Grigorieva,
2009) in the table 5.

Table5: Payoffs of players in NE for various cases of the coalitional partition of
players.

Project Coalitional The n-tuple of Probability Payoffs
partitions NE (I1, I2, I3) of realization NE of players in NE

1 Σ1 = {{I1} {I2} {I3}} ((1) , (1) , (0)) 1 ((1) , (2) , (2))
((0) , (1) , (0))
((1, 0) , 1) 1/7

2 Σ2 = {{I1, I2} {I3}} ((1, 0) , 0) 4/21 ((2.71, 2.43) , 2.33)
((0, 1) , 1) 2/7
((0, 1) , 0) 8/21
(1, (1) , 1) 5/12

3 Σ3 = {{I1, I3} {I2}} (1, (0) , 1) 1/12 (2.59, (2.5) , 2.91)
(0, (1) , 1) 5/12
(0, (0) , 1) 1/12

4 Σ4 = {{I2, I3} {I1}} (1, (0, 1)) 1 (3, (3, 3))
(1, 0, 1) 1

5 Σ5 = {I1, I2, I3} (1, 0, 0) 1 (2.5, 3.5, 3)
(0, 1, 1) 1

Applying the algorithm for finding a compromise solution, we get the set of
compromise coalitional partitions (table 6).
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Table6: The set of compromise coalitional partitions.

I1 I2 I3 I1 I2 I3
Σ1 = {{I1} {I2} {I3}} 1 2 2 Δ {{I1} {I2} {I3}} 2 1.5 1 2
Σ2 = {{I1, I2} {I3}} 2.71 2.43 2.33 Δ {{I1, I2} {I3}} 0.29 1.07 0.67 1.07
Σ3 = {{I1, I3} {I2}} 2.59 2.5 2.91 Δ {{I1, I3} {I2}} 0.41 1 0.09 1
Σ4 = {{I2, I3} {I1}} 3 3 3 Δ {{I2, I3} {I1}} 0 0.5 0 0.5
Σ5 = {I1, I2, I3} 2.5 3.5 3 Δ {I1, I2, I3} 0.5 0 0 0.5

R 3 3.5 3

Therefore, compromise imputation are PMS-vector in coalitional game with the
coalition partition Σ4 in NE (1 , (0 , 1)) in pure strategies with payoffs (3 , (3 , 3))
and Shapley value in the cooperative game in NE ((1 , 0 , 1) , (1 , 0 , 0) , (0 , 1 , 1)
– cooperative strategies) with the payoffs (2.5 , 3.5 , 3).

Moreover, in situation, for example, (1 , (0 , 1)) the first and third players give
a positive decision for corresponding project. In other words, if the first and third
players give a positive decision for corresponding project, and the second does not,
then payoff of players will be optimal in terms of corresponding coalitional interac-
tion.

5. Conclusion

A static coalitional model of decision-making and algorithm for finding optimal
solution are constructed in this paper, and numerical example is given.
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